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REGULAR SUBMODULES OF REGULAR
KRONECKER MODULES

CSABA SZÁNTÓ

Abstract. Using some results on the Hall algebra of the Kronecker algebra kK
over the finite field k, we provide numerical criteria for a regular module in
mod-kK to be embeddable in an another regular module. We also describe the
possible factors of such an embedding. Finally the possible modules occurring
in an n-term Hall product of regulars is discussed.
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1. INTRODUCTION

The Kronecker algebra kK, i.e. the path algebra over the Kronecker quiver
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,

is a special but important tame hereditary algebra, because in some sense
models the behavior of all tame hereditary algebras. Its modules, called Kro-
necker modules, correspond to matrix pencils in linear algebra, so the Kro-
necker algebra relates representation theory with numerical linear algebra and
matrix theory.

It is a natural question to find a necessary and sufficient condition (in terms
of some numerical invariants called Kronecker invariants) for a Kronecker mod-
ule to be isomorphic with the submodule of an another Kronecker module.
This will help us in the description of the submodule category of the Kro-
necker algebra (see [8]) and also will lead us to the solution of the problem of
giving necessary and sufficient conditions for the existence of a matrix pencil
with prescribed Kronecker invariants and a prescribed arbitrary subpencil (see
[4], [5]).

In this article we will study the embedding problem for regular Kronecker
modules. Our approach will use results on the Hall algebra over the Kronecker
algebra (and implicitly the classical Hall algebra).

2. KRONECKER MODULES AND THEIR INVARIANTS

Let K be the Kronecker quiver and k a finite field with |k| = q. We will
consider the path algebra kK of K over k (called Kronecker algebra) and the
category mod-kK of finite dimensional right modules over kK. The category
mod-kK can and will be identified with the category rep-kK of the finite
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dimensional k-representations of the Kronecker quiver. Recall that such a
representation is of the form

V1 V2
g

oo

foo
,

where V1, V2 are finite dimensional k-spaces (corresponding to the two vertices)
and f, g : V2 → V1 are k-linear maps (corresponding to the two arrows). So up
to isomorphism a Kronecker representation consists of two k-matrices of the
same dimension. For general notions concerning the representation theory of
quivers, we refer to [2], [7] or [1].

Up to isomorphism we will have two simple objects in mod-kK correspond-
ing to the two vertices. We shall denote them by S1 and S2. For a module
M ∈ mod-kK, [M ] will denote the isomorphism class of M . The number of
automorphisms of M will be denoted by αM and the dimension vector of M
by dimM = (mS1(M),mS2(M)), where mSi(M) is the number of composi-
tion factors of M isomorphic to Si. For a module M let tM := M ⊕ ... ⊕M
(t-times).

For two modules M,M ′ ∈ mod-kK we will denote by M ′ ↪→ M the fact
that M ′ can be embedded in M (i.e. M ′ is isomorphic with a submodule of
M) and by M � M ′ the fact that M projects on M ′ (i.e. M ′ is isomorphic
with a factor module of M).

The indecomposables in mod-kK are divided into three families: the pre-
projectives, the regulars and the preinjectives.

The preprojective (respectively preinjective) indecomposable modules are
up to isomorphism uniquely determined by their dimension vectors. For n ∈ N
we will denote by Pn (respectively with In) the indecomposable preprojective
module of dimension (n + 1, n) (respectively the indecomposable preinjective
module of dimension (n, n+1)). So, P0, P1 are the projective indecomposable
modules (P0 = S1 being simple) and I0 = S2, I1 the injective indecomposable
modules (I0 = S2 being simple).

The regular indecomposables (up to isomorphism) are Rp(t) (for t ≥ 1 and
p ∈ P1

k) of dimension vector (tdp, tdp) (dp standing for the degree of the point
p).

For a partition λ = (λ1, ..., λs) we will use the notation Rp(λ) = Rp(λ1) ⊕
...⊕Rp(λs).

Using the terminology of the Auslander-Reiten theory (see [2], [7] or [1])
the sequence

[Rp(1)], . . . , [Rp(t)], . . .

is the vertex-sequence of a standard homogeneous tube Tp. For this reason we
say that the indecomposables Rp(t) are taken from the tube Tp. We say that
a module is taken from the tube Tp if all its indecomposable direct summands
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are isomorphic with some Rp(t). So, the modules from Tp are isomorphic with
Rp(λ) for some partition λ.

The modules from a tube Tp also form a full, exact, extension-closed abelian
subcategory of mod-kK with a single simple object: the regular indecompos-
able module on the mouth of the tube Rp(1) (also called a quasi-simple mod-
ule). A regular indecomposable module Rp(t) is uniquely determined by its
quasi-length t and quasi-socle Rp(1), and it is quasi-uniserial, so it has a single
quasi-composition series 0 ⊂ Rp(1) ⊂ Rp(2) ⊂ · · · ⊂ Rp(t).

Note that End(Rp(1)) is a field of index dp over k and End(Rp(t)) is a local
k-algebra with dimk End(Rp(t)) = tdp.

We also remark that we don’t have nontrivial morphisms and extensions
between two modules from different tubes, i.e. Hom(Rp(λp), Rp′(λp′)) =
Ext1(Rp(λp), Rp′(λp′)) = 0 for p 6= p′.

A module with all its indecomposable direct summands preprojective (resp.
preinjective, regular) will be called preprojective (resp. preinjective, regular)
module and denoted by P (resp. I, R). Using this notation it is well known
that Hom(R,P ) = Hom(I, P ) = Hom(I,R) = Ext1(P,R) = Ext1(P, I) =
Ext1(R, I) = 0.

By Krull-Schmidt, every module in M ∈ mod-kK (up to isomorphism) has
the following decomposition:

(Pc1 ⊕ ...⊕ Pcn)⊕ (⊕p∈P1
k
Rp(λp))⊕ (Id1 ⊕ ...⊕ Idm),

where

(1) (c1, ..., cn) is a finite increasing sequence of nonnegative integers
(2) λp is a partition for every p ∈ P1

k
(3) (d1, ..., dm) is a finite decreasing sequence of nonnegative integers

The sequences from (1), (2), (3) will be called Kronecker invariants of the
module M . We can see that they determine M up to isomorphism.

The defect of M ∈ mod-kK with dimension vector (a, b) is defined in the
Kronecker case as ∂M := b − a. Observe that if M is a preprojective (prein-
jective, respectively regular) indecomposable, then ∂M = −1 (∂M = 1, re-
spectively ∂M = 0). Moreover for a short exact sequence 0 → M1 → M2 →
M3 → 0 in mod-kK we have ∂M2 = ∂M1 + ∂M3.

3. THE HALL ALGEBRA APPROACH

Let k be a finite field. The Hall algebra H(kK, Q) associated to the Kro-
necker algebra kK is the free Q-space having as basis the isomorphism classes
in mod-kK together with a multiplication defined by:

[N1][N2] =
∑
[M ]

FM
N1N2

[M ],
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where the structure constants

FM
N1N2

= |{M ⊇ U | U ∼= N2, M/U ∼= N1}|

are called Hall numbers. Notice that H(kK, Q) is an associative, usually non-
commutative algebra with unit element the isoclass of the zero module.

More generally for M,N1, ..., Nt ∈ mod-kK we can define

FM
N1...Nt

= |{M = M0 ⊇ M1 ⊇ ... ⊇ Mt = 0| Mi−1/Mi
∼= Ni,∀1 ≤ i ≤ t}|.

We then have (using associativity)

[N1]...[Nt] =
∑
[M ]

FM
N1...Nt

[M ].

If FM
N1...Nt

6= 0 then we will use the notation [M ] ∈ {[N1]...[Nt]} and call [M ]
a term in [N1]...[Nt], {[N1]...[Nt]} denoting the set of all terms in [N1]...[Nt].

The following lemma follows immediately from the definitions above.

Lemma 3.1. a) {[N1][N2]} = {[M ]|FM
N1N2

6= 0} =
= {[M ]| exists a short exact sequence 0 → N2 → M → N1 → 0}.
b) M ′ ↪→ M ⇔ FM

XM ′ 6= 0 for some X ⇔ [M ] ∈ {[X][M ′]} for some X.
c) M � M ′ ⇔ FM

M ′X 6= 0 for some X ⇔ [M ] ∈ {[M ′][X]} for some X.

The lemma above shows that in order to characterize when a module is
embeddable in an another one we can use our knowledge on Hall products.

Since we are interested in the regular Kronecker modules we would need
information on their Hall products.

Using the remarks from Section 1, we notice that for p 6= p′

[Rp(λp)][Rp′(λp′)] = [Rp(λp)⊕Rp′(λp′)].

This means that it is enough to consider regulars from the same tube.
For a tube Tp we will denote by H(Tp, Q) the unital subalgebra of H(kK, Q)

generated by the classes [Rp(t)] with t ≥ 1. Observe that this algebra has as
Q-basis the classes Rp(λ) with λ a partition.

It is well known that the algebra H(Tp, Q) coincides with the classical Hall
algebra studied by P. Hall, so we can apply all the results due to Hall, Macdon-
ald and Zelevinsky, getting all the information we need for the Hall product
of regulars.

We will summarize in the following some of the notions, properties and facts
related to the classical Hall algebras (see [6] II+Appendix for all the details).

First some notions related to partitions. P will denote the set of all parti-
tions, P(n) the set of partitions of n. For λ = (λ1, . . . , λs) ∈ P denote by l(λ)
the length, with |λ| the weight and with λ′ the conjugate (or transpose) of λ
(i.e. l(λ) = s, |λ| = λ1 + · · ·+ λs). Let mi(λ) be the multiplicity of i in λ and
n(λ) =

∑
(i− 1)λi.
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For λ, µ ∈ P we define the following so-called dominance ordering

µ � λ ⇔ |µ| = |λ| and µ1 + ... + µi ≤ λ1 + ... + λi for all i.

We shall write µ ⊆ λ to mean that µi ≤ λi for all i ≥ 1. For µ ⊆ λ we say
that λ − µ is a horizontal t-strip if |λ − µ| := |λ| − |µ| = t and the sequences
λ and µ are interlaced, in the sense that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . .

A tableau T is a sequence of partitions

0 = λ0 ⊆ λ1 ⊆ ... ⊆ λr = λ

such that λi − λi−1 is a horizontal strip for i = 1, r. The partition λ is called
the shape of the tableau T and the sequence (|λ1 − λ0|, ..., |λr − λr−1|) the
weight of T . It is known that for given partitions λ, µ (with |λ| = |µ|) there is
a tableau of shape λ and weight µ iff µ � λ (see [3]).

Theorem 3.2. (Hall, Zelevinsky) a) H(Tp, Q) is commutative.
b) For partitions λ, µ, ν ∈ P there is a so called classical Hall polynomial

gλ
µν ∈ Z[q] independent from k and p such that F

Rp(λ)
Rp(µ)Rp(ν) = gλ

µν(q
dp). More-

over gλ
µν = gλ

νµ and gλ
µν = 0 unless |λ| = |µ|+ |ν| and µ, ν ⊆ λ.

c) gλ
µ(t) = 0 unless σ = λ − µ is a horizontal t strip. If σ = λ − µ is a

horizontal t strip then

gλ
µ(t) =

{
qn(λ)−n(µ)

1−q−1

∏
i∈I(1− q−mi(λ)) for t > 0

1 for t = 0.

Denote by cλ
µν the leading coefficient of the classical Hall polynomial gλ

µν .
This is called Littlewood-Richardson coefficient and plays a crucial role in
partition combinatorics.

4. REGULAR SUBMODULES OF REGULAR KRONECKER
MODULES

It follows from the remarks in the previous sections that for p1, ..., ps ∈ P1
k

pairwise different and µp1 , ...µps , λp1 , ..., λps ∈ P we have that

Rp1(µ
p1)⊕ ...⊕Rps(µ

ps) ↪→ Rp1(λ
p1)⊕ ...⊕Rps(λ

ps) iff

Rp1(µ
p1) ↪→ Rp1(λ

p1) ... Rps(µ
ps) ↪→ Rps(λ

ps).

This means that it is enough to study the embedding problem on a single tube.

Theorem 4.1. For two partitions µ, λ ∈ P and p ∈ P1
k we have

Rp(µ) ↪→ Rp(λ) iff µ ⊆ λ.
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Proof. “⇒” If Rp(µ) ↪→ Rp(λ) then by Lemma 3.1. b) there is an X ∈
mod-kK such that F

Rp(λ)
XRp(µ) 6= 0. We have then an exact sequence 0 →

Rp(µ) → Rp(λ) → X → 0, so the defect ∂X = 0, which means that X is
regular (since otherwise it must contain both preinjective and preprojective
components, and we cannot have projection from a regular to a preprojec-
tive). Notice also that X must be from the tube Tp (this because we can’t
have nonzero morphisms between modules from different tubes), so there is a
partition ν ∈ P such that X ∼= Rp(ν). Using Theorem 3.2. b), the classical
Hall polynomial gλ

νµ 6= 0, so |µ|+ |ν| = |λ| and µ, ν ⊆ λ.
“⇐” If µ ⊆ λ, there is a sequence of partitions

µ = µ0 ⊆ µ1 ⊆ ... ⊆ µ|λ−µ| = λ

such that |µi+1 − µi| = 1.
Then µi+1−µi is a horizontal 1-strip, so by Theorem 3.2. c) gµi+1

(1)µi 6= 0, which
by Lemma 3.1. means that [Rp(µi+1)] ∈ {[Rp(1)][Rp(µi)]}. So by associativity
in the Hall algebra

[Rp(λ)] ∈ {[Rp(1)]|λ−µ|[Rp(µ)]},
which implies Rp(µ) ↪→ Rp(λ) by Lemma 3.1. �

Remark 4.2. Using Lemma 3.1. a) it follows that Rp(µ) ↪→ Rp(λ) with
factor Rp(λ)/Rp(µ) ∼= Rp(ν) iff the Littlewood-Richardson coefficient cλ

νµ 6= 0.

Finally we will investigate the modules which will appear as terms in the
Hall product [Rp(µs)]...[Rp(µ1)], i.e. we will describe the set

{[Rp(µs)]...[Rp(µ1)]}
where µ1 ≥ ... ≥ µs ∈ N∗. Consider the partition µ = (µ1, ..., µs).

Theorem 4.3. We have

{[Rp(µs)]...[Rp(µ1)]} = {[Rp(λ)]|µ � λ}

Proof. We will apply Theorem 3.2. c) inductively and obtain that the terms
in the Hall product above are of the form [Rp(λ)], where λ is such that there
is a tableau of shape λ and weight µ. This implies the desired result. �
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