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MARX-STROHHACKER INEQUALITY
FOR MOCANU-JANOWSKI α-CONVEX FUNCTIONS

Y. POLATOG̃LU and E. YAVUZ

Abstract. Let Ω be the class of functions w(z) regular in the unit disc D =
{z : |z| < 1} with w(0) = 0, and |w(z)| < 1. For arbitrarily fixed real numbers
A ∈ (−1, 1] and B ∈ [−1, A), let P (A, B) be the class of regular functions p(z)

in D such that p(0) = 1, and p(z) ∈ P (A, B) if and only if p(z) = 1+Aw(z)
1+Bw(z)

for

every z ∈ D, for some w(z) ∈ Ω.
In the present paper we apply the subordination principle to give new proofs

for some results concerning the class M(α, A, B) of functions f(z) regular in
D with f(0) = 0, f ′(0) = 1 satisfying the condition: M(α, A, B) if and only

if
[
(1− α)z f ′(z)

f(z)
+ α

(
1 + z f ′′(z)

f ′(z)

)]
= p(z), for all z in D and for some p(z) ∈

P (A, B) (A ∈ (−1, 1], B ∈ [−1, A), 0 ≤ α < 1).
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1. INTRODUCTION

Let Ω be the family of functions w(z) regular in the unit disc D and satis-
fying the conditions w(0) = 0, |w(z)| < 1, for z ∈ D.

For arbitrary fixed numbers A, B, −1 ≤ B < A ≤ 1, let P (A, B) denote
the family of functions

p(z) = 1 + p1z + p2z
2 + ... + pnzn + ...

regular in D and such that p(z) is in P (A, B) if and only if

p(z) ≺ 1 + Az

1 + Bz
⇔ p(z) =

1 + Aw(z)
1 + Bw(z)

for some w(z) ∈ Ω and every z ∈ D.
Furthermore, for arbitrary fixed numbers A, B, α, −1 ≤ B < A ≤ 1, 0 ≤

α < 1, let M(α, A, B) denote the family of functions

f(z) = z + a2z
2 + a3z

3 + ...

regular in D and such that f(z) is in M(α, A, B) if and only if[
(1− α)z

f ′(z)
f(z)

+ α

(
1 + z

f ′′(z)
f ′(z)

)]
= p(z)

for some p(z) in P (A, B) and for all z in D.
Furthermore, for A = 1, B = −1, the class M(α, 1,−1) becomes the well

known class of α-convex functions introduced by P.T. Mocanu ([4]).
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2. NEW RESULTS ON THE CLASS M(α, A, B)

In this section we shall give representation theorems and a generalized Marx-
Strohhacker inequality for the class M(α, A, B). Our proofs are based on I.S.
Jack’s Lemma

Lemma 1. ([3]) Let w(z) be a non-constant and analytic function in the
unit disc D with w(0) = 0. If |w(z)| attains its maximum value on the circle
|z| = r at the point z0, then z0w

′(z0) = kw(z0) and k ≥ 1.

Theorem 1. If f(z) satisfies

(1)
[
(1− α)z

f ′(z)
f(z)

+ α

(
1 + z

f ′′(z)
f ′(z)

)
− 1

]
≺

{
(A−B)z
1+Bz = F1(z), B 6= 0,

Az = F2(z), B = 0,

then f(z) ∈ M(α, A, B).

Proof. The linear transformation

w1 = h(z) =
(A−B)z
1 + Bz

maps |z| = r onto the circle centered at C1(r), with radius ρ1(r), where{
C1(r) = −B(A−B)r2

1−B2r2 , ρ1(r) = (A−B)r
1−B2r2 , B 6= 0,

C1(r) = (0, 0), ρ1(r) = |A|r, B = 0.

Therefore h(D) is contained in the closed disc centered at C1(r) with radius
ρ1(r). On the other hand, we define the function w(z) by

(2)
f(z)

z

(
z
f ′(z)
f(z)

)α

=

{
(1 + Bw(z))

A−B
B , B 6= 0,

eAw(z), B = 0,

where (1+Bw(z))
A−B

B and eAw(z) have the value 1 at the origin. Then w(z) is
analytic in D, and w(0) = 0. If we take the logarithmic derivative of equality
(2), simple calculations yield

(3) (1− α)z
f ′(z)
f(z)

+ α

(
1 + z

f ′′(z)
f ′(z)

)
− 1 =

{
(A−B)zw′(z)

1+Bw(z) , B 6= 0,

Azw′(z), B = 0.

Now, the subordination (1) is equivalent to |w(z)| < 1 for all z ∈ D. Indeed,
assume the contrary. There exists z0 ∈ D, Max|z|=z0

such that |w(z0)| = 1.
Then, by I.S. Jack’s lemma, z0w

′(z0) = kw(z0) and k ≥ 1, and for such z0 ∈ D
we have

(1−α)z0
f ′(z0)
f(z0)

+α

(
1 + z0

f ′′(z0)
f ′(z0)

)
−1 =


(A−B)kw(z0)

1+Bw(z0) = F1(w(z0)) /∈ F1(D),

B 6= 0,

Akw(z0) = F2(w(z0)) /∈ F2(D),
B = 0,
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since |w(z0)| = 1 and k ≥ 1. But this contradicts (3) and so |w(z)| < 1 for all
z ∈ D.

On the other hand we have,[
(1− α)z

f ′(z)
f(z)

+ α

(
1 + z

f ′′(z)
f ′(z)

)]
− 1 ≺

{
(A−B)z
1+Bz , B 6= 0,

Az, B = 0,
⇔

[
(1− α)z

f ′(z)
f(z)

+ α

(
1 + z

f ′′(z)
f ′(z)

)]
− 1 =

{
(A−B)w(z)
1+Bw(z) , B 6= 0,

Aw(z), B = 0.

The sharpness of the result follows from the fact that

f(z)
z

(
z
f ′(z)
f(z)

)α

=

{
(1 + Bz)

A−B
B , B 6= 0,

eAz, B = 0,

implies [
(1− α)z

f ′(z)
f(z)

+ α

(
1 + z

f ′′(z)
f ′(z)

)]
− 1 ≺

{
(A−B)z
1+Bz , B 6= 0,

Az, B = 0.

�

Remark 1. If f(z) ∈ M(α, A, B), then

(4) w(z) =


1
B

[(
f(z)

z

) B
A−B

(
z f ′(z)

f(z)

) αB
A−B − 1

]
, B 6= 0,

log
[(

f(z)
z

) 1
A

(
z f ′(z)

f(z)

) α
A

]
, B = 0.

If we use the definition of w(z), we get
∣∣∣∣(f(z)

z

) B
A−B

(
z f ′(z)

f(z)

) αB
A−B − 1

∣∣∣∣ < |B|, B 6= 0,∣∣∣log
[(

f(z)
z

) (
z f ′(z)

f(z)

)α]∣∣∣ < |A|, B = 0.

Substituting specific values for A, B and α, the following are obtained:
(1) α = 1, A = 1, B = −1,∣∣∣∣∣ 1√

f ′(z)
− 1

∣∣∣∣∣ < 1.

This is the well-known “Marx-Strohhacker Inequality” ([2, p. 129]) for
convex functions.

(2) α = 0, A = 1, B = −1, ∣∣∣∣√ z

f(z)
− 1

∣∣∣∣ < 1.

This inequality was proved by Marx-Strohhacker in 1932 and by M.S.
Robertson in 1936 for starlike functions ([2, p. 128]).
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(3) A = 1, B = −1,

(5)

∣∣∣∣∣
√

z

f(z)

(
f(z)

zf ′(z)

)α

− 1

∣∣∣∣∣ < 1.

This is the Marx-Strohhacker inequality for α-convex functions.
(4) A = 1, B = 0,∣∣∣∣log

[(
f(z)

z

) (
z
f ′(z)
f(z)

)α]
− 1

∣∣∣∣ < 1.
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