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ON A DIFFERENTIAL SUPERORDINATION DEFINED
BY RUSCHEWEYH DERIVATIVE

GH. OROS and GEORGIA IRINA OROS

Abstract. By using the Ruscheweyh operator D™ f(z), z € U, we obtain sharp
superordinations results related to some normalized holomorphic functions in
the unit disk U.
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1. INTRODUCTION

Let © be any set in the complex plane C, let p be analytic in the unit disk U
and let ¢ (r,s,t;2) : C3 x U — C. In a series of articles the authors and many
others [1] have determined properties of functions p that satisfy the differential
subordination

{0(p(2), 20 (2), 2°p"(2); 2)| z € U} C Q.

In this article we consider the dual problem of determining properties of

function p that satisfy the differential superordination

Q C {U(p(2), zp' (2), 229" (2); 2)| z € U}.
This problem was introduced in [2].
We let H(U) denote the class of holomorphic functions in the unit disk
U={z€C: |z <1}. Fora e Cand n € N we let

Hla,n] = {f € HU), f(2) =a+ anz" + aps 12" +..., z€ U}
and
Ap={feHU)=2+a12" +..., 2€ UL
For 0 <r <1, we let U, = {z, |2] <r}.

DEFINITION 1. [2] Let ¢ : C?2 x U — C and let h be analytic in U. If p and
©(p(z),2p'(2z); z) are univalent in U and satisfy the (first-order) differential
superordination

(1) h(z) < @(p(2), 2p'(2); ),

then p is called a solution of the differential superordination. An analytic
function ¢ is called a subordinant of the solutions of the differential superor-
dination, or more simply a subordinant if ¢ < p for all p satisfying (1). A
univalent subordinant g that satisfies ¢ < ¢ for all subordinants ¢ of (1) is said
to be the best subordinant. Note that the best subordinant is unique up to a
rotation of U.
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For  a set in C, with ¢ and p as given in Definition 1, suppose (1) is
replaced by
(1) Q C {o(p(2), 2p'(2);:2)| 2 € U}

Although this more general situation is a “differential containment”, the
condition in (1") will also be referred to as a differential superordination, and

the definitions of solution, subordinant and best dominant as given above can
be extended to this generalization.

DEFINITION 2. [2] We denote by @ the set of functions f that are analytic
and injective on U \ E(f), where

B = (€U i () = o}

and are such that f'(¢) # 0 for ¢ € U \ E(f).
The subclass of @) for which f(0) = a is denoted by Q(a).
In order to prove the new results we shall use the following lemma:

LEMMA A. [2] Let h be convex in U, with h(0) = a, v # 0 with Re v > 0,

/
and p € Hla,n] N Q. If p(z) + va(z) is univalent in U,
/
h(z) < () + 2,
Y
then
qa(z) < p(2),
where

g(z) = —2 /h(t)tl—ldt, zeU.
nzy/m 0

The function q is convex and is the best subordinant.
LEMMA B. [2] Let q be convezr in U and let h be defined by

h(z) = q(z) + zmq;(z)j zeU,

/
with Re v > 0. If p € Hla,n]NQ, p(z) + pry(z) is univalent in U, and
/ /
a0+ L o 2B ey,
Y Y
then
q(2) < p(2),
where

g(z) = — /0 e lae,

nz’Y/"

The function q is the best subordinant.
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DEFINITION 4. [3] For f € A, and m > 0, m € N, the operator D™ f is
defined by
z z

D™f(z) = f(z) % A= = ﬁ[szlf(z)](m), z e,

where * stands for convolution.

REMARK 1. We have

Df(z) = f(2)
Dlf(z) = zf'(2)

(m+ 1)D™Lf(2) = 2[D™ ()] + mD™f(2), = € U,

2. MAIN RESULT

THEOREM 1. Let
14+ 2a—-1
h(z) = 1+2a-1)
1+2
be convex in U, with h(0) = 1.
Let f € A, and suppose that [D™ VL f(2)] is univalent and

(D™ f(2)] € H[1,n]NQ.

If
(2) h(z) < [D™f(2)], z€eUl,
then
q(2) < [D"f(2)], z€U,
where
_m41 [F1+Q2a—-1t mu
(3) o) = " /0 e

The function q is convexr and is the best subordinant.

Proof. Let f € A,. By using the properties of the operator D™ f(z) we
have

(4) (m+ D™ f() = 2[D™ ()] + mD™ (), 2 € U.
Differentiating (5), we obtain
(5)  (m+DD"f(2)]) = (m+ DD f(2)) + D" f(2)]", z€U.
If we let p(z) = [D™ f(z)]’ then (6) becomes
DR = pz) + —ap(), 2 €U
Then (3) becomes

h(z) < p(z) + ——2p/(2), ze€U.
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By using Lemma A, we have

q9(z) < p(z) = [D"f(2)]', =z€U,

where B ( )
m+1 14+ (20 — 1)t mt1
q(z) = mH/ " Ldt.
nz »n Jo +

THEOREM 2. Let

1+ 2a—-1)z
o) =
be convex in U, with h(0) = 1. Let f € A, and suppose that [D™f(z)]" is
univalent and szf(z) € H[1,n] N Q.
If
(©) h(z) < D" f)), 2l
then
q(z) < Dmf(z), zeU,
where
a(z) = — /z L+ Qo= Doy,
nzn Jo t

The function q is convexr and is the best subordinant.

Proof. We let

p(z) = ij(z), zeU,

and we obtain
(7) D™f(z) = zp(z), ze€U.
By differentiating (8) we obtain
[D™f(2)] =p(2) + 20/ (2), zeUl.
Then (7) becomes
h(z) < p(z) + 20/ (2), z€U.
By using Lemma A we have

02) <pe) = T ey

where . ;
q(z) = — / h(t)tn1dt.
0

nzn

THEOREM 3. Let q be convex in U and let h be defined by

M) = 4(2) + ——=

2q'(z), ze€U.
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Let f € A, and suppose that [D™ 1 f(2)] is univalent in U, [D™f(2)]
H[1,n]NQ and
® M:) = 4(2) + ——2d () < (D" )
then
a(z) < [D"f(2)]', z€U,
where

m+1 [# m4l
nz n» Jo
The function q is the best subordinant.

€

Proof. Let f € A,. By using the properties of the operator D™ f(z), we

have
(9) (m +1)[D" L f(2)]" = (m+1)[D™ f(2)] + 2[D™ f(2))".
If we let p(z) = [D™f(z)] then (10) becomes
[D™HLf(2)) = p(2) +
Then (9) becomes
q(z) + — 1zq’(z) <p(z) + -
By using Lemma B, we have

a(z) = p(z) = [D"f(2)], =€,

where

1 z m
al2) = " [ b e
0

nz n

THEOREM 4. Let q be convex in U and let h be defined by
h(z) =q(z) + 2¢'(z), z¢€U.

Dm
Let f € A, and suppose that [D™f(2)] is univalent in U, j(z>
H[1,n] N Q and

(10) hz) = q(z) + 2¢'(2) < [D"f(2)]', =2 €U,
then

q(z) < sz(z)’ zeU,
where

g(z) = - /0 T h(eEar.

nzn

Proof. We let

=20 e

€
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and we obtain
D™f(z) = zp(z), ze€U.
By differentiating, we obtain
[D™f(2)] = p(z) + 2p'(2), ze€U.
Then (11) becomes
q9(2) + 24/ (2) < p(2) + 20 (2), z€U.

By using Lemma B we have

Dm
q(z) < p(z) = Z(Z), zeU,
where ) ;
q(z) = — / h(t)tifldt, zeU.
nzn JO
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