ON CERTAIN GENERALIZED CLASS OF p-VALENTLY PARABOLIC STARLIKE FUNCTIONS BASED ON AN INTEGRAL OPERATOR

SH. NAJAFZADEH, S. R. KULKARNI and G. MURUGUSUNDARAMOORTHY

Abstract

By using an integral operator, we introduce a class $p-S P_{\xi}(\alpha, \beta)$ of parabolic starlike functions in the unit disk Δ and investigate the interesting properties of this class.

MSC 2000. 30C45, 30C50.
Key words. Multivalent function, parabolic region.

1. INTRODUCTION AND DEFINITIONS

Let $\mathcal{A}=\{f \mid f$ analytic in $\Delta\}, \Delta=\{z:|z|<1\}$ and $\mathcal{A}_{0}=\{f \in \mathcal{A} \mid f(0)=$ $\left.f^{\prime}(0)-1=0\right\}$. Also let A_{p} the class of multivalent function f of the form $f(z)=z^{p}+\sum_{k=n+p}^{\infty} a_{k} z^{k}$ and normalized by $f(0)=f^{(p)}(0)-p!=0$.

Definition 1.1. A function $f \in \mathcal{A}_{0}$ is said to be in the class of parabolic starlike functions denoted by $S P$ if (see [1])

$$
\begin{equation*}
\left|\frac{z f^{\prime}}{f}-1\right|<\operatorname{Re}\left(\frac{z f^{\prime}}{f}\right) z \in \Delta \tag{1}
\end{equation*}
$$

We can extend this definition to multivalent functions as follows:
Definition 1.2. A multivalent function $f \in \mathcal{A}_{p}$ is said to be in the class $p-S P p$-valently parabolic starlike functions if

$$
\begin{equation*}
\left|\frac{z f^{\prime}}{f}-p\right|<\operatorname{Re}\left(\frac{z f^{\prime}}{f}\right) z \in \Delta \tag{2}
\end{equation*}
$$

Definition 1.3. If $f(z) \in \mathcal{A}_{p}$ we define an integral operator from \mathcal{A}_{p} to \mathcal{A}_{p} by

$$
\begin{equation*}
F_{\xi, p}(z)=(1-\xi) z^{p}+\xi p \int_{\epsilon}^{z} \frac{f(s)}{s} \mathrm{~d} s\left(0 \leq \xi<1, \epsilon \rightarrow 0^{+}\right) . \tag{3}
\end{equation*}
$$

REmark 1.1. When $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ then

$$
F_{\xi, p}(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}
$$

where $b_{p+k}=\frac{\xi p}{p+k} a_{p+k}$.

Definition 1.4. Let $p-S P_{\xi}(\alpha, \beta)(0 \leq \xi<1,0 \leq \alpha<1,0<\beta<\infty, p \in$ \mathbb{Z}^{+}) be the class of functions $f \in \mathcal{A}_{p}$ for which

$$
\begin{equation*}
\left|\frac{z F_{\xi, p}^{\prime \prime}(z)}{F_{\xi, p}^{\prime}(z)}+1-p(\alpha+\beta)\right|<p(\beta-\alpha)+\operatorname{Re}\left[1+\frac{z F_{\xi, p}^{\prime \prime}(z)}{F_{\xi, p}^{\prime}(z)}\right] \tag{4}
\end{equation*}
$$

We say $p-S P_{\xi}(\alpha, \beta)$ be the class of parabolic p-valent starlike functions.
For particular values of ξ, α, β, p we obtain some interesting subclasses. For example:
(i) $1-S P_{\xi}\left(\frac{1}{2}, \frac{1}{2}\right)(\xi \rightarrow 1)$ is the class of parabolic starlike functions in Δ and denoted by $S P$ and $p-S P_{\xi}\left(\frac{1}{2}, \frac{1}{2}\right)(\xi \rightarrow 1)$ is the class of parabolic p-valent starlike functions (denote by $p-S P$) studied by Rønning [2].
(ii) $1-S P_{\xi}\left(\frac{1+\alpha}{2}, \frac{1-\alpha}{2}\right)(\xi \rightarrow 1)$ is the class of parabolic starlike functions of order α that is denoted by $S P(\alpha)(0 \leq \alpha<1)$ and studied by Rønning [1, 2] and $p-S P_{\xi}\left(\frac{1+\alpha}{2}, \frac{1-\alpha}{2}\right)(\xi \rightarrow 1)$ is the class of parabolic starlike p-valent functions of order $\alpha(p-S P(\alpha))$.
(iii) $1-S P_{\xi}\left(\frac{1}{2}, \frac{1}{2}\right)$ is the class consisting of functions f such that $\left(F_{\xi, p}(z)\right)^{\prime}$ is parabolic starlike function and denoted by $S P_{\xi}$ and $p-S P_{\xi}\left(\frac{1}{2}, \frac{1}{2}\right)=p-S P_{\xi}$ is the class of parabolic starlike p-valent functions. This class was studied by Srivastava and Mishra [3].

2. MAIN RESULTS

Definition. A function $g \in \mathcal{A}_{p}$ is said to be in the class $p-U C V P$ of parabolic p-valent uniformly convex functions in Δ if

$$
\begin{equation*}
\left|\frac{z g^{\prime \prime}}{g^{\prime}}+1-p\right|<\operatorname{Re}\left(1+\frac{z g^{\prime \prime}}{g^{\prime}}\right) . \tag{5}
\end{equation*}
$$

Theorem 2.1. Let $f(z) \in \mathcal{A}_{p}$ then $F_{\xi, p}(z)(\xi \rightarrow 1)$ is in $p-U C V P$ if and only if $f(z) \in p-S P$.

Proof. Suppose $\lim _{\xi \rightarrow 1}\left(F_{\xi, p}^{\prime}\right)=F_{1, p}^{\prime}, \lim _{\xi \rightarrow 1}\left(F_{\xi, p}^{\prime \prime}\right)=F_{1, p}^{\prime \prime}$. Since $F_{1, p}(z) \in p-$ $U C V P$, then by (5)

$$
\left|\frac{z F_{1, p}^{\prime \prime}(z)}{F_{1, p}^{\prime}(z)}+1-p\right|<\operatorname{Re}\left(1+\frac{z F_{1, p}^{\prime \prime}(z)}{F_{1, p}^{\prime}(z)}\right)
$$

or, equivalently, by putting (3) in above inequality, we have

$$
\left|\frac{z\left(p \frac{f(z)}{z}\right)^{\prime}}{p \frac{f(z)}{z}}+1-p\right|<\operatorname{Re}\left(1+\frac{z\left(p \frac{f(z)}{z}\right)^{\prime}}{\frac{f(z)}{z}}\right)
$$

or, equivalently, $\left|\frac{z f^{\prime}}{f}-p\right|<\operatorname{Re}\left(\frac{z f^{\prime}}{f}\right)$; then, by definition of $p-S P, f(z) \in$ $p-S P$.

Theorem 2.2. $f \in p-S P_{\xi}(\alpha, \beta)$ if and only if, for every $z \in \Delta$, the values of $\frac{z\left(F_{\xi, p}^{\prime \prime}(z)\right)}{F_{\xi, p}^{\prime}(z)}+1$ lie in the interior of the parabolic region.

Proof. By definition of the class $p-S P_{\xi}(\alpha, \beta)$ if we put values of $\frac{z\left(F_{F_{, p}^{\prime \prime}}^{\prime \prime}(z)\right)}{F_{\xi, p}^{\prime}(z)}+1$ equal to w we have

$$
|w-p(\alpha+\beta)|<p(\beta-\alpha)+\operatorname{Re}(w)
$$

or

$$
\begin{aligned}
& {[\operatorname{Re}(w)-p(\alpha+\beta)]^{2}+(\operatorname{Im}(w))^{2}<(p(\beta-\alpha)+\operatorname{Re}(w))^{2}} \\
& (\operatorname{Re}(w))^{2}+p^{2}(\alpha+\beta)^{2}-2 p(\alpha+\beta) \operatorname{Re} w+(\operatorname{Im}(w))^{2} \\
& <p^{2}(\beta-\alpha)^{2}+(\operatorname{Re}(w))^{2}+2 p(\beta-\alpha) \operatorname{Re}(w)
\end{aligned}
$$

or

$$
[\operatorname{Im}(w)]^{2}<[2 p(\alpha+\beta)+2 p(\beta-\alpha)] \operatorname{Re}(w)-4 p^{2} \alpha \beta
$$

or

$$
[\operatorname{Im}(w)]^{2}<4 p \beta[\operatorname{Re}(w)-p \alpha]
$$

and that is the interior of the parabolic region in the half-plane (right side) with vertex at ($p \alpha, 0$) and $4 p \beta$ is the length of the latus rectum.

Remark. We denote the parabolic region that was found in last theorem by

$$
\begin{equation*}
\Omega(p, \alpha, \beta)=\left\{w: w \in \mathbb{C} \text { and }[\operatorname{Im}(w)]^{2}<4 p \beta[\operatorname{Re}(w)-p \alpha]\right\} . \tag{6}
\end{equation*}
$$

Remark. Taking $p=1$ in Theorem 2.2, we get a region defined by Srivastava, Mishra and Das [4].

Theorem 2.3. If $f(z) \in \mathcal{A}_{p}$ and $F_{\xi, p}(z)$ defined by (3), then f is p-valently starlike of order γ if and only if $F_{\xi, p}(z)(\xi \rightarrow 1)$ is p-valently convex of order γ.

Proof. Let $F_{\xi, p}$ be p-valently convex of order γ then $\operatorname{Re}\left\{\frac{z F_{\xi, p}^{\prime \prime}}{F_{\xi, p}^{\prime}}+1\right\}>\gamma$. But by (3) we have

$$
F_{\xi, p}^{\prime}(z)=p(1-\xi) z^{p-1}+\xi p \frac{f(z)}{z}
$$

and

$$
F_{\xi, p}^{\prime \prime}(z)=p(p-1)(1-\xi) z^{p-2}+\xi p \frac{z f^{\prime}-f}{z^{2}}
$$

and when $\xi \rightarrow 1$ we obtain $F_{1, p}^{\prime}=p \frac{f(z)}{z} F_{1, p}^{\prime \prime}=p \frac{z f^{\prime}-f}{z^{2}}$ and

$$
\operatorname{Re}\left\{\frac{z p \frac{z f^{\prime}-f}{z^{2}}}{p \frac{f(z)}{z}}+1\right\}=\operatorname{Re}\left\{\frac{z f^{\prime}-f}{f}+1\right\}=\operatorname{Re}\left\{\frac{z f^{\prime}}{f}\right\}>\gamma
$$

and so $f(z)$ is p-valently starlike. All the relations are reversible and so proof is complete.

Theorem 2.4. Let $f_{k} \in p-S P_{\xi}\left(\alpha_{k}, \beta_{k}\right)$ with $\left(0<\xi<1,0 \leq \alpha_{k}<\right.$ $\left.1, \sum_{k=1}^{n} \alpha_{k}<1,0<\beta_{k}<\infty, k=1, \ldots, n\right)$ and $t_{k}>0(k=1, \ldots, n)$ and $\sum_{k=1}^{n} t_{k}=1$. Then $g(z)=\prod_{k=1}^{n}\left(f_{k}\right)^{t_{k}}$ is in $p-S P_{\xi}(\alpha, \beta)$, where $\alpha=\sum_{k=1}^{n} t_{k} \alpha_{k}$ and $\beta=\sum_{k=1}^{n} t_{k} \beta_{k}$.

Proof. We prove this theorem when $\xi \rightarrow \overline{1}$. Let

$$
F_{\xi, p}^{k}(z)=(1-\xi) z^{p}+\int_{\epsilon}^{z} \frac{f_{k}(z)}{z}
$$

and

$$
G_{\xi, p}(z)=(1-\xi) z^{p}+\int_{\epsilon}^{z} \frac{g(z)}{z}\left(\epsilon \rightarrow 0^{+}\right) .
$$

Since $f_{k} \in p-S P_{\xi}\left(\alpha_{k}, \beta_{k}\right)(k=1,2, \ldots, n)$ then by definition of $p-S P_{\xi}(\alpha, \beta)$ we have
(7) $\left|\frac{z\left(F_{\xi, p}^{k}(z)\right)^{\prime \prime}}{\left(F_{\xi, p}^{k}(z)\right)^{\prime}}+1-p\left(\alpha_{k}+\beta_{k}\right)\right|<\operatorname{Re}\left(1+\frac{z\left(F_{\xi, p}^{k}(z)\right)^{\prime \prime}}{\left(F_{\xi, p}^{k}(z)\right)^{\prime}}\right)+p\left(\beta_{k}-\alpha_{k}\right)$.

Now we must show

$$
\left|\frac{z G_{\xi, p}^{\prime \prime}(z)}{G_{\xi, p}^{\prime}(z)}+1-p(\alpha+\beta)\right|<\operatorname{Re}\left(1+\frac{z G_{\xi, p}^{\prime \prime}(z)}{G_{\xi, p}^{\prime}(z)}\right)+p(\beta-\alpha) .
$$

But when $\xi \rightarrow 1$ by direct computation we obtain

$$
\begin{aligned}
\left|\frac{z G_{\xi, p}^{\prime \prime}}{G_{\xi, p}^{\prime}}+1-p(\alpha+\beta)\right| & =\left|\frac{z g^{\prime}}{g}-p(\alpha+\beta)\right| \\
& =\left|\sum_{k=1}^{n} t_{k}\left(\frac{z f_{k}^{\prime}}{f_{k}}-p\left(\alpha_{k}+\beta_{k}\right)\right)\right| \\
& \leq \sum_{k=1}^{n}\left[t_{k}\left|\frac{z f_{k}^{\prime}}{f_{k}}-p\left(\alpha_{k}+\beta_{k}\right)\right|\right]
\end{aligned}
$$

with a simple calculation on (7) when $\xi \rightarrow 1^{-}$we obtain

$$
\begin{equation*}
\left|\frac{z f^{\prime}}{f}-p\left(\alpha_{k}+\beta_{k}\right)\right|<\operatorname{Re}\left(\frac{z f^{\prime}}{f}\right)+p\left(\beta_{k}-\alpha_{k}\right) \tag{8}
\end{equation*}
$$

and so

$$
\begin{aligned}
\left|\frac{z G_{\xi, p}^{\prime \prime}}{G_{\xi, p}^{\prime}}+1-p(\alpha+\beta)\right| & <\sum_{k=1}^{n}\left[t_{k}\left(\operatorname{Re}\left(\frac{z f_{k}^{\prime}}{f_{k}}\right)+p\left(\alpha_{k}+\beta_{k}\right)\right)\right] \\
& =\operatorname{Re}\left(\frac{z g^{\prime}}{g}\right)+p(\beta-\alpha)
\end{aligned}
$$

So $g \in p-S P_{\xi}(\alpha, \beta)$ (when $\xi \rightarrow \overline{1}$). The proof of Theorem 2.4 is completed.

REFERENCES

[1] Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.
[2] Rønning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Carie-sklodowska Sect., A 45 (1991), 117-122.
[3] Srivastava, H. M. and Mishra, A. K., Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39 (2000), 57-69.
[4] Srivastava, H. M., Mishra, A. K. and Das, M. K., A class of parabolic starlike functions, Fractional calculus and applied analysis, 6 (2003).

Received August 12, 2005
Department of Mathematics, Fergusson College, Pune-411004, India
E-mail: Najafzadeh1234@yahoo.ie

Department of Mathematics, Fergusson College, Pune-411004, India
E-mail: kulkarni_ferg@yahoo.com
School of Science and Humanities, VIT University, Vellore - 632014, Tamil Nadu, India.

E-mail: gmsmoorthy@yahoo.com

