ON CERTAIN GENERALIZED CLASS OF *p*-VALENTLY PARABOLIC STARLIKE FUNCTIONS BASED ON AN INTEGRAL OPERATOR

SH. NAJAFZADEH, S. R. KULKARNI and G. MURUGUSUNDARAMOORTHY

Abstract. By using an integral operator, we introduce a class $p - SP_{\xi}(\alpha, \beta)$ of parabolic starlike functions in the unit disk Δ and investigate the interesting properties of this class.

MSC 2000. 30C45, 30C50.

Key words. Multivalent function, parabolic region.

1. INTRODUCTION AND DEFINITIONS

Let $\mathcal{A} = \{f \mid f \text{ analytic in } \Delta\}, \Delta = \{z : |z| < 1\}$ and $\mathcal{A}_0 = \{f \in \mathcal{A} \mid f(0) = f'(0) - 1 = 0\}$. Also let A_p the class of multivalent function f of the form $f(z) = z^p + \sum_{k=n+p}^{\infty} a_k z^k$ and normalized by $f(0) = f^{(p)}(0) - p! = 0$.

DEFINITION 1.1. A function $f \in \mathcal{A}_0$ is said to be in the class of parabolic starlike functions denoted by SP if (see [1])

(1)
$$\left|\frac{zf'}{f} - 1\right| < \operatorname{Re}\left(\frac{zf'}{f}\right) \ z \in \Delta.$$

We can extend this definition to multivalent functions as follows:

DEFINITION 1.2. A multivalent function $f \in \mathcal{A}_p$ is said to be in the class p - SP p-valently parabolic starlike functions if

(2)
$$\left|\frac{zf'}{f} - p\right| < \operatorname{Re}\left(\frac{zf'}{f}\right) \ z \in \Delta.$$

DEFINITION 1.3. If $f(z) \in \mathcal{A}_p$ we define an integral operator from \mathcal{A}_p to \mathcal{A}_p by

(3)
$$F_{\xi,p}(z) = (1-\xi)z^p + \xi p \int_{\epsilon}^{z} \frac{f(s)}{s} \mathrm{d}s \ (0 \le \xi < 1, \ \epsilon \to 0^+).$$

Remark 1.1. When $f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ then

$$F_{\xi,p}(z) = z^p + \sum_{k=1}^{\infty} b_{p+k} z^{p+k},$$

where $b_{p+k} = \frac{\xi p}{p+k} a_{p+k}$.

DEFINITION 1.4. Let $p - SP_{\xi}(\alpha, \beta)$ $(0 \le \xi < 1, 0 \le \alpha < 1, 0 < \beta < \infty, p \in \mathbb{Z}^+)$ be the class of functions $f \in \mathcal{A}_p$ for which

(4)
$$\left| \frac{zF_{\xi,p}''(z)}{F_{\xi,p}'(z)} + 1 - p(\alpha + \beta) \right| < p(\beta - \alpha) + \operatorname{Re}\left[1 + \frac{zF_{\xi,p}''(z)}{F_{\xi,p}'(z)} \right]$$

We say $p - SP_{\xi}(\alpha, \beta)$ be the class of parabolic *p*-valent starlike functions.

For particular values of ξ, α, β, p we obtain some interesting subclasses. For example:

(i) $1 - SP_{\xi}(\frac{1}{2}, \frac{1}{2})$ $(\xi \to 1)$ is the class of parabolic starlike functions in Δ and denoted by SP and $p - SP_{\xi}(\frac{1}{2}, \frac{1}{2})$ $(\xi \to 1)$ is the class of parabolic *p*-valent starlike functions (denote by p - SP) studied by Rønning [2].

(ii) $1 - SP_{\xi}(\frac{1+\alpha}{2}, \frac{1-\alpha}{2})$ $(\xi \to 1)$ is the class of parabolic starlike functions of order α that is denoted by $SP(\alpha)$ $(0 \le \alpha < 1)$ and studied by Rønning [1, 2] and $p - SP_{\xi}(\frac{1+\alpha}{2}, \frac{1-\alpha}{2})$ $(\xi \to 1)$ is the class of parabolic starlike *p*-valent functions of order $\alpha(p - SP(\alpha))$.

(iii) $1 - SP_{\xi}(\frac{1}{2}, \frac{1}{2})$ is the class consisting of functions f such that $(F_{\xi,p}(z))'$ is parabolic starlike function and denoted by SP_{ξ} and $p - SP_{\xi}(\frac{1}{2}, \frac{1}{2}) = p - SP_{\xi}$ is the class of parabolic starlike p-valent functions. This class was studied by Srivastava and Mishra [3].

2. MAIN RESULTS

DEFINITION. A function $g \in \mathcal{A}_p$ is said to be in the class p - UCVP of parabolic *p*-valent uniformly convex functions in Δ if

(5)
$$\left|\frac{zg''}{g'}+1-p\right| < \operatorname{Re}\left(1+\frac{zg''}{g'}\right).$$

THEOREM 2.1. Let $f(z) \in \mathcal{A}_p$ then $F_{\xi,p}(z)$ $(\xi \to 1)$ is in p - UCVP if and only if $f(z) \in p - SP$.

Proof. Suppose $\lim_{\xi \to 1} (F'_{\xi,p}) = F'_{1,p}, \lim_{\xi \to 1} (F''_{\xi,p}) = F''_{1,p}$. Since $F_{1,p}(z) \in p - UCVP$, then by (5)

$$\left|\frac{zF_{1,p}''(z)}{F_{1,p}'(z)} + 1 - p\right| < \operatorname{Re} \left(1 + \frac{zF_{1,p}''(z)}{F_{1,p}'(z)}\right)$$

or, equivalently, by putting (3) in above inequality, we have

$$\left|\frac{z\left(p\frac{f(z)}{z}\right)'}{p\frac{f(z)}{z}} + 1 - p\right| < \operatorname{Re} \left(1 + \frac{z\left(p\frac{f(z)}{z}\right)'}{\frac{f(z)}{z}}\right)$$

or, equivalently, $\left|\frac{zf'}{f} - p\right| < \operatorname{Re}\left(\frac{zf'}{f}\right)$; then, by definition of $p - SP, f(z) \in p - SP$.

THEOREM 2.2. $f \in p - SP_{\xi}(\alpha, \beta)$ if and only if, for every $z \in \Delta$, the values of $\frac{z(F_{\xi,p}^{''}(z))}{F_{\xi,p}^{'}(z)} + 1$ lie in the interior of the parabolic region.

Proof. By definition of the class $p - SP_{\xi}(\alpha, \beta)$ if we put values of $\frac{z(F_{\xi,p}''(z))}{F_{\xi,p}'(z)} + 1$ equal to w we have

$$|w - p(\alpha + \beta)| < p(\beta - \alpha) + \operatorname{Re}(w)$$

or

$$\begin{aligned} [\operatorname{Re}(w) &- p(\alpha + \beta)]^2 + (\operatorname{Im}(w))^2 < (p(\beta - \alpha) + \operatorname{Re}(w))^2 \\ (\operatorname{Re}(w))^2 &+ p^2(\alpha + \beta)^2 - 2p(\alpha + \beta)\operatorname{Re}w + (\operatorname{Im}(w))^2 \\ &< p^2(\beta - \alpha)^2 + (\operatorname{Re}(w))^2 + 2p(\beta - \alpha)\operatorname{Re}(w) \end{aligned}$$

or

$$[\operatorname{Im}(w)]^2 < [2p(\alpha + \beta) + 2p(\beta - \alpha)]\operatorname{Re}(w) - 4p^2\alpha\beta$$

or

$$[\operatorname{Im}(w)]^2 < 4p\beta[\operatorname{Re}(w) - p\alpha]$$

and that is the interior of the parabolic region in the half-plane (right side) with vertex at $(p\alpha, 0)$ and $4p\beta$ is the length of the latus rectum.

REMARK. We denote the parabolic region that was found in last theorem by

(6)
$$\Omega(p,\alpha,\beta) = \{ w : w \in \mathbb{C} \text{ and } [\operatorname{Im}(w)]^2 < 4p\beta [\operatorname{Re}(w) - p\alpha] \}.$$

REMARK. Taking p = 1 in Theorem 2.2, we get a region defined by Srivastava, Mishra and Das [4].

THEOREM 2.3. If $f(z) \in \mathcal{A}_p$ and $F_{\xi,p}(z)$ defined by (3), then f is p-valently starlike of order γ if and only if $F_{\xi,p}(z)$ ($\xi \to 1$) is p-valently convex of order γ .

Proof. Let $F_{\xi,p}$ be *p*-valently convex of order γ then $\operatorname{Re}\left\{\frac{zF_{\xi,p}''}{F_{\xi,p}'}+1\right\} > \gamma$. But by (3) we have

$$F'_{\xi,p}(z) = p(1-\xi)z^{p-1} + \xi p \frac{f(z)}{z}$$

and

52

$$F_{\xi,p}''(z) = p(p-1)(1-\xi)z^{p-2} + \xi p \frac{zf'-f}{z^2}$$

and when $\xi \to 1$ we obtain $F'_{1,p} = p \frac{f(z)}{z} F''_{1,p} = p \frac{zf'-f}{z^2}$ and

$$\operatorname{Re}\left\{\frac{zp\frac{zf'-f}{z^2}}{p\frac{f(z)}{z}}+1\right\} = \operatorname{Re}\left\{\frac{zf'-f}{f}+1\right\} = \operatorname{Re}\left\{\frac{zf'}{f}\right\} > \gamma$$

and so f(z) is *p*-valently starlike. All the relations are reversible and so proof is complete.

THEOREM 2.4. Let $f_k \in p - SP_{\xi}(\alpha_k, \beta_k)$ with $(0 < \xi < 1, 0 \le \alpha_k < 1, \sum_{k=1}^n \alpha_k < 1, 0 < \beta_k < \infty, k = 1, \dots, n)$ and $t_k > 0$ $(k = 1, \dots, n)$ and $\sum_{k=1}^n t_k = 1$. Then $g(z) = \prod_{k=1}^n (f_k)^{t_k}$ is in $p - SP_{\xi}(\alpha, \beta)$, where $\alpha = \sum_{k=1}^n t_k \alpha_k$ and $\beta = \sum_{k=1}^n t_k \beta_k$.

Proof. We prove this theorem when $\xi \to \overline{1}$. Let

$$F_{\xi,p}^{k}(z) = (1-\xi)z^{p} + \int_{\xi}^{z} \frac{f_{k}(z)}{z}$$

and

$$G_{\xi,p}(z) = (1-\xi)z^p + \int_{\xi}^{z} \frac{g(z)}{z} \ (\epsilon \to 0^+).$$

Since $f_k \in p - SP_{\xi}(\alpha_k, \beta_k)$ (k = 1, 2, ..., n) then by definition of $p - SP_{\xi}(\alpha, \beta)$ we have

(7)
$$\left| \frac{z(F_{\xi,p}^k(z))''}{(F_{\xi,p}^k(z))'} + 1 - p(\alpha_k + \beta_k) \right| < \operatorname{Re}\left(1 + \frac{z(F_{\xi,p}^k(z))''}{(F_{\xi,p}^k(z))'} \right) + p(\beta_k - \alpha_k).$$

Now we must show

$$\left| \frac{zG_{\xi,p}^{\prime\prime}(z)}{G_{\xi,p}^{\prime}(z)} + 1 - p(\alpha + \beta) \right| < \operatorname{Re}\left(1 + \frac{zG_{\xi,p}^{\prime\prime}(z)}{G_{\xi,p}^{\prime}(z)}\right) + p(\beta - \alpha).$$

But when $\xi \to 1$ by direct computation we obtain

$$\left| \frac{zG''_{\xi,p}}{G'_{\xi,p}} + 1 - p(\alpha + \beta) \right| = \left| \frac{zg'}{g} - p(\alpha + \beta) \right|$$
$$= \left| \sum_{k=1}^{n} t_k \left(\frac{zf'_k}{f_k} - p(\alpha_k + \beta_k) \right) \right|$$
$$\leq \sum_{k=1}^{n} \left[t_k \left| \frac{zf'_k}{f_k} - p(\alpha_k + \beta_k) \right| \right]$$

with a simple calculation on (7) when $\xi \to 1^-$ we obtain

(8)
$$\left|\frac{zf'}{f} - p(\alpha_k + \beta_k)\right| < \operatorname{Re}\left(\frac{zf'}{f}\right) + p(\beta_k - \alpha_k)$$

and so

$$\left| \frac{zG_{\xi,p}''}{G_{\xi,p}'} + 1 - p(\alpha + \beta) \right| < \sum_{k=1}^{n} \left[t_k \left(\operatorname{Re}\left(\frac{zf_k'}{f_k} \right) + p(\alpha_k + \beta_k) \right) \right] \\ = \operatorname{Re}\left(\frac{zg'}{g} \right) + p(\beta - \alpha).$$

So $g \in p - SP_{\xi}(\alpha, \beta)$ (when $\xi \to \overline{1}$). The proof of Theorem 2.4 is completed. \Box

REFERENCES

- RøNNING, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196.
- [2] Rønning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Carie-sklodowska Sect., A 45 (1991), 117–122.
- [3] SRIVASTAVA, H. M. and MISHRA, A. K., Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39 (2000), 57–69.
- [4] SRIVASTAVA, H. M., MISHRA, A. K. and DAS, M. K., A class of parabolic starlike functions, Fractional calculus and applied analysis, 6 (2003).

Received August 12, 2005

Department of Mathematics, Fergusson College, Pune - 411004, India E-mail: Najafzadeh1234@yahoo.ie

Department of Mathematics, Fergusson College, Pune - 411004, India E-mail: kulkarni_ferg@yahoo.com

School of Science and Humanities, VIT University, Vellore - 632014, Tamil Nadu, India. E-mail: gmsmoorthy@yahoo.com

53