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INVERSE PROBLEM OF DYNAMICS IN NON-FLAT SPACES:
SOLVABLE CASES OF THE TWO BASIC EQUATIONS

THOMAS KOTOULAS

Abstract. We study several solvable cases of a first-order partial differential
equation given by Mertens (1981). This equation combines the potential function
V = V (u, v) with a mono-parametric family of regular orbits f(u, v) = c on a
given surface S submersed in E3 and the function of energy-dependence E =
E(f) is given in advance. In the generic case it is shown that two differential
conditions must be hold for the “slope function” γ = fv/fu in order the above
equation has solution. Moreover, in the above solvable cases, the second order
PDE given by Bozis and Mertens (1985) reduces to its canonical form and can
be solved too. Pertinent examples are given.
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1. INTRODUCTION

In 1974 V. Szebehely published a partial differential equation for the poten-
tial function V = V (x, y) which produces a mono-parametric family of planar
orbits f(x, y) = c and the energy E of them is given in advance as a function
of the constant c namely E = E(c). Bozis (1984) presented a second order
linear partial differential equation giving the potential functions V = V (x, y)
which give rise to a preassigned family of planar curves f(x, y) = c. Bozis’
equation does not include the energy E and consequently no assumption about
the energy dependence E = E(f) needs to be made. Anisiu (2004) derived in
a unified manner the two basic equations of the inverse problem of dynamics,
and the region where real motion of the particle takes place.

Mertens(1981) studied a family of curves f(u, v) = c on a surface S in 3D
space using Szebehely’s method and obtained a linear partial differential equa-
tion in the potential function V (u, v). Furthermore, Bozis and Mertens (1985)
derived a second order partial differential equation of hyperbolic type for the
potential V in which all the coefficients are known functions of the coordinates
u, v and gave some examples. Borghero (1986) determined the expressions for
the covariant components Q1, Q2 of forces acting on a test particle which
describes orbits on a given surface, using the procedure of Dainelli (Whit-
taker, 1994). Bozis and Borghero (1995) introduced the notion of the family
boundary curves (FBC) for that version of the inverse problem of dynamics
which combines the potential V (u, v) with a mono-parametric family of regu-
lar orbits f(u, v) = c on the configuration manifold (M2, g) of a conservative
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holonomic system with n=2 degrees of freedom. Several examples were given
there. Puel (2002) gave a geometrical interpretation for the deflection at the
origin of rectilinear orbits in a central field. This interpretation was based
on the correspondence between the plane orbits of a conservative force field
and the geodesics of a certain surface. Recently, Kotoulas (2005a) studied the
case of a generalized force field which gives rise to a two-parametric family of
curves on a given surface. Among other curves, helical lines were also studied
there. A solvable version of the inverse problem of dynamics was studied by
the same author (Kotoulas, 2005b). A review on basic facts of inverse problem
in dynamics was made by Bozis (1995) and recently by Anisiu (2003).

In the present work we shall deal with the first-order PDE given by Mertens
(1981) and find solvable cases of it for any energy dependence. Moreover, in
these cases, the second order PDE given by Bozis and Mertens (1985) can be
solved analytically too. In Section 2 we give a full description of this problem.
In Section 3 we classify solvable cases of the above equation and in Section 4
we give pertinent examples. In the generic case it is shown that two differential
conditions must be hold for the “slope function” γ = fv/fu in order the above
equation has solution. We conclude in Section 5.

2. ANALYSIS OF THE PROBLEM

In an Euclidean 3D-space E3 with an orthonormal Cartesian system of ref-
erence Oxyz we assign a smooth surface S:

(1) P = P (u, v) ⇔ {x = x(u, v), y = y(u, v), z = z(u, v)}
with u, v as curvilinear coordinates on S. On this surface we also consider a
mono-parametric family of regular curves given in the solved form

(2) f(u, v) = c,

where c is the parameter of the family (2).
For the given family of orbits we define γ as follows: γ = fv/fu and the

subscripts denote partial differentiation. The “slope function” γ represents
the family (2) in the sense that if the family (2) is given, then γ is determined
uniquely. On the other hand, if γ is given, we can obtain a unique family (2).
The inverse problem of dynamics consists in finding potentials V which can
give rise to this family of orbits (2) on a given surface (1).

The line-element on the surface S in this system of parameters is given by:

(3) ds2 = g11du2 + 2g12dudv + g22dv2,

where g11, g12, g22 are known functions of u, v.
Now, we consider a particle of unit mass which describes any member of

the given family (2). The kinetic energy (T ) of the test particle is given by

(4) T =
1
2
(g11u̇

2 + 2g12u̇v̇ + g22v̇
2),

where the dot denotes differentiation with respect to time.



3 Solvable cases of the basic equations 37

2.1. Mertens’ PDE (1981). Mertens (1981) produced a linear, first order
partial differential equation for the potential function V = V (u, v) for any
preassigned dependence E = E(f), of the total energy E of the given family
f = f(u, v). This equation is the following one:

(5) (g22fu − g12fv)Vu + (g11fv − g12fu)Vv = 2W (E − V ),

where W is given in the Appendix I.
Using the “slope function” γ and the notation Γ = γγu − γv, the equation

(5) takes a simpler form:

(6) (g22 − γg12)Vu + (γg11 − g12)Vv +
2∆
A1

(E − V ) = 0,

where A1 and ∆ are given in the Appendix II.
The subsidiary system of equations for (6) is:

(7)
du

g22 − γg12
=

dv

γg11 − g12
=

A1dv

2∆(V − E)

or, equivalently, we have to solve two ODEs

(8)
dv

du
=

γg11 − g12

g22 − γg12

and

(9)
dv

du
−KV +KE = 0,

where K = 2∆/(A1(g22 − γg12)). The general solution of (6) is of the form:
F (d1, d2 = 0) (F is an arbitrary function of two arguments, d1, d2 = const.).
We assume that we can find a first independent integral of (8) namely an
expression of the form F (u, v) = d1 or, equivalently, v = v(u, d1) (d1=const.).
If we insert it into (9), then we have to proceed and calculate the potential
function V = V (u, v). Thus, the function f = f(u, v) = c must be known
in advance in order to determine the energy dependence. We end up to the
conclusion that the following ODE must be solvable

(10)
dv

du
= − 1

γ(u, v)
.

The solution of (10) gives us the mono-parametric family of orbits (2).

2.2. Bozis and Mertens’ PDE (1985). Bozis and Mertens (1985) produced
a linear, second order partial differential equation in V = V (u, v) which is in-
dependent of the total energy E and gives all the potential functions generating
family (2) on the given surface (1). The total energy E must be constant along
each orbit, so E = E(f). Thus, we have Ev = Effv and Eu = Effu. As-
suming that W 6= 0 and with the use of the fact that Ev = γEu, Bozis and
Mertens (1985) obtained the following equation:

(11) k1Vuu + k2Vuv − βVvv + k3Vu + k4Vv = 0,
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where

(12) k1 = αγ, k2 = βγ − α, k3 = γ + γαu − αv, k4 = γβu − βv − 1

and the coefficients α, β, γ are given in the Appendix I. The subscripts denote
partial differentiation with respect to the corresponding variable.

If we apply the condition Ev = γEu to the equation (6), we obtain again
the equation (11) but now the coefficients α and β are given as follows:

(13) α = −A1(g22 − γg12)
2∆

, β = −A1(γg11 − g12)
2∆

.

From (11) it is easy to check that if V is a solution, then V ′ = d1V + d2 is
a solution too (d1, d2 are constants). So, without loss of generality, we shall
omit these constants below. In the present work we shall consider the previous
equation (11) and α, β are given in (13).

Firstly, we see that equation (11) is a partial differential equation of second
order in hyperbolic type of the potential function V = V (u, v). Indeed, we
consider the trinominal

(14) k1λ
2 + k2λ− β = 0

and the discriminant of (14) is:

(15) ∆ = k2
2 + 4k1β = (βγ + α)2 > 0.

The roots of (14) are:

(16) λ1 = −β

α
, λ2 =

1
γ

.

From (13) we observe that

(17)
β

α
=

γg11 − g12

g22 − γg12
.

So, the roots of equation (14) are written as:

(18) λ1 = −γg11 − g12

g22 − γg12
, λ2 =

1
γ

.

If we select an appropriate transformation

(19) η = f1(u, v), ξ = f2(u, v).

where f1(u, v) = c1 and f2(u, v) = c2 are the solutions of the ordinary differ-
ential equations of first order,

(20)
dv

du
+ λ1(u, v) = 0,

dv

du
+ λ2(u, v) = 0,

then the equation (11) can be reduced into its canonical form in any fixed
point of the region where the equation is defined and may be solved. We
should state here that the curves η = c1 and ξ = c2 are the characteristic
ones of (11). Someone can find a classification of second order PDEs with
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linear principal part in [13] (Chapter 4). In view of (18), the relations (20) are
written as:

(21)
dv

du
=

γg11 − g12

g22 − γg12
,

dv

du
= −1

γ
.

Now, we see that the equations (21) are the same ones with (8) and (10).

Remark 1. If we consider planar orbits, then we can use the Cartesian
coordinates {x, y} instead of the curvilinear coordinates {u, v} and the ele-
ments of metric tensor are: g11 = 1, g12 = 0, g22 = 1. Then the equations
(20) become:

(22)
dy

dx
= γ,

dy

dx
= −1

γ

Grigoriadou et al. (1999) solved the equations (22) by quadratures for some
specific forms of the “slope function” γ. Thus, Szebehely’s equation is solvable.

Remark 2. Generally speaking, if we consider “Liouville’s surfaces”, i.e.
surfaces with the following coefficients of first fundamental form:

(23) g11 = g22, g12 = 0,

then the equation (21) take again the form (22). Thus, the solvable cases of
the planar inverse problem of dynamics (see also Grigoriadou et al., 1999) are
very useful for the study of regular orbits on Liouville’s surfaces. So, in the
present study we shall consider the generic case in which g11 6= g22.

Now we set the question: In which cases are the equations (21) solved?
If for appropriate α, β, γ the equations (21) are solved, then the equation

(11) is reduced to its canonical form and finally may be solved. These solvable
cases are going to be studied in the following section.

3. SOLVABLE CASES OF EQUATIONS (21)

In this section we shall study solvable cases of the equations (21). We will
start with the

• Case 1: γ = σ(u).
The first of equations (21) is written as:

(24)
dv

du
=

σ(u)g11 − g12

g22 − σ(u)g12
.

From (24) we observe that if

(25) g11 = g11(u), g12 = g12(u), g22 = g22(u)

then the equation (24) is written as follows:

(26)
dv

du
= τ(u),
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where

(27) τ(u) =
σ(u)g11(u)− g12(u)
g22(u)− σ(u)g12(u)

.

We integrate (26) and we get

(28) v − φ(u) = d1, φ(u) =
∫

τ(u)du.

On the other hand, the second of equations (21) is solved directly by quadra-
tures, i.e.

(29)
dv

du
= − 1

σ(u)
⇐⇒ v +

∫
du

σ(u)
= d2.

• Case 2: γ = σ(a1u + a2v + a3) where a1, a2, a3 = const. 6= 0. For
simplicity reasons we shall set w = a1u + a2v + a3.

The first of equations (21) is written as:

(30)
dv

du
=

σ(w)g11 − g12

g22 − σ(w)g12
.

From (30) we see that, if

(31) g12 = φ0(w), g11 = φ1(w), g22 = φ2(w)

then the above equation is written as follows:

(32)
dv

du
= τ(w)

with τ(w) = σ(w)φ1(w)−φ0(w)
φ2(w)−σ(w)φ0(w) and it is integrated as follows:

(33)
∫

dw

a2τ(w) + a1
− u = d1.

On the other hand, the second of equations (21) is solved directly by quadra-
tures, i.e.

(34)
dv

du
= − 1

σ(w)
⇐⇒

∫
σ(w)

a1σ(w) + a2
dw − u = d2.

• Case 3: γ = σ(w) with w = v
u .

The first of equations (21) is written as:

(35)
dv

du
=

σ(w)g11 − g12

g22 − σ(w)g12
.

From (36) we see that if

(36) g12 = φ0(w), g11 = φ1(w), g22 = φ2(w)

then the above equation is written as follows:

(37)
dv

du
= τ(w)
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with τ(w) = σ(w)φ1(w)−φ0(w)
φ2(w)−σ(w)φ0(w) and it is integrated as follows:

(38)
∫

dw

τ(w)− w
− log u = d1.

On the other hand, the second of equations (21) is solved directly by quadra-
tures, i.e.

(39)
dv

du
= − 1

σ(w)
⇐⇒

∫
σ(w)

wσ(w) + 1
dw + log u = d2.

• Case 4: The Generic Case. We shall study here the case in which both
the equations (21) are exact differential equations after we multiply them with
suitable factors (the so-called “Euler’s multipliers”). Let τ(u, v) and ρ(u, v)
be the multipliers for the first and the second of equations (21) respectively.
Then we have:

(40) τ(γg11 − g12)du− τ(g22 − γg12)dv = dJ

and

(41) ρ(du + γdv) = dH.

The first of equations (21) is written as

(42) κ1du + κ2dv = 0

where κ1 = γg11 − g12, κ2 = γg12 − g22. Then the relation (40) is written as
τκ1du + τκ2dv = dJ and it is integrable when

(43)
∂(τκ1)

∂v
=

∂(τκ2)
∂u

or equivalently

(44) κ1τv − κ2τu = (κ2u − κ1v)τ.

Also, from (40) we have:

(45) Ju = τκ1, Jv = τκ2.

From (45) we compute the partial derivatives of second order for the function
J . Thus, we have:

(46) Juu = τuκ1 + τκ1u, Jvv = τvκ2 + τκ2v

and the Laplacian of J is:

(47) ∇2J = Juu + Jvv = τ(κ1u + κ2v) + κ1τu + κ2τv.

From (47) we get:

(48) κ1τu + κ2τv = ∇2J − τ(κ1u + κ2v).

Combining the equations (44) and (48), we compute the partial derivatives of
first order of τ namely τv and τu:

(49) τv =
∆1

∆0
, τu =

∆2

∆0



42 T. Kotoulas 8

where

∆0 = κ2
1 + κ2

2,

∆1 = κ2∇2J + (κ1κ2u − κ1κ1v − κ2κ1u − κ2κ2v)τ,
∆2 = κ1∇2J − (κ1κ1u + κ1κ2v + κ2κ2u − κ2κ1v)τ.(50)

The total differential of τ is:

(51) dτ = τvdv + τudu.

Now, we set

M = κ1κ2u − κ1κ1v − κ2κ1u − κ2κ2v,

N = κ1κ1u + κ1κ2v + κ2κ2u − κ2κ1v.(52)

With the use of (49), (50) and (52), the equation (51) becomes:

(53) dτ =
1

∆0
[(κ1du + κ2dv)∇2J + τMdv − τNdu].

Using the relation (42) the equation (53) is written as:

(54)
dτ

τ
=

1
∆0

[Mdv −Ndu].

So, the equation (54) is integrable when

(55)
∂

∂u

( M

∆0

)
= − ∂

∂v

( N

∆0

)
or, equivalently,

(56) (Mu + Nv)∆0 = M∆0u + N∆0v.

The lhs of (56) become, after some straightforward algebra,

(57) Mu + Nv = κ1κ2uu − κ2κ1uu + κ1κ2vv − κ2κ1vv.

Moreover, the rhs of (56) are written as:
(58)
M∆0u + N∆0v = 2(κ2

1− κ2
2)(κ1uκ2u + κ1vκ2v) + 2κ1κ2(κ2

2u− κ2
1u + κ2

2v − κ2
1v).

So, the equation (56), with the use of (57) and (58), reads:

(κ1κ2uu − κ2κ1uu + κ1κ2vv − κ2κ1vv)(κ2
1 + κ2

2)(59)
= 2(κ2

1 − κ2
2)(κ1uκ2u + κ1vκ2v) + 2κ1κ2(κ2

2u − κ2
1u + κ2

2v − κ2
1v).

If for the mono-parametric family of orbits (2) on the given surface (1) the
relation (59) holds, then the first of equations (21) is integrable.

Furthermore, if we work with the relation (41) in a similar way, then we
obtain:

(60) ∇2(arctanγ) = 0.

Now, we can formulate the following
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Proposition 1. If for the given family of regular orbits (2) on a certain
surface (1), the slope function γ satisfies the differential relations (59) and
(60) and the function of the energy-dependence is given in advance, then the
equation (6) is solved. The equation (11) given by Bozis and Mertens (1985)
is reduced to its canonical form and can be solved analytically.

Remark 3. If we consider planar orbits, then we can use the cartesian
coordinates x, y instead of the curvilinear coordinates and the elements of
metric tensor are: g11 = 1, g12 = 0, g22 = 1. Thus the equation (59) coincides
with (60) and the “ slope function γ” has to satisfy only one condition, as it
was shown by Grigoriadou et al. (1999).

4. PERTINENT EXAMPLES

In this section we shall offer some examples in which selecting an appropriate
transformation (ξ, η) of (18), the second order PDE is reduced to its canonical
form and it is solved. In the first two examples we have selected surfaces with
g12 6=0 and in the last ones we have taken an isothermic net of parameters on
the given surface (ex. 3, 4). Let us start with

Example 1. We assign the surface S: ~r(u, v) = {u, v, uv} and we consider
the mono-parametric family of hyperbolas f = uv = c on it. Then we have:

g11 = 1 + v2, g12 = uv, g22 = 1 + u2, γ =
u

v
,

β

α
=

u

v
.(61)

So, from (18) we select the transformation

(62) ξ = uv, η = u2 − v2.

Thus the equation (11), in the new variables ξ, η, reads:

(63) (η2 + 4ξ2)Vξη − 4ξVη + 2ηVξ = 0.

If we integrate (63) with respect to the variable η, we will obtain

(64) (η2 + 4ξ2)Vξ − 4ξV = F (ξ),

where F in (64) is an arbitrary C2-function of its argument. Then we find the
general solution of (64) and it is:

(65) V (ξ, η) = (η2 + 4ξ2)1/2

[
G(η) +

∫
F (ξ)dξ

(η2 + 4ξ2)3/2

]
.

We see that two arbitrary functions F (ξ), G(η) appear in the general solution
of (65). Moreover, in the calculation of the integral in (65) the variable η
should be considered as constant. So, with the aid of (62), we come back to
the variables u, v and the potential function is:

(66) V (u, v) = (u2 + v2)
[
G(u2 − v2) + H(u, v)

]
.
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Example 2. We assign the surface S: ~r(u, v) = {u + v, u − v, u2 + v2}
and we consider the mono-parametric family of circles f = u2 + v2 = c on it.
Then we have:

g11 = 2 + 4u2, g12 = 4uv, g22 = 2 + 4v2, γ =
v

u
,

β

α
=

v

u
.(67)

So, from (18) we select the transformation

(68) ξ = u2 + v2, η =
v

u
.

Thus the equation (11), in the new variables ξ, η, reads:

(69) ξVξη + Vη = 0.

If we integrate (69) with respect to the variable η, then we obtain

(70) ξVξ + V = F (ξ),

where F in (70) is an arbitrary C2-function of its argument. Then we find the
general solution of (70) and it is:

(71) V (ξ, η) = H(ξ) +
G(η)

ξ
.

We see that two arbitrary functions H(ξ), G(η) appear in the general solution
of (71). The function H(ξ) is related to F (ξ) as follows: H(ξ) = 1

ξ

∫
F (ξ)dξ.

So, with the aid of (68), we come back to the variables u, v and the potential
function is:

(72) V (u, v) = H(u2 + v2) +
G( v

u)
u2 + v2

.

Example 3. We assign the surface S: ~r(u, v) = {u− u3

3 + uv2, −v + v3

3 −
vu2, u2 − v2} (“Enneper’s” surface) and we consider the mono-parametric
family of circles f = u2 + v2 = c on it. Then we have:

g11 = g22 = 1 + 2(u2 + v2) + (u2 + v2)2, g12 = 0,(73)

γ =
v

u
,

β

α
=

v

u

So, from (18) we select the transformation

(74) ξ = u2 + v2, η =
v

u
.

Thus the equation (11), in the new variables ξ, η, reads:

(75) (1 + 3ξ)Vη + (ξ + ξ2)Vξη = 0.

If we integrate (75) with respect to the variable η, then we obtain

(76) (1 + 3ξ)V + ξ(ξ + 1)Vξ = F (ξ),
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where F in (76) is an arbitrary C2-function of its argument. Then we find the
general solution of (76) and it is:

(77) V (ξ, η) = H(ξ) +
G(η)

ξ(ξ + 1)2
.

We see that two arbitrary functions F (ξ), G(η) appear in the general solution
of (75). The function H(ξ) is related to F (ξ) as follows: H(ξ) = 1

ξ(ξ+1)2

∫
(ξ +

1)F (ξ)dξ. So, with the aid of (77), we come back to the variables u, v and
the potential function is:

(78) V (u, v) = H(u2 + v2) +
G( v

u)
(u2 + v2)(u2 + v2 + 1)2

.

Example 4. We assign the sphere S: ~r(u, v) = {u2+v2−1
u2+v2+1

, 2u
u2+v2+1

, 2v
u2+v2+1

}
and we consider the mono-parametric family of circles f = u2 + v2 = c on it.
Then we have:

(79) g11 = g22 =
4

(1 + u2 + v2)2
, g12 = 0, γ =

v

u
,

β

α
=

v

u
.

So, from (18) we select the transformation

(80) ξ = u2 + v2, η =
v

u

Thus the equation (11), in the new variables ξ, η, reads:

(81) (1− ξ)Vη + (ξ + ξ2)Vξη = 0

If we integrate (81) with respect to the variable η, then we obtain

(82) (1− ξ)V + ξ(1 + ξ)Vξ = F (ξ),

where F in (82) is an arbitrary C2-function of its argument. Then we find the
general solution of (82) and it is:

(83) V (ξ, η) = H(ξ) +
(ξ + 1)2

ξ
G(η).

We see that two arbitrary functions H(ξ), G(η) appear in the general solution
of (83). The functions H(ξ) and F (ξ) are combined with the relation: H(ξ) =
(ξ+1)2

ξ

∫ F (ξ)
(ξ+1)3

dξ. So, with the aid of (80), we come back to the variables u, v

and the potential function is:

(84) V (u, v) = H(u2 + v2) +
(u2 + v2 + 1)2

u2 + v2
G

(v

u

)
.
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5. CONCLUDING COMMENTS

We considered a mono-parametric family of curves f(u, v) = c on a given
surface S submersed in E3. We studied the PDE given by Mertens (1981) and
we found several solvable cases of it. In general, this problem has no solution.
It is not expected to find a solution for any mono-parametric family of orbits
(2) on a given surface (1) unless the “slope function” γ satisfies the two
differential conditions (59) and (60). These conditions are the basic results of
our study. In Section 4 we gave several examples in which the second order
PDE given by Bozis and Mertens (1985) is reduced into canonical form and it
is solved. All the potentials found are real. The examples are completely new
and found with the aid of the program Mathematica 5.2.
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Appendix I (General case of Section 2)

α =
1

2W
(g22fu − g12fv), β =

1
2W

(−g12fu + g11fv), γ =
fv

fu
,

W =
1
A

[g(f2
v fuu − 2fufvfuv + f2

ufvv),

−B1(g22fu − g12fv)−B2(g11fv − g12fu)],
A = g11f

2
v − 2g12fufv + g22f

2
u ,

B1 =
1
2
(g11)uf2

v + [(g12)v −
1
2
(g22)u]f2

u − (g11)vfufv,

B2 = [(g12)u −
1
2
(g11)v]f2

v +
1
2
(g22)vf

2
u − (g22)ufufv,

g = g11g22 − (g12)2.

Appendix II

∆ = gΓ + B′
1(g22 − γg12) + B′

2(γg11 − g12),
A1 = g11γ

2 − 2g12γ + g22,

B′
1 =

1
2
(g11)uγ2 + [(g12)v −

1
2
(g22)u]− (g11)vγ,

B′
2 = [(g12)u −

1
2
(g11)v]γ2 +

1
2
(g22)v − (g22)uγ.
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