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FEKETE-SZEGO INEQUALITY FOR A CERTAIN CLASS
OF ANALYTIC FUNCTIONS

M. DARUS, T. N. SHANMUGAM and S. SIVASUBRAMANIAN

Abstract. In this present investigation, the authors obtain Fekete-Szego in-
equality for certain normalized analytic function f(z) defined on the open unit
disk for which zf’(2)/f(z) + az?f(2)/ f(2) (a > 0) lies in a region starlike with
respect to 1 and symmetric with respect to the real axis. Also certain application
of the main result for a class of functions defined by convolution is given. As a
special case of this result, Fekete-Szego inequality for a class of functions defined
through fractional derivatives is obtained.
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1. INTRODUCTION

Let A denote the class of all analytic functions f(z) of the form
(1) f(z):z—i—Zakzk (zeA:={zeC||z|<1})
k=2

and S be subclass of A consisting of univalent functions. Let ¢(z) be an an-
alytic function with positive real part on A with ¢(0) = 1, ¢’(0) > 0 which
maps the unit disk A onto a region starlike with respect to 1 which is sym-
metric with respect to the real axis. Let S*(¢) be the class of functions in

f € S for which ZJ{ES) < ¢(2) (z € A) and C(¢) be the class of functions in

f € S for which 1+ Z,{'/;S) < ¢(z) (# € A), where < denotes the subordination
between analytic functions. These classes were introduced and studied by Ma
and Minda [10]. They have obtained the Fekete-Szego inequality for the func-
tion in the class C(¢). Since f € C(¢) if and only if zf'(z) € S*(¢), we get
the Fekete-Szegd inequality for functions in the class S*(¢). For brief history
of Fekete-Szego problem for the class of starlike, convex and close-to-convex
functions see the recent paper by Srivastava et al. [7].

In the present paper, we obtain the Fekete-Szego inequality for functions in
a more general class M,(¢) of functions which we define below. Also we give
applications of our results to certain functions defined through convolution (or
Hadamard product) and in particular we consider a class M2 (¢) of functions
defined by fractional derivatives.

DEFINITION 1.1. Let ¢(z) be a univalent starlike function with respect to
(1) which maps the unit disk A onto a region in the right half plane which is
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symmetric with respect to the real axis, $(0) = 1 and ¢'(0) > 0. A function
f € Ais in the class My (¢) if ZJ{(S) + az? ff((zz)) < ¢(z) (a>0). For fized
g € A, we define the class M3(¢) to be the class of functions f € A for which

(f *g) € M&(¢).

To prove our main result, we need the following:

LEMMA 1.2. [10] If p1(2) = 1 + c1z + c22% 4 - -+ is a function with positive
real part in A, then

2 ifv<0
lcg —wel| < {2 if0<v<1
dv — 2 ifv>1.

When v < 0 or v > 1, the equality holds if and only if p1(z) is (14 z)/(1 — 2)
or one of its rotations. If 0 < v < 1, then equality holds if and only if p1(z) is
(14 2%)/(1—22) or one of its rotations. If v =0, the equality holds if and only
ifpi(z) = (3 4+ 30) 2+ (53 - 3N %_T_z (0 < X < 1) or one of its rotations.
If v = 1, the equality holds if and only if p1 is the reciprocal of one of the
functions such that the equality holds in the case of v = 0.

Also the above upper bound is sharp, it can be improved as follows when
0<v<l:

lco — vl +vjel]? <2 (0<v<1/2)
and
lco —ved| + (1 —=v)|a? <2 (1/2<v<1).

2. FEKETE-SZEGO PROBLEM

Our main result is the following:

THEOREM 2.1. Let ¢(2) = 1+ B1z + Boz? + B3z3 +---. If f(z) given by
(1) belongs to My (), then

2(1?304) T +M2a)2B% oy 303(1 + 204)3% ifuso
|az—pa3| < 2(1?:3(%) if o1 <p<o
_2(1%305) i +M2a)2B% T 21+ 303(1 ¥ 20) B ifn> o

sult is sharp.
Proof. For f(z) € My(¢), let

o) oo O 2

_ 2
) o) ~ L ThE A
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From (2), we obtain (1 +2a)as = b; and (24 6a)as = by + (1 + 2a)a3. Since
¢(z) is univalent and p < ¢, the function
1+ ¢ (p(2))
pi(z) =
1) = T ()
is analytic and has positive real part in A. Also we have
p1(z) — 1>
3 =L
) po =0 (2595
and, from this equation (3), we obtain b; = %Blcl and by = %Bl(CQ — %C%) +
1Bsc?. Therefore we have

=1+012+6222+"'

B

10+ 30) (c2 — vc%)

(4) ag — paj =

where

__1[1_B2 (2p—1) 4+ a(6p — 2)
v 1

T2 By (1+2a)?
Our result now follows by an application of Lemma 1.2. To show that the
bounds are sharp, we define the functions Ko (n=2,3,...) by

ARETE) | 22K ()

=¢(z"1), K(0)=0=[Kg"(0)~1

K& (2)] (K2 ()]
and the function F)‘ and G)‘ ( <A<1)by
w 0 FA " z4+A) AW
F(2) + ( )v FA0)=0=(F")(0) -1
and
P A1/ Py > A p 2 /
% ! az2[g§f]<,z()) =0 <‘1(++A2)> . GH0) =0 =(GY)(0).

Clearly the functions K&", F), G € My(¢). Also we write K& := K32

If 4 < 01 or p > o9, then the equality holds if and only if f is K¢ or one
of its rotations. When o1 < p < 09, then the equality holds if and only if f is
K2 or one of its rotations. If 1 = o1 then the equality holds if and only if f
is F) or one of its rotations. If 4 = o9 then the equality holds if and only if f
is G or one of its rotations. O

REMARK 2.2. If o1 < u < 09, then, in view of Lemma 1.2, the Theorem 2.1
can be tmproved. Let o3 be given by
(1+2a)?By + (1 + 2a) B?
2(1+ 3a)B?

o3 1=

If 01 < u < o3, then

(14+20)* 2p=1)+a(6p—2) p2 2
1+33) Bi— DByt M(1+2O;)u BY | |az| S2(1+3a)'

las ,ua2| +
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If o5 < p < o9, then

(1+2a)? B + By — (2u—1)+a(6u—2) BQ

B
las — pas| + 55052 (1+20)2 :

2
|ag|® < 2(1+3a)

3. APPLICATION TO FUNCTIONS DEFINED BY FRACTIONAL DERIVATIVES
In order to introduce the class M2 (¢), we need the following:

DEFINITION 3.1 (see [3, 4]; see also [8, 9]). Let the function f(z) be ana-
lytic in a simply connected region of the z-plane containing the origin. The
fractional derivative of f of order \ is defined by

1 d [* f(Q)
D) e — ——r=d 0<A<1
O = T | e 0<A<),
where the multiplicity of (z — ¢)* is removed by requiring log(z — ¢) to be real
when z — ¢ > 0.

Using the above Definition 3.1 and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava [3] introduced the
operator Q* : A — A defined by

(Q)(2) =T(2=N2"DXf(2) (A#2,3,4,...).

The class M2 (¢) consists of functions f € A for which Q*f € M,(¢). Note
that M{(¢) = S*(¢) and M2 (¢) is the Special case of the class M3(¢) when

=N
(5) +Z n+1—A> Jon

Let g(2) =2+ > 00 5 gn2" (gn > 0). Since f(z) = z+ > ooy anz™ € M§(¢)
if and only if (f*g) = 2+ Y "o gnanz" € My(¢), we obtain the coefficient
estimate for functions in the class M§(¢), from the corresponding estimate
for functions in the class M,(¢). Applying Theorem 2.1 for the function
(f *9)(2) = 2+ goanz® + ggazz® + - - - , we get the following Theorem 3.2 after
an obvious change of the parameter p:

THEOREM 3.2. Let the function ¢(z) be given by ¢(z) = 1+ Byz + Baz? +
B3z + . If f(z) given by (1) belongs to M3(¢), then

1 B 2 2
7 [2(1+23a) - (1+2a)2 2 Bi + 2(1+3a)(1+2a)B ]
if p <oy
1 .
|ag — paz| < 7 %Zfﬂﬁﬂﬁﬁ
1 B Ug: 2 1 2
% |:_2(1+23a) + (1+2a3)2g§ By - 2(1+3a)(1+2a) Bl}
’Lf/L Z g2,
.92 (142a)%(B2—B1)+(1+2a) B? .92 (142a)2(B2+B1)+(1+2a) B?
where oy 1= 2 (1 430) B2 L oogi= 2 2(1+3a) B2 =

The result is sharp.
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Since (M f)(2) =2+ >0, F("%lmanz", we have

_TETE-A) 2

(6) 2 T3—)\)  2—2)
and
™ . rArE-X _ 6

INCEEDY! 2-=MB-X)
For g, and g3 given by (6) and (7), Theorem 3.2 reduces to the following:
THEOREM 3.3. Let the function ¢(z) be given by
¢(z) =1+ Byz+ Byz® 4+ Bgz3 + - -
If f(2) given by (1) belongs to M) (¢), then

(2_)\)6(3_/\)7 if u<or
jas — ua| < { 2= A{G(S — ) 2(1%3&) if o1<p<oy
Mﬁ(i)’—”,y i > o,
where
By 32—)) uB? 1
® 7= Saiae 2o (1+21a)2 2(1+3a)(1+2a)B%
2(3=X) (1+2a)*(By — B1) + (1 +20) B}
71T 320y 2(1 + 3a) B2
2(3=X) (1+2a)*(Bz+ B1) + (1 +20)Bj
72T 320y 2(1 + 30) B2 '

The result is sharp.

REMARK 3.4. When o = 0, By = 8/7% and By = 16/(37?), the above
Theorem 3.2 reduces to a recent result of Srivastava and Mishra [6, Theorem
8, p. 64] for a class of functions for which Qf(z) is a parabolic starlike
function [2, 5].
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