FEKETE-SZEGÖ INEQUALITY FOR A CERTAIN CLASS OF ANALYTIC FUNCTIONS

M. DARUS, T. N. SHANMUGAM and S. SIVASUBRAMANIAN

Abstract

In this present investigation, the authors obtain Fekete-Szegö inequality for certain normalized analytic function $f(z)$ defined on the open unit disk for which $z f^{\prime}(z) / f(z)+\alpha z^{2} f^{\prime \prime}(z) / f(z)(\alpha \geq 0)$ lies in a region starlike with respect to 1 and symmetric with respect to the real axis. Also certain application of the main result for a class of functions defined by convolution is given. As a special case of this result, Fekete-Szegö inequality for a class of functions defined through fractional derivatives is obtained.

MSC 2000. 30C45.
Key words. Analytic functions, Starlike functions, Subordination, Coefficient problem, Fekete-Szegö inequality.

1. INTRODUCTION

Let \mathcal{A} denote the class of all analytic functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad(z \in \Delta:=\{z \in \mathbb{C}| | z \mid<1\}) \tag{1}
\end{equation*}
$$

and \mathcal{S} be subclass of \mathcal{A} consisting of univalent functions. Let $\phi(z)$ be an analytic function with positive real part on Δ with $\phi(0)=1, \phi^{\prime}(0)>0$ which maps the unit disk Δ onto a region starlike with respect to 1 which is symmetric with respect to the real axis. Let $S^{*}(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which $\frac{z f^{\prime}(z)}{f(z)} \prec \phi(z)(z \in \Delta)$ and $C(\phi)$ be the class of functions in $f \in \mathcal{S}$ for which $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z)(z \in \Delta)$, where \prec denotes the subordination between analytic functions. These classes were introduced and studied by Ma and Minda [10]. They have obtained the Fekete-Szegö inequality for the function in the class $C(\phi)$. Since $f \in C(\phi)$ if and only if $z f^{\prime}(z) \in S^{*}(\phi)$, we get the Fekete-Szegö inequality for functions in the class $S^{*}(\phi)$. For brief history of Fekete-Szegö problem for the class of starlike, convex and close-to-convex functions see the recent paper by Srivastava et al. [7].

In the present paper, we obtain the Fekete-Szegö inequality for functions in a more general class $M_{\alpha}(\phi)$ of functions which we define below. Also we give applications of our results to certain functions defined through convolution (or Hadamard product) and in particular we consider a class $M_{\alpha}^{\lambda}(\phi)$ of functions defined by fractional derivatives.

Definition 1.1. Let $\phi(z)$ be a univalent starlike function with respect to (1) which maps the unit disk Δ onto a region in the right half plane which is
symmetric with respect to the real axis, $\phi(0)=1$ and $\phi^{\prime}(0)>0$. A function $f \in \mathcal{A}$ is in the class $M_{\alpha}(\phi)$ if $\frac{z f^{\prime}(z)}{f(z)}+\alpha z^{2} \frac{f^{\prime \prime}(z)}{f(z)} \prec \phi(z) \quad(\alpha \geq 0)$. For fixed $g \in \mathcal{A}$, we define the class $M_{\alpha}^{g}(\phi)$ to be the class of functions $f \in \mathcal{A}$ for which $(f * g) \in M_{\alpha}^{g}(\phi)$.

To prove our main result, we need the following:
Lemma 1.2. [10] If $p_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is a function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq \begin{cases}-4 v+2 & \text { if } v \leq 0 \\ 2 & \text { if } 0 \leq v \leq 1 \\ 4 v-2 & \text { if } v \geq 1\end{cases}
$$

When $v<0$ or $v>1$, the equality holds if and only if $p_{1}(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then equality holds if and only if $p_{1}(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if $p_{1}(z)=\left(\frac{1}{2}+\frac{1}{2} \lambda\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \lambda\right) \frac{1-z}{1+z} \quad(0 \leq \lambda \leq 1)$ or one of its rotations. If $v=1$, the equality holds if and only if p_{1} is the reciprocal of one of the functions such that the equality holds in the case of $v=0$.

Also the above upper bound is sharp, it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2<v \leq 1) .
$$

2. FEKETE-SZEGÖ PROBLEM

Our main result is the following:
Theorem 2.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$. If $f(z)$ given by (1) belongs to $M_{\alpha}(\phi)$, then
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}\frac{B_{2}}{2(1+3 \alpha)}-\frac{\mu}{(1+2 \alpha)^{2}} B_{1}^{2}+\frac{1}{2(1+3 \alpha)(1+2 \alpha)} B_{1}^{2} \text { if } \mu \leq \sigma_{1} \\ \frac{B_{1}}{2(1+3 \alpha)} \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ -\frac{B_{2}}{2(1+3 \alpha)}+\frac{\mu}{(1+2 \alpha)^{2}} B_{1}^{2}-\frac{1}{2(1+3 \alpha)(1+2 \alpha)} B_{1}^{2} \text { if } \mu \geq \sigma_{2},\end{array}\right.$
where $\sigma_{1}:=\frac{(1+2 \alpha)^{2}\left(B_{2}-B_{1}\right)+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}}, \sigma_{2}:=\frac{(1+2 \alpha)^{2}\left(B_{2}+B_{1}\right)+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}}$. The result is sharp.

Proof. For $f(z) \in M_{\alpha}(\phi)$, let

$$
\begin{equation*}
p(z):=\frac{z f^{\prime}(z)}{f(z)}+\alpha z^{2} \frac{f^{\prime \prime}(z)}{f(z)}=1+b_{1} z+b_{2} z^{2}+\cdots . \tag{2}
\end{equation*}
$$

From (2), we obtain $(1+2 \alpha) a_{2}=b_{1}$ and $(2+6 \alpha) a_{3}=b_{2}+(1+2 \alpha) a_{2}^{2}$. Since $\phi(z)$ is univalent and $p \prec \phi$, the function

$$
p_{1}(z)=\frac{1+\phi^{-1}(p(z))}{1+\phi^{-1}(p(z))}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic and has positive real part in Δ. Also we have

$$
\begin{equation*}
p(z)=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{3}
\end{equation*}
$$

and, from this equation (3), we obtain $b_{1}=\frac{1}{2} B_{1} c_{1}$ and $b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right)+$ ${ }_{4}^{1} B_{2} c_{1}^{2}$. Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{4(1+3 \alpha)}\left(c_{2}-v c_{1}^{2}\right) \tag{4}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}+\frac{(2 \mu-1)+\alpha(6 \mu-2)}{(1+2 \alpha)^{2}} B_{1}\right] .
$$

Our result now follows by an application of Lemma 1.2. To show that the bounds are sharp, we define the functions $K_{\alpha}^{\phi_{n}}(n=2,3, \ldots)$ by

$$
\frac{z\left[K_{\alpha}^{\phi_{n}}\right]^{\prime}(z)}{\left[K_{\alpha}^{\phi_{n}}(z)\right]}+\alpha z^{2} \frac{z\left[K_{\alpha}^{\phi_{n}}\right]^{\prime \prime}(z)}{\left[K_{\alpha}^{\phi_{n}}(z)\right]}=\phi\left(z^{n-1}\right), \quad K_{\alpha}^{\phi_{n}}(0)=0=\left[K_{\alpha}^{\phi_{n}}\right]^{\prime}(0)-1
$$

and the function F_{α}^{λ} and $G_{\alpha}^{\lambda}(0 \leq \lambda \leq 1)$ by

$$
\frac{z\left[F_{\alpha}^{\lambda}\right]^{\prime}(z)}{F_{\alpha}^{\lambda}(z)}+\alpha z^{2} \frac{z\left[F_{\alpha}^{\lambda}\right]^{\prime \prime}(z)}{F_{\alpha}^{\lambda}(z)}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right), \quad F^{\lambda}(0)=0=\left(F^{\lambda}\right)^{\prime}(0)-1
$$

and

$$
\frac{z\left[G_{\alpha}^{\lambda}\right]^{\prime}(z)}{G_{\alpha}^{\lambda}(z)}+\alpha z^{2} \frac{z\left[G_{\alpha}^{\lambda}\right]^{\prime \prime}(z)}{G_{\alpha}^{\lambda}(z)}=\phi\left(-\frac{z(z+\lambda)}{1+\lambda z}\right), \quad G^{\lambda}(0)=0=\left(G^{\lambda}\right)^{\prime}(0) .
$$

Clearly the functions $K_{\alpha}^{\phi n}, F_{\alpha}^{\lambda}, G_{\alpha}^{\lambda} \in M_{\alpha}(\phi)$. Also we write $K_{\alpha}^{\phi}:=K_{\alpha}^{\phi_{2}}$.
If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality holds if and only if f is K_{α}^{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then the equality holds if and only if f is $K_{\alpha}^{\phi_{3}}$ or one of its rotations. If $\mu=\sigma_{1}$ then the equality holds if and only if f is F_{α}^{λ} or one of its rotations. If $\mu=\sigma_{2}$ then the equality holds if and only if f is G_{α}^{λ} or one of its rotations.

Remark 2.2. If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then, in view of Lemma 1.2, the Theorem 2.1 can be improved. Let σ_{3} be given by

$$
\sigma_{3}:=\frac{(1+2 \alpha)^{2} B_{2}+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}} .
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{(1+2 \alpha)^{2}}{2(1+3 \alpha) B_{1}^{2}}\left[B_{1}-B_{2}+\frac{(2 \mu-1)+\alpha(6 \mu-2)}{(1+2 \alpha)^{2}} B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{2(1+3 \alpha)} .
$$

$$
\begin{aligned}
& \text { If } \sigma_{3} \leq \mu \leq \sigma_{2} \text {, then } \\
& \qquad\left|a_{3}-\mu a_{2}^{2}\right|+\frac{(1+2 \alpha)^{2}}{2(1+3 \alpha) B_{1}^{2}}\left[B_{1}+B_{2}-\frac{(2 \mu-1)+\alpha(6 \mu-2)}{(1+2 \alpha)^{2}} B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{2(1+3 \alpha)}
\end{aligned}
$$

3. APPLICATION TO FUNCTIONS DEFINED BY FRACTIONAL DERIVATIVES

In order to introduce the class $M_{\alpha}^{\lambda}(\phi)$, we need the following:
Definition 3.1 (see [3, 4]; see also [8, 9]). Let the function $f(z)$ be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$
D_{z}^{\lambda} f(z):=\frac{1}{\Gamma(1-\lambda)} \frac{\mathrm{d}}{\mathrm{~d} z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\lambda}} \mathrm{d} \zeta \quad(0 \leq \lambda<1)
$$

where the multiplicity of $(z-\zeta)^{\lambda}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [3] introduced the operator $\Omega^{\lambda}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\left(\Omega^{\lambda} f\right)(z)=\Gamma(2-\lambda) z^{\lambda} D_{z}^{\lambda} f(z) \quad(\lambda \neq 2,3,4, \ldots)
$$

The class $M_{\alpha}^{\lambda}(\phi)$ consists of functions $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in M_{\alpha}(\phi)$. Note that $M_{0}^{0}(\phi) \equiv S^{*}(\phi)$ and $M_{\alpha}^{\lambda}(\phi)$ is the special case of the class $M_{\alpha}^{g}(\phi)$ when

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n} \tag{5}
\end{equation*}
$$

Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}\left(g_{n}>0\right)$. Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in M_{\alpha}^{g}(\phi)$ if and only if $(f * g)=z+\sum_{n=2}^{\infty} g_{n} a_{n} z^{n} \in M_{\alpha}(\phi)$, we obtain the coefficient estimate for functions in the class $M_{\alpha}^{g}(\phi)$, from the corresponding estimate for functions in the class $M_{\alpha}(\phi)$. Applying Theorem 2.1 for the function $(f * g)(z)=z+g_{2} a_{2} z^{2}+g_{3} a_{3} z^{3}+\cdots$, we get the following Theorem 3.2 after an obvious change of the parameter μ :

ThEOREM 3.2. Let the function $\phi(z)$ be given by $\phi(z)=1+B_{1} z+B_{2} z^{2}+$ $B_{3} z^{3}+\cdots$. If $f(z)$ given by (1) belongs to $M_{\alpha}^{g}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{1}{g_{3}} & {\left[\frac{B_{2}}{2(1+3 \alpha)}-\frac{\mu g_{3}}{(1+2 \alpha)^{2} g_{2}^{2}} B_{1}^{2}+\frac{1}{2(1+3 \alpha)(1+2 \alpha)} B_{1}^{2}\right]} \\
& \text { if } \mu \leq \sigma_{1} \\
\frac{1}{g_{3}} \quad \frac{B_{1}}{2(1+3 \alpha)} \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\
\frac{1}{g_{3}} \quad \begin{array}{l}
{\left[-\frac{B_{2}}{2(1+3 \alpha)}+\frac{\mu g_{3}}{(1+2 \alpha)^{2} g_{2}^{2}} B_{1}^{2}-\frac{1}{2(1+3 \alpha)(1+2 \alpha)} B_{1}^{2}\right]} \\
\text { if } \mu \geq \sigma_{2},
\end{array}\end{cases}
$$

where $\sigma_{1}:=\frac{g_{2}^{2}}{g_{3}} \frac{(1+2 \alpha)^{2}\left(B_{2}-B_{1}\right)+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}}, \sigma_{2}:=\frac{g_{2}^{2}}{g_{3}} \frac{(1+2 \alpha)^{2}\left(B_{2}+B_{1}\right)+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}}$.
The result is sharp.

Since $\left(\Omega^{\lambda} f\right)(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_{n} z^{n}$, we have

$$
\begin{equation*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\lambda)}{\Gamma(3-\lambda)}=\frac{2}{2-\lambda} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}:=\frac{\Gamma(4) \Gamma(2-\lambda)}{\Gamma(4-\lambda)}=\frac{6}{(2-\lambda)(3-\lambda)} . \tag{7}
\end{equation*}
$$

For g_{2} and g_{3} given by (6) and (7), Theorem 3.2 reduces to the following:
Theorem 3.3. Let the function $\phi(z)$ be given by

$$
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots
$$

If $f(z)$ given by (1) belongs to $M_{\alpha}^{\lambda}(\phi)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{(2-\lambda)(3-\lambda)}{6} \gamma & \text { if } \quad \mu \leq \sigma_{1} \\ \frac{(2-\lambda)^{6}(3-\lambda)}{6} \frac{B_{1}}{2(1+3 \alpha)} & \text { if } \quad \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{(2-\lambda)(3-\lambda)}{6} \gamma & \text { if } \quad \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{align*}
\gamma & :=\frac{B_{2}}{2(1+3 \alpha)}-\frac{3(2-\lambda)}{2(3-\lambda)} \frac{\mu B_{1}^{2}}{(1+2 \alpha)^{2}}+\frac{1}{2(1+3 \alpha)(1+2 \alpha)} B_{1}^{2} \tag{8}\\
\sigma_{1} & :=\frac{2(3-\lambda)}{3(2-\lambda)} \cdot \frac{(1+2 \alpha)^{2}\left(B_{2}-B_{1}\right)+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}} \\
\sigma_{2} & :=\frac{2(3-\lambda)}{3(2-\lambda)} \cdot \frac{(1+2 \alpha)^{2}\left(B_{2}+B_{1}\right)+(1+2 \alpha) B_{1}^{2}}{2(1+3 \alpha) B_{1}^{2}} .
\end{align*}
$$

The result is sharp.
REMARK 3.4. When $\alpha=0, B_{1}=8 / \pi^{2}$ and $B_{2}=16 /\left(3 \pi^{2}\right)$, the above Theorem 3.2 reduces to a recent result of Srivastava and Mishra [6, Theorem 8, p. 64] for a class of functions for which $\Omega^{\lambda} f(z)$ is a parabolic starlike function $[2,5]$.

REFERENCES

[1] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2] A. W. Goodman, Uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] S. Owa and H. M. Srivastava, Univalent and starlike generalized bypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[4] S. Owa, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53-58.
[5] F. RøNning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.
[6] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computer Math. Appl., 39 (2000), 57-69.
[7] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44 (2001), 145-163.
[8] H. M. Srivastava and S. Owa, An application of the fractional derivative, Math. Japon., 29 (1984), 383-389.
[9] H. M. Srivastava and S. Owa, Univalent functions, Fractional Calculus, and Their Applications, Halsted Press/John Wiley and Songs, Chichester/New York (1989).
[10] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang(Eds.), Int. Press (1994), 157-169.

Received June 04, 2005

T.N. Shanmugam
Department of Mathematics College of Engineering Anna University, Chennai-600 025
Tamilnadu, India
E-mail: shan@annauniv.edu
S. Sivasubramanian
Department of Mathematics
Easwari Engineering College
Ramapuram, Chennai-600 089
Tamilnadu, India
E-mail: sivasaisastha@rediffmail.com
and
M. Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Malaysia
E-mail: maslina@pkrisc.cc.ukm.my

