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FEKETE-SZEGÖ INEQUALITY FOR A CERTAIN CLASS
OF ANALYTIC FUNCTIONS

M. DARUS, T. N. SHANMUGAM and S. SIVASUBRAMANIAN

Abstract. In this present investigation, the authors obtain Fekete-Szegö in-
equality for certain normalized analytic function f(z) defined on the open unit
disk for which zf ′(z)/f(z)+αz2f ′′(z)/f(z) (α ≥ 0) lies in a region starlike with
respect to 1 and symmetric with respect to the real axis. Also certain application
of the main result for a class of functions defined by convolution is given. As a
special case of this result, Fekete-Szegö inequality for a class of functions defined
through fractional derivatives is obtained.
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1. INTRODUCTION

Let A denote the class of all analytic functions f(z) of the form

(1) f(z) = z +
∞∑

k=2

akz
k (z ∈ ∆ := {z ∈ C | |z| < 1})

and S be subclass of A consisting of univalent functions. Let φ(z) be an an-
alytic function with positive real part on ∆ with φ(0) = 1, φ′(0) > 0 which
maps the unit disk ∆ onto a region starlike with respect to 1 which is sym-
metric with respect to the real axis. Let S∗(φ) be the class of functions in
f ∈ S for which zf ′(z)

f(z) ≺ φ(z) (z ∈ ∆) and C(φ) be the class of functions in

f ∈ S for which 1+ zf ′′(z)
f ′(z) ≺ φ(z) (z ∈ ∆), where ≺ denotes the subordination

between analytic functions. These classes were introduced and studied by Ma
and Minda [10]. They have obtained the Fekete-Szegö inequality for the func-
tion in the class C(φ). Since f ∈ C(φ) if and only if zf ′(z) ∈ S∗(φ), we get
the Fekete-Szegö inequality for functions in the class S∗(φ). For brief history
of Fekete-Szegö problem for the class of starlike, convex and close-to-convex
functions see the recent paper by Srivastava et al. [7].

In the present paper, we obtain the Fekete-Szegö inequality for functions in
a more general class Mα(φ) of functions which we define below. Also we give
applications of our results to certain functions defined through convolution (or
Hadamard product) and in particular we consider a class Mλ

α(φ) of functions
defined by fractional derivatives.

Definition 1.1. Let φ(z) be a univalent starlike function with respect to
(1) which maps the unit disk ∆ onto a region in the right half plane which is
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symmetric with respect to the real axis, φ(0) = 1 and φ′(0) > 0. A function
f ∈ A is in the class Mα(φ) if zf ′(z)

f(z) + αz2 f ′′(z)
f(z) ≺ φ(z) (α ≥ 0). For fixed

g ∈ A, we define the class Mg
α(φ) to be the class of functions f ∈ A for which

(f ∗ g) ∈ Mg
α(φ).

To prove our main result, we need the following:

Lemma 1.2. [10] If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive

real part in ∆, then

|c2 − vc2
1| ≤

 −4v + 2 if v ≤ 0
2 if 0 ≤ v ≤ 1
4v − 2 if v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p1(z) is (1 + z)/(1− z)
or one of its rotations. If 0 < v < 1, then equality holds if and only if p1(z) is
(1+z2)/(1−z2) or one of its rotations. If v = 0, the equality holds if and only
if p1(z) =

(
1
2 + 1

2λ
)

1+z
1−z +

(
1
2 −

1
2λ

)
1−z
1+z (0 ≤ λ ≤ 1) or one of its rotations.

If v = 1, the equality holds if and only if p1 is the reciprocal of one of the
functions such that the equality holds in the case of v = 0.

Also the above upper bound is sharp, it can be improved as follows when
0 < v < 1:

|c2 − vc2
1|+ v|c1|2 ≤ 2 (0 < v ≤ 1/2)

and
|c2 − vc2

1|+ (1− v)|c1|2 ≤ 2 (1/2 < v ≤ 1).

2. FEKETE-SZEGÖ PROBLEM

Our main result is the following:

Theorem 2.1. Let φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f(z) given by
(1) belongs to Mα(φ), then

|a3−µa2
2| ≤



B2

2(1 + 3α)
− µ

(1 + 2α)2
B2

1 +
1

2(1 + 3α)(1 + 2α)
B2

1 if µ ≤ σ1

B1

2(1 + 3α)
if σ1 ≤ µ ≤ σ2

− B2

2(1 + 3α)
+

µ

(1 + 2α)2
B2

1 −
1

2(1 + 3α)(1 + 2α)
B2

1 if µ ≥ σ2,

where σ1 := (1+2α)2(B2−B1)+(1+2α)B2
1

2(1+3α)B2
1

, σ2 := (1+2α)2(B2+B1)+(1+2α)B2
1

2(1+3α)B2
1

. The re-
sult is sharp.

Proof. For f(z) ∈ Mα(φ), let

(2) p(z) :=
zf ′(z)
f(z)

+ αz2 f ′′(z)
f(z)

= 1 + b1z + b2z
2 + · · · .
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From (2), we obtain (1 + 2α)a2 = b1 and (2 + 6α)a3 = b2 + (1 + 2α)a2
2. Since

φ(z) is univalent and p ≺ φ, the function

p1(z) =
1 + φ−1(p(z))
1 + φ−1(p(z))

= 1 + c1z + c2z
2 + · · ·

is analytic and has positive real part in ∆. Also we have

(3) p(z) = φ

(
p1(z)− 1
p1(z) + 1

)
and, from this equation (3), we obtain b1 = 1

2B1c1 and b2 = 1
2B1(c2 − 1

2c2
1) +

1
4B2c

2
1. Therefore we have

(4) a3 − µa2
2 =

B1

4(1 + 3α)
(
c2 − vc2

1

)
where

v :=
1
2

[
1− B2

B1
+

(2µ− 1) + α(6µ− 2)
(1 + 2α)2

B1

]
.

Our result now follows by an application of Lemma 1.2. To show that the
bounds are sharp, we define the functions Kφn

α (n = 2, 3, . . .) by

z[Kφn
α ]′(z)[

Kφn
α (z)

] + αz2 z[Kφn
α ]′′(z)[

Kφn
α (z)

] = φ(zn−1), Kφn
α (0) = 0 = [Kφn

α ]′(0)− 1

and the function F λ
α and Gλ

α (0 ≤ λ ≤ 1) by

z[F λ
α ]′(z)

F λ
α (z)

+ αz2 z[F λ
α ]′′(z)

F λ
α (z)

= φ

(
z(z + λ)
1 + λz

)
, F λ(0) = 0 = (F λ)

′
(0)− 1

and
z[Gλ

α]′(z)
Gλ

α(z)
+ αz2 z[Gλ

α]′′(z)
Gλ

α(z)
= φ

(
−z(z + λ)

1 + λz

)
, Gλ(0) = 0 = (Gλ)

′
(0).

Clearly the functions Kφn
α , F λ

α , Gλ
α ∈ Mα(φ). Also we write Kφ

α := Kφ2
α .

If µ < σ1 or µ > σ2, then the equality holds if and only if f is Kφ
α or one

of its rotations. When σ1 < µ < σ2, then the equality holds if and only if f is
Kφ3

α or one of its rotations. If µ = σ1 then the equality holds if and only if f
is F λ

α or one of its rotations. If µ = σ2 then the equality holds if and only if f
is Gλ

α or one of its rotations. �

Remark 2.2. If σ1 ≤ µ ≤ σ2, then, in view of Lemma 1.2, the Theorem 2.1
can be improved. Let σ3 be given by

σ3 :=
(1 + 2α)2B2 + (1 + 2α)B2

1

2(1 + 3α)B2
1

.

If σ1 ≤ µ ≤ σ3, then
|a3 − µa2

2|+
(1+2α)2

2(1+3α)B2
1

[
B1 −B2 + (2µ−1)+α(6µ−2)

(1+2α)2
B2

1

]
|a2|2 ≤ B1

2(1+3α) .
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If σ3 ≤ µ ≤ σ2, then
|a3 − µa2

2|+
(1+2α)2

2(1+3α)B2
1

[
B1 + B2 − (2µ−1)+α(6µ−2)

(1+2α)2
B2

1

]
|a2|2 ≤ B1

2(1+3α) .

3. APPLICATION TO FUNCTIONS DEFINED BY FRACTIONAL DERIVATIVES

In order to introduce the class Mλ
α(φ), we need the following:

Definition 3.1 (see [3, 4]; see also [8, 9]). Let the function f(z) be ana-
lytic in a simply connected region of the z-plane containing the origin. The
fractional derivative of f of order λ is defined by

Dλ
z f(z) :=

1
Γ(1− λ)

d
dz

∫ z

0

f(ζ)
(z − ζ)λ

dζ (0 ≤ λ < 1),

where the multiplicity of (z − ζ)λ is removed by requiring log(z − ζ) to be real
when z − ζ > 0.

Using the above Definition 3.1 and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivastava [3] introduced the
operator Ωλ : A → A defined by

(Ωλf)(z) = Γ(2− λ)zλDλ
z f(z) (λ 6= 2, 3, 4, . . .).

The class Mλ
α(φ) consists of functions f ∈ A for which Ωλf ∈ Mα(φ). Note

that M0
0 (φ) ≡ S∗(φ) and Mλ

α(φ) is the special case of the class Mg
α(φ) when

(5) g(z) = z +
∞∑

n=2

Γ(n + 1)Γ(2− λ)
Γ(n + 1− λ)

zn.

Let g(z) = z +
∑∞

n=2 gnzn (gn > 0). Since f(z) = z +
∑∞

n=2 anzn ∈ Mg
α(φ)

if and only if (f ∗ g) = z +
∑∞

n=2 gnanzn ∈ Mα(φ), we obtain the coefficient
estimate for functions in the class Mg

α(φ), from the corresponding estimate
for functions in the class Mα(φ). Applying Theorem 2.1 for the function
(f ∗ g)(z) = z + g2a2z

2 + g3a3z
3 + · · · , we get the following Theorem 3.2 after

an obvious change of the parameter µ:

Theorem 3.2. Let the function φ(z) be given by φ(z) = 1 + B1z + B2z
2 +

B3z
3 + · · · . If f(z) given by (1) belongs to Mg

α(φ), then

|a3 − µa2
2| ≤



1
g3

[
B2

2(1+3α) −
µg3

(1+2α)2g2
2
B2

1 + 1
2(1+3α)(1+2α)B

2
1

]
if µ ≤ σ1

1
g3

B1
2(1+3α) if σ1 ≤ µ ≤ σ2

1
g3

[
− B2

2(1+3α) + µg3

(1+2α)2g2
2
B2

1 − 1
2(1+3α)(1+2α)B

2
1

]
if µ ≥ σ2,

where σ1 := g2
2

g3

(1+2α)2(B2−B1)+(1+2α)B2
1

2(1+3α)B2
1

, σ2 := g2
2

g3

(1+2α)2(B2+B1)+(1+2α)B2
1

2(1+3α)B2
1

.

The result is sharp.
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Since (Ωλf)(z) = z +
∑∞

n=2
Γ(n+1)Γ(2−λ)

Γ(n+1−λ) anzn, we have

(6) g2 :=
Γ(3)Γ(2− λ)

Γ(3− λ)
=

2
2− λ

and

(7) g3 :=
Γ(4)Γ(2− λ)

Γ(4− λ)
=

6
(2− λ)(3− λ)

.

For g2 and g3 given by (6) and (7), Theorem 3.2 reduces to the following:

Theorem 3.3. Let the function φ(z) be given by

φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · .

If f(z) given by (1) belongs to Mλ
α(φ), then

|a3 − µa2
2| ≤



(2− λ)(3− λ)
6

γ if µ ≤ σ1

(2− λ)(3− λ)
6

B1

2(1 + 3α)
if σ1 ≤ µ ≤ σ2

(2− λ)(3− λ)
6

γ if µ ≥ σ2,

where

γ :=
B2

2(1 + 3α)
− 3(2− λ)

2(3− λ)
µB2

1

(1 + 2α)2
+

1
2(1 + 3α)(1 + 2α)

B2
1(8)

σ1 :=
2(3− λ)
3(2− λ)

.
(1 + 2α)2(B2 −B1) + (1 + 2α)B2

1

2(1 + 3α)B2
1

σ2 :=
2(3− λ)
3(2− λ)

.
(1 + 2α)2(B2 + B1) + (1 + 2α)B2

1

2(1 + 3α)B2
1

.

The result is sharp.

Remark 3.4. When α = 0, B1 = 8/π2 and B2 = 16/(3π2), the above
Theorem 3.2 reduces to a recent result of Srivastava and Mishra [6, Theorem
8, p. 64] for a class of functions for which Ωλf(z) is a parabolic starlike
function [2, 5].
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