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EXISTENCE OF VIABLE SOLUTIONS FOR A CLASS
OF NONCONVEX DIFFERENTIAL INCLUSIONS

WITH MEMORY
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Abstract. We prove the existence of viable solutions for an autonomus differ-
ential inclusion with memory in the case when the multifunction that define the
inclusion is upper semicontinuous compact valued and contained in the Fréchet
subdifferential of a φ-convex function of order two.
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1. INTRODUCTION

Differential inclusions with memory, known also as functional differential
inclusions, express the fact that the velocity of the system depends not only on
the state of the system at a given instant but depends upon the history of the
trajectory until this instant. The class of differential inclusions with memory
encompasses a large variety of differential inclusions and control systems. In
particular, this class covers the differential inclusions, the differential-difference
inclusions and the Volterra inclusions. For a detailed discussion on this topic
we refer to [1].

Let Rm be the m-dimensional euclidean space with the norm || · || and the
scalar product 〈·, ·〉. Let σ be a positive number and Cσ := C([−σ, 0],Rm)
the Banach space of continuous functions from [−σ, 0] into Rm with the norm
given by ||x(·)||σ := sup{||x(t)||; t ∈ [−σ, 0]}. For each t ∈ [0, τ ], we define
the operator T (t) : C([−σ, τ ],Rm) → Cσ as follows: (T (t)x)(s) := x(t + s),
s ∈ [−σ, 0]. If K is a given nonempty subset in Rm then we introduce the
following set K := {ϕ ∈ Cσ;ϕ(0) ∈ K}.

For a given multifunction F : Cσ → P(Rm) we consider the following differ-
ential inclusion with memory

(1.1) x′ ∈ F (T (t)x)

and we are interested to find sufficient conditions such that for each ϕ ∈ K
there exist τ > 0 and a solution x(·) : [−σ, τ ] → Rm of (1.1) satisfying the
initial condition

(1.2) T (0)x = ϕ on [−σ, 0]

and the viability constraint

(1.3) x(t) ∈ K ∀t ∈ [0, τ ].
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We recall that a continuous function x(·) : [−σ, τ ] → Rm is said to be a
solution of (1.1) if x(·) is absolutely continuous on [0, τ ] and x′(t) ∈ F (T (t)x)
for almost all t ∈ [0, τ ].

The existence of solutions of problem (1.1)–(1.3), well known as viable so-
lutions, in the case when F is single valued was studied by many authors. For
results and references in this framework we refer to [10].

In general, the results concerning differential inclusions defined by upper
semicontinuous multifunctions can be extended to functional differential in-
clusions. The first viability result for functional differential inclusions was
given by Haddad ([8], [9]) in the case when F is upper semicontinuous with
convex compact values.

Recently in [5], the situation when the multifunction is not convex valued is
considered. More exactly, in [5] it is proved the existence of solutions of prob-
lem (1.1)–(1.3) when F (·) is an upper semicontinuous multifunction contained
in the subdifferential of a proper convex function V (·).

The aim of the present paper is to relax the convexity assumption on the
function V (·) that appear in [5], in the sense that we assume that F (·) is
contained in the Fréchet subdifferential of a φ-convex function of order two.
Since the class of proper convex functions is strictly contained into the class
of φ-convex functions of order two, our result generalizes the one in [5].

We note that the corresponding viability result for differential inclusions
was obtained in [4]. The proof of our main result follows the general ideas in
[3] and [9].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2. PRELIMINARIES

For x ∈ Rm and r > 0 let B(x, r) := {y ∈ Rm; ||y − x|| < r} be the open
ball centered in x with radius r, and let B(x, r) be its closure. For ϕ ∈ Cσ let
Bσ(ϕ, r) := {ψ ∈ Cσ; ||ψ − ϕ||σ < r} and Bσ(ϕ, r) := {ψ ∈ Cσ; ||ψ − ϕ||σ ≤ r}.
For x ∈ Rm and for a closed subset A ⊂ Rm we denote by d(x,A) the distance
from x to A given by d(x,A) := inf{||y − x||; y ∈ A}.

Let Ω ⊂ Rm be an open set and let V : Ω → R ∪ {+∞} be a function with
domain D(V ) = {x ∈ Rm; V (x) < +∞}.

Definition 2.1. The multifunction ∂FV : Ω → P(Rm), defined as:

∂FV (x) =
{
α ∈ Rm, lim inf

y→x

V (y)− V (x)− 〈α, y − x〉
||y − x||

≥ 0
}

ifV (x) < +∞

and ∂FV (x) = ∅ if V (x) = +∞ is called the Fréchet subdifferential of V .
We also put D(∂FV ) = {x ∈ Rm; ∂FV (x) 6= ∅}.
According to [6] the values of ∂FV (·) are closed and convex.
Definition 2.2. Let V : Ω → R∪{+∞} be a lower semicontinuous function.

We say that V is a φ-convex of order 2 if there exists a continuous map
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φV : (D(V ))2 × R2 → R+ such that for every x, y ∈ D(∂FV ) and every
α ∈ ∂FV (x) we have

(2.1) V (y) ≥ V (x) + 〈α, x− y〉 − φV (x, y, V (x), V (y))(1 + ||α||2)||x− y||2.

In [3], [6] there are several examples and properties of such maps. For
example, according to [3], if K ⊂ R2 is a closed and bounded domain, whose
boundary is a C2 regular Jordan curve, the indicator function of K

V (x) = IK(x) =
{

0, if x ∈ K
+∞, otherwise

is φ-convex of order 2.
If K ⊂ Rm, as above, we denote K := {ϕ ∈ Cσ;ϕ(0) ∈ K}. We say that a

multifunction F : K → P(Rm) is upper semicontinuous if for every ϕ ∈ K and
for every ε > 0 there exists δ > 0 such that

F (ψ) ⊂ F (ϕ) +B(0, ε), ∀ψ ∈ K ∩Bσ(ϕ, δ).

This definition of upper semicontinuous multifunctions is less restrictive than
the usual (e.g. Definition 1.1.1 in [1]) and it is equivalent with the upper
semicontinuity for compact valued multifunctions (e.g. Proposition 1.1 in [7]).

For a multifunction F : K → P(Rm) we consider the differential inclusion
with memory (1.1) under the following assumptions.

Hypothesis 2.1. (a)K is a locally closed subset in Rm and F : K → P(Rm)
is upper semicontinuous with compact values.

(b) There exists a proper lower semicontinuous φ-convex function of order
two V : Rm → R ∪ {+∞} such that for any ψ ∈ K

(2.2) F (ψ) ⊂ ∂FV (ψ(0)).

(c) For any ϕ ∈ K and for any v ∈ F (ϕ) the following tangential condition
holds:

(2.3) lim inf
h↓0

1
h
d(ϕ(0) + hv,K) = 0.

The next technical result proved in [5] is a key tool in the proof of our main
result.

Lemma 2.1. Assume that the Hypotheses 2.1 (a) and (c) are satisfied. Then,
for any ϕ ∈ K there exist r > 0 and τ > 0 such that K ∩ B(ϕ(0), r) is closed
and for each k ∈ N∗ there exist m(k) ∈ N∗, tpk, y

p
k, u

p
k and a continuous function

xk : [−σ, τ ] → Rm such that for every p ∈ {0, 1, ...,m(k)− 1} we have
(i) hp

k := tp+1
k − tpk <

1
k and tm(k)−1

k ≤ τ < t
m(k)
k ,

(ii) xk(t) = yp
k +(t− tpk)u

p
k for every t ∈ [tpk, t

p+1
k ] and xk(t) = ϕ(t) for every

t ∈ [−σ, 0],
(iii) up

k ∈ F (T (tpk)xk) + 1
kB,

(iv) yp
k ∈ K ∩B(ϕ(0), r) and T (tpk)xk ∈ K ∩Bσ(ϕ, r).
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3. THE MAIN RESULT

We are now able to prove our main result.

Theorem 3.1. We assume that Hypothesis 2.1 is satisfied. Then, for any
ϕ ∈ K there exists a solution to (1.1)–(1.3).

Proof. Let ϕ be arbitrary fixed in K. Since K is locally closed in Rm, there
exists r > 0 such that K ∩ B(ϕ(0), r) is closed. By Proposition 1.1.3 in [1],
F is locally bounded; therefore, we can assume that there exists M > 0 such
that

(3.1) sup{||v||; v ∈ F (ψ), ψ ∈ K ∩Bσ(ϕ, r)} ≤M.

We prove that the sequence {xk(·)}k, constructed in Lemma 2.1, has a
subsequence that converges to a solution of (1.1).

First, we define the functions θk : [0, τ ] → [0, τ ] by θk(t) = tpk for every
t ∈ [tpk, t

p+1
k ]. Since |θk(t)− t| ≤ 1

k for every t ∈ [0, τ ], then θk(t) → t uniformly
on [0, τ ]. Also, by (ii), (iii) and (iv), for every k ≥ 1, we have

(3.2) x′k(t) ∈ F (T (θk(t))xk) +
1
k
B a.e. ([0, τ ]),

(3.3) xk(θk(t)) ∈ K ∩B
(
ϕ(0),

r

4

)
∀ t ∈ [0, τ ]

and
T (θk(t))xk ∈ K ∩Bσ(ϕ, r) ∀ t ∈ [0, τ ].

Moreover, by (3.1) and (3.2) we have

(3.4) ||x′k(t)|| ≤M + 1 ∀t ∈ [0, τ ], ∀k ≥ 1

and so {x′k(·)}k is bounded in L2([0, τ ],Rm).
Further on, by (ii), (iii) and (3.3) we have that, for k large enough,

||xk(t)− ϕ(0)|| ≤ ||xk(t)− xk(θk(t))||+ ||xk(θk(t)− ϕ(0)||

≤ (M + 1)|θk(t)− t|+ r

4
<
r

4
+
r

4
< r,

thus xk(t) ∈ B(ϕ(0), r), for every t ∈ [0, τ ] and for every k ≥ 1. Hence,
{xk(·)}k is bounded in C([0, τ ],Rm). Moreover, by (3.4), for every t, s ∈ [0, τ ]
we have

||xk(t)− xk(s)|| ≤
∣∣∣∣∫ t

s
||x′k(u)||du

∣∣∣∣ ≤ (M + 1)|t− s|

and we infer that the sequence {xk(·)}k is equi-uniformly continuous.
Therefore, by Theorem 0.3.4 in [1] there exists a subsequence, still denote

by {xk(·)}k, and an absolutely continuous function x : [0, τ ] → Rm such that
(j) xk(·) converges uniformly to x(·),
(jj) x′k(·) converges weakly in L2([0, τ ],Rm) to x′(·).
Moreover, since for all k ≥ 1 xk = ϕ on [−σ, 0], we can obviously say that

xk → x on [−σ, τ ], if we extend x in such a way that x = ϕ on [−σ, 0]. By
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the fact that xk converges uniformly to x on [0, τ ] and θk converges uniformly
to t on [0, τ ] we deduce that xk(θk(t)) → x(t) uniformly on [0, τ ]. Also, it is
clearly that T (0)x = ϕ on [−σ, 0].

Further on, let us denote the modulus of continuity of a function ψ on the
interval I ⊂ R by

ω(ψ, I, ε) := sup{||ψ(t)− ψ(s)||; s, t ∈ I, |s− t| < ε}, ε > 0.

Then we have:

||T (θk(t))xk − T (t)xk||σ = sup
−σ≤s≤0

||xk(θk(t) + s)− xk(t+ s)||

≤ ω

(
xk, [−σ, τ ],

1
k

)
≤ ω

(
ϕ, [−σ, 0],

1
k

)
+ ω

(
xk, [0, τ ],

1
k

)
≤ ω

(
ϕ, [−σ, 0],

1
k

)
+
M + 1
k

hence

(3.5) ||T (θk(t))xk − T (t)xk||σ ≤ δk ∀k ≥ 1,

where δk := ω(ϕ, [−σ, 0], 1
k ) + M+1

k .
Thus, by continuity of ϕ, we have δk → 0 as k → ∞, hence ||T (θk(t))xk −

T (t)xk||σ → 0 as k →∞ and so, since the uniform convergence of xk to x on
[−σ, τ ] implies

(3.6) T (t)xk → T (t)x uniformly on [0, τ ],

we deduce that

(3.7) T (θk(t))xk → T (t)x in Cσ.

Since T (θk(t))xk ∈ K ∩ Bσ(ϕ, r) for every t ∈ [0, τ ] and for every k ≥ 1,
thus by (3.7) we have T (t)x ∈ K ∩Bσ(ϕ, r).

Therefore, by (3.2) and (3.5) we have

(3.8) d((T (t)xk, x
′
k(t)), graph(F )) ≤ δk +

1
k

∀k ≥ 1.

By (jj), (3.6) and Theorem 1.4.1. in [1] we obtain that

(3.9) x′(t) ∈ coF (T (t)x) ⊂ ∂FV (x(t)) a.e. ([0, τ ]),

where co stands for the closed convex hull.
Since the function t → x(t) is absolutely continuous we apply Theorem

2.2 in [3] and we deduce that there exists τ1 > 0 such that the mapping
t→ V (x(t)) is absolutely continuous on [0,min{τ, τ1}] and

(V (x(t)))′ = 〈x′(t), x′(t) > a.e. ([0,min{τ, τ1}]).
Without loss of generality we may assume that τ = min{τ, τ1}. Therefore,

(3.10) V (x(τ))− V (x(0)) =
∫ τ

0
||x′(t)||2dt.
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On the other hand, since x′k(t) = up
k for every t ∈ [tpk, t

p+1
k ], by (iii), there

exists bpk ∈
1
kB such that

(3.11) up
k − bpk ∈ F (T (tpk)xk) ⊂ ∂FV (xk(t

p
k)), ∀k ∈ N∗

and so the properties of Fréchet subdifferential of a φ-convex function of order
two imply that, for every p ≤ m(k)− 2, and for every k ∈ N∗ we have

V (xk(t
p+1
k ))− V (xk(t

p
k)) ≥ 〈up

k − bpk, xk(t
p+1
k )− xk(t

p
k)〉 − φV (xk(t

p+1
k ),

xk(t
p
k), V (xk(t

p+1
k )), V (xk(t

p
k)))(1 + ||up

k − bpk||
2)||xk(t

p+1
k )− xk(t

p
k)||

2 =

= 〈up
k,

∫ tp+1
k

tpk
x′k(t)dt〉 − 〈bpk,

∫ tp+1
k

tpk
x′k(t)dt〉 − φV (xk(t

p+1
k ), xk(t

p
k),

V (xk(t
p+1
k )), V (xk(t

p
k)))(1 + ||up

k − bpk||
2)||xk(t

p+1
k )− xk(t

p
k)||

2,

hence

(3.12)
V (xk(t

p+1
k )− V (xk(t

p
k)) ≥

∫ tp+1
k

tpk
||x′(t)||2dt− 〈bpk,

∫ tp+1
k

tpk
x′k(t)dt〉

−φV (xk(t
p+1
k ), xk(t

p
k), V (xk(t

p+1
k )), V (xk(t

p
k)))

·(1 + ||up
k − bpk||

2)||xk(t
p+1
k )− xk(t

p
k)||

2.

Similarly, if t ∈ [tm(k)−1
k , τ ], then by (i) we have

(3.13)

V (xk(τ))− V (xk(t
m(k)−1
k )) ≥

∫ τ

t
m(k)−1
k

||x′k(t)||2dt

−〈bm(k)−1
k ,

∫ τ

t
m(k)−1
k

x′k(t)dt〉

−φV (xk(τ), xk(t
m(k)−1
k ), V (xk(τ)), V (xk(t

m(k)−1
k )))

·(1 + ||um(k)−1
k − b

m(k)−1
k ||2)||xk(τ)− xk(t

m(k)−1
k )||2.

By adding the m(k) − 1 inequalities from (3.12) and the inequality from
(3.13), we get

(3.14) V (xk(τ))− V (x(0)) ≥
∫ τ

0
||x′k(t)||2dt+ α(k) + β(k),

where

α(k) = −
m(k)−2∑

p=0

〈bpk,
∫ tp+1

k

tpk

x′k(t)dt〉 − 〈bm(k)−1
k ,

∫ τ

t
m(k)−1
k

x′k(t)dt〉,

β(k) = −
∑m(k)−2

p=0 φV (xk(t
p+1
k ), xk(t

p
k), V (xk(t

p+1
k )), V (xk(t

p
k)))(1 + ||up

k

−bpk||
2)||xk(t

p+1
k )− xk(t

p
k)||

2 − φV (xk(τ), xk(t
m(k)−1
k ), V (xk(τ)),

V (xk(t
m(k)−1
k )))(1 + ||um(k)−1

k − b
m(k)−1
k ||2)||xk(τ)− xk(t

m(k)−1
k )||2.

We have

|α(k)| ≤
∑m(k)−2

p=0

∣∣∣∣〈bpk, ∫ tp+1
k

tpk
x′k(t)dt〉

∣∣∣∣ +
∣∣∣〈bm(k)−1

k ,
∫ τ
tm(k)−1 x′k(t)dt〉

∣∣∣
≤

∑m(k)−2
p=0 ||bpk||

∣∣∣∣∣∣∣∣∫ tp+1
k

tpk
x′k(t)dt

∣∣∣∣∣∣∣∣ + ||bm(k)−1
k ||

∣∣∣∣∫ τ
tm(k)−1 x′k(t)dt

∣∣∣∣ ≤ (M+1)τ
k .
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Denote
S := sup{φV (x1, x2, y1, y2); xi ∈ K ∩B(ϕ(0), r

4),
yi ∈ [V (ϕ(0))− 1, V (ϕ(0)) + 1], i = 1, 2} < +∞.

According to Remark 1.14 and Theorem 1.18 in [6] (or Theorem 2.1 in [3])
V (·) is continuous on D(V ). So, we have the following estimation

|β(k)| ≤
∑m(k)−2

p=0 S[1 + (M + 2)2]
∣∣∣∣∣∣xk(t

p+1
k )− xk(t

p
k)

∣∣∣∣∣∣2 + S[1 + (M + 2)2]·

·
∣∣∣∣∣∣xk(τ)− xk(t

m(k)−1
k )

∣∣∣∣∣∣2 + S[1 + (M + 2)2] (
∑m(k)−2

p=0

∣∣∣∣∣∣∣∣∫ tp+1
k

tpk
x′k(t)dt

∣∣∣∣∣∣∣∣2 +∣∣∣∣∣∣∫ τ

t
m(k)−1
k

x′k(t)dt
∣∣∣∣∣∣2) ≤ S[1 + (M + 2)2]

(∑m(k)−2
p=0

1
k

∫ tp+1
k

tpk
||x′k(t)||

2 dt+

1
k

∫ τ

t
m(k)−1
k

||x′k(t)||2dt
)
≤ 1

kS[1 + (M + 2)2]τ(M + 1)2.

We infer that limk→∞ α(k) = limk→∞ β(k) = 0.
Therefore, from (3.14), passing to the limit with k →∞, we obtain

(3.15) V (x(τ))− V (x(0)) ≥ lim sup
k→∞

∫ τ

0
||x′k(t)||2dt.

By (3.10) and (3.15) we find that∫ τ

0
||x′(t)||2dt ≥ lim sup

k→∞

∫ τ

0
||x′k(t)||2dt

and, since x′k(·) converges weakly in L2([0, τ ],Rm) to x′(·), applying Proposi-
tion III 30 in [2], we obtain that x′k(·) converges strongly in L2([0, τ ],Rm) to
x′(·), hence a subsequence (again denote by) x′k(·) converges pointwise a.e. to
x′(·).

Since, by (3.8) limk→∞ d((T (t)xk, x
′
k(t)), graph(F )) = 0 and since the graph

of F is closed ([1], Proposition 1.1.2), we have that

x′(t) ∈ F (T (t)x) a.e. ([0, τ ]).

It remains to prove that x(t) ∈ Ω := K ∩ B(ϕ(0), r) for every t ∈ [0, τ ].
Indeed, by (i), (ii) and (iii) we have ||xk(t) − yp

k|| ≤
M+1

k for every t ∈ [0, τ ]
and by (j) we have ||xk(t) − x(t)|| → 0 as k → ∞. Therefore, since yp

k ∈ Ω,
we have d(x(t),Ω) ≤ ||x(t) − yp

k|| ≤ ||x(t) − xk(t)|| + ||xk(t) − yp
k||, hence, by

passing to the limit for k →∞ we obtain that d(x(t),Ω) = 0, ∀t ∈ [0, τ ]. Since
Ω is closed, we obtain that x(t) ∈ Ω for all t ∈ [0, τ ] and thus x(t) ∈ K for all
t ∈ [0, τ ], which completes the proof. �

Remark 3.1. If in Hypothesis 2.1, V (·) is assumed to be a convex function
then from Theorem 3.1 we obtain Theorem 2.2 in [5]. On the other hand, if
in Theorem 3.1 the operator T (t) is defined by T (t)x = x, then Theorem 3.1
yields the main result in [4].
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