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EXISTENCE OF VIABLE SOLUTIONS FOR A CLASS
OF NONCONVEX DIFFERENTIAL INCLUSIONS
WITH MEMORY

AURELIAN CERNEA and VASILE LUPULESCU

Abstract. We prove the existence of viable solutions for an autonomus differ-
ential inclusion with memory in the case when the multifunction that define the
inclusion is upper semicontinuous compact valued and contained in the Fréchet
subdifferential of a ¢-convex function of order two.
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1. INTRODUCTION

Differential inclusions with memory, known also as functional differential
inclusions, express the fact that the velocity of the system depends not only on
the state of the system at a given instant but depends upon the history of the
trajectory until this instant. The class of differential inclusions with memory
encompasses a large variety of differential inclusions and control systems. In
particular, this class covers the differential inclusions, the differential-difference
inclusions and the Volterra inclusions. For a detailed discussion on this topic
we refer to [1].

Let R™ be the m-dimensional euclidean space with the norm || - || and the
scalar product (-,-). Let o be a positive number and C, := C(|—c,0],R™)
the Banach space of continuous functions from [—o, 0] into R™ with the norm
given by ||z(-)||s := sup{||z(¢)||;t € [—0,0]}. For each t € [0, 7], we define
the operator T'(t) : C([—o,7|,R™) — C, as follows: (T(t)x)(s) := x(t + s),
s € [~0,0]. If K is a given nonempty subset in R™ then we introduce the
following set K := {¢ € Cy; ¢(0) € K}.

For a given multifunction F' : C, — P(R™) we consider the following differ-
ential inclusion with memory

(1.1) 2 € F(T(t)z)

and we are interested to find sufficient conditions such that for each ¢ € K
there exist 7 > 0 and a solution z(-) : [—o,7] — R™ of (1.1) satisfying the
initial condition

(1.2) T(0)x =¢ on[—0,0]

and the viability constraint

(1.3) z(t) e K Vte[0,7].
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We recall that a continuous function z(-) : [—o,7] — R™ is said to be a
solution of (1.1) if z(+) is absolutely continuous on [0, 7] and 2/(t) € F(T(t)x)
for almost all ¢ € [0, 7].

The existence of solutions of problem (1.1)—(1.3), well known as viable so-
lutions, in the case when F' is single valued was studied by many authors. For
results and references in this framework we refer to [10].

In general, the results concerning differential inclusions defined by upper
semicontinuous multifunctions can be extended to functional differential in-
clusions. The first viability result for functional differential inclusions was
given by Haddad ([8], [9]) in the case when F' is upper semicontinuous with
convex compact values.

Recently in [5], the situation when the multifunction is not convex valued is
considered. More exactly, in [5] it is proved the existence of solutions of prob-
lem (1.1)—(1.3) when F'(-) is an upper semicontinuous multifunction contained
in the subdifferential of a proper convex function V(-).

The aim of the present paper is to relax the convexity assumption on the
function V(-) that appear in [5], in the sense that we assume that F(-) is
contained in the Fréchet subdifferential of a ¢-convex function of order two.
Since the class of proper convex functions is strictly contained into the class
of ¢-convex functions of order two, our result generalizes the one in [5].

We note that the corresponding viability result for differential inclusions
was obtained in [4]. The proof of our main result follows the general ideas in
[3] and [9].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2. PRELIMINARIES

For z € R™ and r > 0 let B(z,r) := {y € R™;||ly — z|| < r} be the open
ball centered in z with radius 7, and let B(x,7) be its closure. For ¢ € C, let
Bo(p,1) :=A{1 € Co; |[¢ — ¢llo <7} and By(p,7) := {¢ € Co; || — ¢l[o < 7}
For € R™ and for a closed subset A C R™ we denote by d(z, A) the distance
from x to A given by d(z, A) := inf{||y — z||;y € A}.

Let 2 C R™ be an open set and let V' : @ — R U {400} be a function with
domain D(V) = {z € R™; V(z) < +o0}.

DEFINITION 2.1. The multifunction 9pV : @ — P(R™), defined as:

OV (x) = {a € R™ liminf Y W) = V(@) ~ (o y — )
y—e lly — ||

> 0} ifV(z) < +o0

and OpV (z) = 0 if V(z) = 400 is called the Fréchet subdifferential of V.

We also put D(9pV) = {z € R"™;0pV (z) # 0}.

According to [6] the values of OpV(-) are closed and convex.

DEFINITION 2.2. Let V :  — RU{+00} be a lower semicontinuous function.
We say that V is a ¢-conver of order 2 if there exists a continuous map
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¢y = (D(V))? x R? — R, such that for every z,y € D(OrV) and every
a € OpV (z) we have

(2.1) V(y) = V() + (a,z —y) = v (z,y,V(2), V(y) (1 + [la]])|lz - y|[*.

In [3], [6] there are several examples and properties of such maps. For
example, according to [3], if K C R? is a closed and bounded domain, whose
boundary is a C? regular Jordan curve, the indicator function of K

0, if reK
V(r) =Ix(z) = { 400, otherwise

is ¢-convex of order 2.

If K C R™, as above, we denote K := {¢ € Cys;¢(0) € K}. We say that a
multifunction F' : K — P(R™) is upper semicontinuous if for every ¢ € K and
for every € > 0 there exists § > 0 such that

F(Y) C F(p)+ B(0,e), Y€ KNBy(p,9).

This definition of upper semicontinuous multifunctions is less restrictive than
the usual (e.g. Definition 1.1.1 in [1]) and it is equivalent with the upper
semicontinuity for compact valued multifunctions (e.g. Proposition 1.1 in [7]).

For a multifunction F' : K — P(R™) we consider the differential inclusion
with memory (1.1) under the following assumptions.

HypOTHESIS 2.1. (a) K is a locally closed subset in R and F : K — P(R™)
is upper semicontinuous with compact values.

(b) There exists a proper lower semicontinuous ¢-convex function of order
two V : R™ — R U {+o0} such that for any ¢ € K

(2.2) F(ip) € 9pV (1(0)).

(c) For any ¢ € K and for any v € F(y) the following tangential condition
holds:

—_

1
(2.3) hri?iionf Ed(«p(()) + hv, K) = 0.
The next technical result proved in [5] is a key tool in the proof of our main
result.

LEMMA 2.1. Assume that the Hypotheses 2.1 (a) and (c) are satisfied. Then,
for any ¢ € K there exist r > 0 and 7 > 0 such that K N B(p(0),r) is closed
and for each k € N* there exist m(k) € N*, t7 y}, u} and a continuous function
xy 1 [—o,7] = R™ such that for every p € {0,1,...,m(k) — 1} we have

() WD o= 2 — P < L and (7P < <)

(ii) @k (t) = yj, + (t—th)ul for every t € [tV tiﬂ] and x(t) = p(t) for every
t € [—0,0],

(ili) uf € F(T(¢)zy) + £ B,

(iv) yp € KN B(p(0),7) and T(t)z, € KN By (p, ).
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3. THE MAIN RESULT
We are now able to prove our main result.

THEOREM 3.1. We assume that Hypothesis 2.1 is satisfied. Then, for any
@ € K there exists a solution to (1.1)—(1.3).

Proof. Let ¢ be arbitrary fixed in IC. Since K is locally closed in R™, there
exists r > 0 such that K N B(¢(0),r) is closed. By Proposition 1.1.3 in [1],
F is locally bounded; therefore, we can assume that there exists M > 0 such
that

(3.1) sup{|[v||; ve F), v € KNBs(p,r)} < M.

We prove that the sequence {zj(-)}g, constructed in Lemma 2.1, has a
subsequence that converges to a solution of (1.1).

First, we define the functions 6, : [0,7] — [0,7] by 0x(t) = ¢} for every
t € [th 7). Since [G)(t) —t| < 7 for every t € [0, 7], then 0y (t) — ¢ uniformly
on [0, 7]. Also, by (ii), (iii) and (iv), for every k > 1, we have

(32 sh(t) € FT@)m) + 1B ac. (0,7)),
(3.3) zh(0k(1) € KN B (0(0),5) ¥t e0,7]
and

T(0r(t))zr € KN Bs(p,r) Yt e[0,7].
Moreover, by (3.1) and (3.2) we have

(3.4) 2 ()] < M +1 Vtelo,r], Vk>1

and so {z}.(-)} is bounded in L*([0, 7], R™).
Further on, by (ii), (iii) and (3.3) we have that, for k large enough,

|k (t) = P(O)]] < [en(t) — 2Ok ()] + [l (0x(t) — p(O)]]
S(M+l)’9k(t)—t|+1<z+1<7",
thus zi(t) € B(p(0),r), for every t € [0,7] and for every k¥ > 1. Hence,
{zk(-)}r is bounded in C([0,7],R™). Moreover, by (3.4), for every t,s € [0, 7]

we have .
/ (a0 |
S

and we infer that the sequence {zy(-)}x is equi-uniformly continuous.
Therefore, by Theorem 0.3.4 in [1] there exists a subsequence, still denote
by {xr(-)}x, and an absolutely continuous function x : [0, 7] — R such that
(j) xk(-) converges uniformly to z(-),
(ij) «},(-) converges weakly in L([0,7],R™) to 2/(-).
Moreover, since for all k£ > 1 x; = ¢ on [—0,0], we can obviously say that
xp — x on [—o, 7], if we extend x in such a way that = = ¢ on [—0,0]. By

2k (t) — zr(s)]| < < (M +1)[t — s
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the fact that xj converges uniformly to z on [0, 7] and 6 converges uniformly
to t on [0,7] we deduce that xy(0x(t)) — x(t) uniformly on [0, 7]. Also, it is
clearly that T'(0)z = ¢ on [—0o,0].

Further on, let us denote the modulus of continuity of a function ¢ on the
interval I C R by

w(, I,e) == sup{[|(t) —P(s)ll; st el |s—t] <e}, >0

Then we have:

T Ok () zr — T()xklle = sup_ ||zk(0k(t) + s) — xp(t + s)|]

—0<s<0

<w <xk o, 7], ]1)
ool lnd) o)

hence

(3.5) T (O, — T(aille < 5 Vh > 1,

where Jj, := w(p, [~0,0], 1) + 2.

Thus, by continuity of ¢, we have 0y — 0 as k — oo, hence ||T'(0(t))zr —
T(t)zk|ls — 0 as k — oo and so, since the uniform convergence of zj to x on
[—o, 7] implies

(3.6) T(t)xx — T(t)z uniformly on [0,7],
we deduce that
(3.7) T(Ox(t))zr — T(t)z in C,.

Since T'(0x(t))xr € KN By(p,r) for every t € [0,7] and for every k > 1,
thus by (3.7) we have T'(t)x € KN B,(p,7).

Therefore, by (3.2) and (3.5) we have

1

(3.8) AT (2o, (1), raph(F)) < b+ 1k > 1

By (jj), (3.6) and Theorem 1.4.1. in [1] we obtain that
(3.9) 2'(t) € coF (T (t)x) C OrV (z(t)) a.e. ([0,7]),
where co stands for the closed convex hull.

Since the function t — xz(t) is absolutely continuous we apply Theorem
2.2 in [3] and we deduce that there exists 73 > 0 such that the mapping
t — V(z(t)) is absolutely continuous on [0, min{7, 71 }| and

(V(z(t)) = (2'(t),2(t) > a.e. ([0, min{r,71}]).

Without loss of generality we may assume that 7 = min{r, 71 }. Therefore,

(3.10) V(x(r)) = V(x(0)) = /OT 12’ (#)]]*de.
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On the other hand, since z}(t) = uf for every t € [ti,tpﬂ] by (iii), there
exists b} € %B such that
(3.11) uk bp S F( (tp):ck) C GFV(mk(tﬁ)), vk € N*

and so the properties of Fréchet subdifferential of a ¢-convex function of order
two imply that, for every p < m(k) — 2, and for every k € N* we have

Vi(n(t™) = V(@r(t]) = f = p() = ar(th)) = ov (an(t™),

(), V(g ()), V() (1 + o] = BRIP) lan () = an ()] =
= (. [ (Ot — O i @ (08) — dv (and ™), an(eh),

V),V )+ e = 1P () = onef)I P,

hence

Vi)~ Vi) > [ 2 0)Pde— 8 i a0
BI2) gy @), an (), V@), Via <tp>>>
(A1 = P lael™) - 2u )P

m(k)—1

Similarly, if ¢ € [t} , 7], then by (i) we have

V(an(r) = V(™) 2 [ lleg @)t

g1z O S a0d)

—ov (zu(r), 2t P, Viak(r), Vi <’"<’“>‘ )
(1 ™ by ’”‘11\2>uxk<>—xk<tm<‘”’> )|

By adding the m(k) — 1 inequalities from (3.12) and the inequality from
(3.13), we get

(3.14) Viw(r)) = V(2(0)) = /OT lak (D)]2dt + a(k) + B(k),

where

tp+1

m(k)—2 -
- X / Ly — @ / Z4(H)dt),
= t;n(k)fl

Blk) = — S8 Gy (an (8, 2i (82, V (x (tp“» V(@ (2))(1 + [Ju?
—BR |22k (21) — ai(8)])2 - ¢v<xk< ), 2k (L), Vg (1),

V(ar(ty ™) (@ a7 = o TN R) g () — 2 (2.
We have
o < 224 ffl a4 0)00)| + |57 s 70000

<y k)2

dtH + ||bm(k || Hj;gm(k) 1xk dtH < w
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Denote

S = sup{ov(z1,72,y1,92); xi € KN B(p(0),7),
yi € [V(p(0)) — 1,V(0(0)) +1], i=1,2} <+oc.

According to Remark 1.14 and Theorem 1.18 in [6] (or Theorem 2.1 in [3])
V(+) is continuous on D(V'). So, we have the following estimation

wwnszﬁ?”ﬂLuM+mﬂWm£W—xtﬂf+ﬂ1<M+m%
2
| et war

_l’_
T / 2 2 m(k)-2 1 (5, 2
oo afat]|) < S0+ (0 +202) (0624 [ o)1 ar+

b oo lf)]2de) < £S[L+ (M +2)%r(M + 1)*.

m(k)—1

"‘xk(T)—xk(tk )H2+S[1+(M+2) [( m(k

We infer that limy_,o a(k) = limg_o 5(k) = 0.
Therefore, from (3.14), passing to the limit with k¥ — oo, we obtain

(3.15) V(a(r)) — V(al >hmsup/ 12 ()| Pt

k—o0

By (3.10) and (3.15) we find that

/||x ||2dt>hmsup/ 2 (4)][2dt

and, since z}(+) converges weakly in L%([0, 7], R™) to z/(-), applying Proposi-
tion III 30 in [2], we obtain that z/,(-) converges strongly in L%([0, 7], R™) to
z'(+), hence a subsequence (again denote by) ) () converges pointwise a.e. to
/().

Since, by (3.8) limy_,o d((T'(t)xk, 2}, (t)), graph(F')) = 0 and since the graph
of F'is closed ([1], Proposition 1.1.2), we have that

2(t) € F(T(t)z) a.e. ([0,7]).

It remains to prove that z(t) € Q := K N B(p(0),r) for every ¢t € [0, 7].
Indeed, by (i), (i) and (iii) we have ||z (t) — y}|| < 2 for every t € [0, 7]
and by (j) we have ||zx(t) — z(t)|| — 0 as k — oo. Therefore, since y; € ,
we have d(z(t), Q) < [lz(t) — yill < |l2(t) — 2k (t)|| + ||z (t) — gl hence, by
passing to the limit for & — oo we obtain that d(z(t),2) = 0, Vt € [0, 7]. Since
2 is closed, we obtain that x(t) € 2 for all ¢ € [0, 7] and thus z(¢) € K for all
t € [0, 7], which completes the proof. O

REMARK 3.1. If in Hypothesis 2.1, V (-) is assumed to be a convex function
then from Theorem 3.1 we obtain Theorem 2.2 in [5]. On the other hand, if
in Theorem 3.1 the operator T'(¢) is defined by T'(t)x = =, then Theorem 3.1
yields the main result in [4].
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