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MONOTONICITY, COMPARISON AND MINKOWSKI’S INEQUALITY

FOR GENERALIZED MUIRHEAD MEANS IN TWO VARIABLES

TIBERIU TRIF

Abstract. Given the real numbers a and b with a + b 6= 0, the generalized
Muirhead (or symmetric) mean with parameters a, b is the function Σa,b(·, ·),
defined by

Σa,b(x, y) =

�
xayb + xbya

2

� 1
a+b

.

The aim of the paper is to investigate the monotonicity of Σa,b with respect to a

or b. Likewise, a comparison theorem and a Minkowski-type inequality involving
the generalized Muirhead means Σa,b are established.
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1. INTRODUCTION

A mean in two variables is any function M : R+ × R+ → R (where R+ :=
(0,∞) is the set of positive real numbers), satisfying for all x, y ∈ R+ the
following conditions:

(i) M(x, y) = M(y, x) (symmetry property);
(ii) min(x, y) ≤M(x, y) ≤ max(x, y) (mean value property).

Sometimes, condition (ii) is replaced by the weaker requirement (e.g. [7]):

(iii) M(x, x) = x (reflexivity property).

Clearly, (ii) implies (iii), but the converse is not always true.
The means in two variables are special and they have already found a num-

ber of applications. Due to these facts, there is a rich literature concern-
ing these means. Especially the following two-parameter families of bivariate
means have evoked the interest of many mathematicians in the last three
decades.

The first family is that of Stolarsky means (sometimes called difference
means). Given a, b ∈ R and x, y ∈ R+, satisfying ab(a − b)(x − y) 6= 0, the
Stolarsky mean of x and y with parameters a, b is the value

ξ = Da,b(x, y) =

(
b(xa − ya)

a(xb − yb)

) 1

a−b

,

obtained by applying the Cauchy mean value theorem to the functions t 7→ ta

and t 7→ tb on the interval [y, x] or [x, y]. This mean was first defined by
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K.B. Stolarsky [17], who showed that it can be extended continuously to the
domain

(1.1) { (a, b, x, y) | a, b ∈ R, x, y ∈ R+ }.

The extended Stolarsky mean with parameters a, b ∈ R is the function (see,
for instance, [11]) Da,b : R+ × R+ → R, defined by

Da,b(x, y) =





(
b(xa

−ya)
a(xb

−yb)

) 1

a−b
if ab(a− b)(x− y) 6= 0

(
xa

−ya

a(ln x−ln y)

) 1

a
if a(x− y) 6= 0, b = 0

(
b(ln x−ln y)

xb
−yb

)
−

1

b
if b(x− y) 6= 0, a = 0

exp
(
− 1

a
+ xa ln x−ya ln y

xa
−ya

)
if a(x− y) 6= 0, a = b

√
xy if x− y 6= 0, a = b = 0
x if x− y = 0.

The mean Da,b satisfies both (i) and (ii). Moreover, the function

(a, b, x, y) 7−→ Da,b(x, y)

is infinitely many times differentiable on the domain (1.1).
The second family is that of Gini means (sometimes called sum means).

Given a, b ∈ R, a 6= b and x, y ∈ R+, the Gini mean of x and y with parameters
a, b is

Sa,b(x, y) =

(
xa + ya

xb + yb

) 1

a−b

.

This mean was first defined by C. Gini [5] and it can be also extended continu-
ously to the domain (1.1). The extended Gini mean with parameters a, b ∈ R

is the function Sa,b : R+ × R+ → R, defined by

Sa,b(x, y) =





(
xa+ya

xb+yb

) 1

a−b
if a− b 6= 0

exp
(

xa ln x+ya ln y
xa+ya

)
if a− b = 0.

The mean Sa,b satisfies also (i) and (ii).
But in the literature one can find other means, not belonging to the above

mentioned two families. One such important mean is the generalized Muirhead
(or symmetric) mean. Given a, b ∈ R with a+b 6= 0, the generalized Muirhead
mean with parameters a and b is the function Σa,b : R+ ×R+ → R, defined by
(see, for instance, [2, p. 333] or [1])

Σa,b(x, y) =

(
xayb + xbya

2

) 1

a+b

.
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In the special case when a + b = 1, i.e., a = α and b = 1 − α, the Muirhead
(or symmetric) mean is obtained:

Σα,1−α(x, y) = Σ̃α(x, y) =
xαy1−α + x1−αyα

2
.

On the other hand, for p ∈ R \ {0}, Σp,0(x, y) reduces to the power mean of
order p of x and y:

Σp,0(x, y) = Mp(x, y) =

(
xp + yp

2

) 1

p

.

The generalized Muirhead mean Σa,b satisfies (i) and (iii). It is not difficult
to see that Σa,b satisfies the mean value property (ii) if and only if ab ≥ 0.
However, in this paper we will consider the mean Σa,b also for parameters a

and b not satisfying this condition. (The symmetric mean Σ̃α for values of α
not lying in [0, 1] has been considered in [15] and [18].) Finally, we point out
that, unlike the Stolarsky or Gini means, the generalized Muirhead mean Σa,b

cannot be extended continuously to the domain (1.1).

2. MAIN RESULTS

We present first a list of immediate basic properties of the generalized Muir-
head mean Σa,b. They are similar to the corresponding properties of the Sto-
larsky or Gini means (see [12]).

(P1) The generalized Muirhead mean Σ is symmetric in its parameters, i.e.,
Σa,b(·, ·) = Σb,a(·, ·) for all a, b ∈ R with a+ b 6= 0.

(P2) Given a, b ∈ R with a + b 6= 0, the function Σa,b(·, ·) is symmetric in
its variables, i.e., Σa,b(x, y) = Σa,b(y, x) for all x, y ∈ R+.

(P3) Given a, b ∈ R with a + b 6= 0, the function Σa,b(·, ·) is homogeneous
of order one in its variables, i.e.,

Σa,b(λx, λy) = λΣa,b(x, y) for all λ, x, y ∈ R+.

(P4) For all a, b, c ∈ R with (a+ b)c 6= 0 and all x, y ∈ R+ it holds that

Σa,b(x
c, yc) = [Σac,bc(x, y)]

c.

(P5) For all a, b ∈ R with a+ b 6= 0 and all x, y ∈ R+ it holds that

Σa,b(x, y)Σ−a,−b(x, y) = xy.

(P6) For all a, b, c ∈ R with a+ b 6= 0 and all x, y ∈ R+ it holds that

Σa,b(x
c, yc) = (xy)cΣa,b(x

−c, y−c).

It is well known that both Da,b and Sa,b increase with increase in either a
or b. For fixed x, y ∈ R+, the monotonicity of the functions a 7→ Da,b(x, y)
and b 7→ Da,b(x, y) is established in [17] and [8]. For the monotonicity of the
functions a 7→ Sa,b(x, y) and b 7→ Sa,b(x, y) the reader is referred to [16] or to
[12]. The corresponding monotonicity property for the generalized Muirhead
mean Σa,b is more complicated and it is stated in the following theorem.
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Theorem 1. Let b ∈ R, let x, y ∈ R+ with x 6= y, let b∗ =
ln 2

| lnx− ln y| ,
and let f : R \ {−b} → R be the function defined by f(a) = Σa,b(x, y). Then

the following assertions, concerning the monotonicity of f , are true:

1◦ If b > 0, then

f is

{
decreasing on (−b, b]
increasing on [b,∞).

In addition, if b ≥ b∗, then f is decreasing on (−∞,−b), whilst if 0 < b < b∗,

then there is a unique a0 ∈ (−∞,−b) such that

f is

{
increasing on (−∞, a0]
decreasing on [a0,−b).

2◦ If b < 0, then

f is

{
decreasing on [b,−b)
increasing on (−∞, b].

In addition, if b ≤ −b∗, then f is decreasing on (−b,∞), whilst if −b∗ < b <

0, then there is a unique a0 ∈ (−b,∞) such that

f is

{
decreasing on (−b, a0]
increasing on [a0,∞).

3◦ If b = 0, then f is increasing on (−∞, 0) ∪ (0,∞).

Our next main result is a comparison theorem for the generalized Muirhead
means Σa,b. Recall that the comparison between the Stolarsky means has been
settled by E. B. Leach and M. C. Sholander [9] and Zs. Páles [14]. A similar
comparison theorem for the Gini means was established by Zs. Páles [13] (see
also the paper by P. Czinder and Zs. Páles [4]).

Theorem 2. Let a, b, c, d ∈ R with (a+ b)(c+ d) 6= 0. The inequality

(2.1) Σa,b(x, y) ≤ Σc,d(x, y)

holds true for all x, y ∈ R+ if and only if

(2.2)
|a− b|
a+ b

≤ |c− d|
c+ d

and
(a− b)2

a+ b
≤ (c− d)2

c+ d
.

Remark 1. In the special case when b = 1−a and d = 1−c, from Theorem
2 we deduce that

Σ̃a(x, y) ≤ Σ̃c(x, y) for all x, y ∈ R+

if and only if

∣∣∣∣a−
1

2

∣∣∣∣ ≤
∣∣∣∣c−

1

2

∣∣∣∣.
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Remark 2. Suppose that the real numbers a, b, c, d satisfy a ≥ b, c ≥ d,
and (a, b) ≺ (c, d), i.e. (see [2, p. 18]), a ≤ c and a+ b = c+ d. If, in addition
a+b 6= 0, then it is easily seen that (2.2) is satisfied. By Theorem 1 we deduce
that (2.1) holds true for all x, y ∈ R+. This is a special case of Corollary 19
from [2, p. 335].

Finally, our last main result is a Minkowski-type inequality involving the
generalized Muirhead means Σa,b. It relates to similar inequalities obtained
by L. Losonczi and Zs. Páles [11] for the Stolarsky means and by L. Losonczi
and Zs. Páles [10], P. Czinder and Zs. Páles [3] for the Gini means.

Theorem 3. Given a, b ∈ R with a + b 6= 0, the following assertions are

true:

1◦ The inequality

(2.3) Σa,b(x1 + x2, y1 + y2) ≤ Σa,b(x1, y1) + Σa,b(x2, y2)

holds true for all x1, x2, y1, y2 ∈ R+ if and only if

(2.4)





ab ≤ 0
and

(a− b)2(a+ b− 1) − 4ab ≥ 0.

2◦ The inequality

(2.5) Σa,b(x1 + x2, y1 + y2) ≥ Σa,b(x1, y1) + Σa,b(x2, y2)

holds true for all x1, x2, y1, y2 ∈ R+ if and only if

(2.6)





ab ≥ 0
and

(a− b)2(a+ b− 1) − 4ab ≤ 0.

Moreover, if (a, b) = (0, 1) or (a, b) = (1, 0), then equality holds in (2.3)
and (2.5) for all x1, x2, y1, y2 ∈ R+. If (a, b) 6= (0, 1) and (a, b) 6= (1, 0), then

equality occurs in (2.3) or in (2.5) if and only if
x1

y1
=
x2

y2
.

Figure 2.1 shows the domain of points (a, b) satisfying (2.4), while figure
2.2 shows the domain of points (a, b) satisfying (2.6). Note that

(a− b)2(a+ b− 1) − 4ab = (a+ b)[(a− b)2 − (a+ b)].

The following examples illustrate the typical inequalities that can be ob-
tained from Theorem 3. Since the point (2,−1) satisfies (2.4), it follows that

(x1 + x2)
3 + (y1 + y2)

3

(x1 + x2)(y1 + y2)
≤ x3

1 + y3
1

x1y1
+
x3

2 + y3
2

x2y2
.

On the other hand, because the point (2, 1) satisfies (2.6), it follows that

3
√

(x1 + x2)2(y1 + y2) + (x1 + x2)(y1 + y2)2 ≤ 3

√
x2

1y1 + x1y
2
1 + 3

√
x2

2y2 + x2y
2
2.
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2(a-b)  =a+b

b

a

–2

–1

1

2

3

4

–2 –1 1 2 3 4

Fig. 2.1 – The domain of points (a, b) satisfying (2.4).

Remark 3. In the special case when a = α and b = 1 − α, from Theorem
3 we deduce that

(2.7) Σ̃α(x1 + x2, y1 + y2) ≤ Σ̃α(x1, y1) + Σ̃α(x2, y2)

holds true for all x1, x2, y1, y2 ∈ R+ if and only if α ∈ (−∞, 0] ∪ [1,∞).
Likewise, the converse of (2.7) holds for all x1, x2, y1, y2 ∈ R+ if and only if
α ∈ [0, 1].

3. PROOF OF THEOREM 1

On account of (P2) we may assume that x > y. On the other hand, by
virtue of (P3) we have

f(a) =
√
xy Σa,b

(√
x

y
,

√
y

x

)
=

√
xy Σa,b

(
et, e−t

)
,

where t = ln

√
x

y
> 0. Therefore, the monotonicity of f is the same as that of

the function

g(a) := lnΣa,b

(
et, e−t

)
=

ln(cosh((a− b)t))

a+ b
.

Note that

g′(a) = − ln(cosh((a− b)t))

(a+ b)2
+

t

a+ b
tanh((a− b)t)
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2(a-b)  =a+b

b

a

–2

–1

1

2

3

4

–2 –1 1 2 3 4

Fig. 2.2 – The domain of points (a, b) satisfying (2.6).

for all a ∈ R \ {−b}. We have to examine the sign of g′(a) which is the same
as that of h(a) := (a+ b)2g′(a). Since

h(a) = − ln(cosh((a− b)t)) + (a+ b)t tanh((a− b)t),

we have

h′(a) =
(a+ b)t2

cosh2((a− b)t)
.

1◦ Suppose that b > 0. Since h′(a) > 0 for all a ∈ (−b,∞), it follows that h
is increasing on (−b,∞). Taking into account that h(b) = 0, we deduce that

{
h(a) < 0 for all a ∈ (−b, b),
h(a) > 0 for all a ∈ (b,∞).

This means that {
g′(a) < 0 for all a ∈ (−b, b),
g′(a) > 0 for all a ∈ (b,∞).

Consequently, g (i.e. f) is decreasing on (−b, b] and increasing on [b,∞).
On the other hand, since h′(a) < 0 for all a ∈ (−∞,−b), it follows that h

is decreasing on (−∞,−b). It is easily seen that

lim
a→−∞

h(a) = ln 2 − 2bt = ln 2 − b| lnx− ln y|,

h(−b) = − ln(cosh(2bt)) < 0.
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Therefore, if b ≥ b∗ =
ln 2

| lnx− ln y| , then lim
a→−∞

h(a) ≤ 0, hence h(a) < 0 for all

a ∈ (−∞,−b). As above, this means that g (i.e. f) is decreasing on (−∞,−b).
If 0 < b < b∗, then we have lim

a→−∞

h(a) > 0, hence there is a unique a0 ∈
(−∞,−b) such that h(a0) = 0. Because h is decreasing on (−∞,−b), we
deduce that {

h(a) > 0 for all a ∈ (−∞, a0),
h(a) < 0 for all a ∈ (a0,−b).

Reasoning as above, we conclude that g (i.e. f) is increasing on (−∞, a0] and
decreasing on [a0,−b).

2◦ This assertion follows immediately from assertion 1◦, by virtue of (P5).
3◦ Although the case b = 0 reduces to the monotonicity of the power means,

which is well-known, we include a proof. In this case we have

h′(a) =
at2

cosh2(at)
.

Consequently, h′(a) < 0, hence h is decreasing on (−∞, 0) and h′(a) > 0,
hence h is increasing on (0,∞). Since h(a) = 0, we deduce that h(a) > 0,
hence g′(a) > 0 for all a ∈ (−∞, 0) ∪ (0,∞). Therefore g (i.e. f) is incresing
on (−∞, 0) ∪ (0,∞). 2

4. PROOF OF THEOREM 2

Let
α := a− b, γ := c− d,

β := a+ b, δ := c+ d.

Due to (P1), we may assume that α ≥ 0 and γ ≥ 0. On the other hand, as it
has already been remarked in the proof of Theorem 1, we have

Σa,b(x, y) =
√
xy Σa,b

(
et, e−t

)
, Σc,d(x, y) =

√
xy Σc,d

(
et, e−t

)
,

where t = ln

√
x

y
. Taking into account (P2), we can restrict ourselves to the

case x > y (t > 0). In other words, (2.1) holds true for all x, y ∈ R+ if and
only if

Σa,b

(
et, e−t

)
≤ Σc,d

(
et, e−t

)
for all t > 0.

But this inequality is equivalent to

(4.1) (cosh(αt))
1

β ≤ (cosh(γt))
1

δ for all t > 0.

Further, let f : (0,∞) → R be the function defined by

f(t) =
ln(cosh(αt))

β
− ln(cosh(γt))

δ
.

Then we have

f ′(t) =
α sinh(αt)

β cosh(αt)
− γ sinh(γt)

δ cosh(γt)
.
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Also, letting g(t) := cosh(αt) cosh(γt)f ′(t), we have

g(t) =
α

β
sinh(αt) cosh(γt) − γ

δ
sinh(γt) cosh(αt)(4.2)

=
1

2

(
α

β
− γ

δ

)
sinh((α+ γ)t) +

1

2

(
α

β
+
γ

δ

)
sinh((α− γ)t)

=
1

2

∞∑

k=0

1

(2k + 1)!

[(
α

β
− γ

δ

)
(α+ γ)2k+1

+

(
α

β
+
γ

δ

)
(α− γ)2k+1

]
t2k+1.

The problem now is to prove that (4.1) holds true (or, equivalently, that
f(t) ≤ 0 for all t ∈ (0,∞)) if and only if

(4.3)
α

β
≤ γ

δ
and

α2

β
≤ γ2

δ
.

Necessity. Suppose that (4.1) holds true, i.e., f(t) ≤ 0 for all t ∈ (0,∞).

Letting t→ ∞ in (4.1) we get
α

β
≤ γ

δ
. On the other hand, we must have

(4.4)

(
α

β
− γ

δ

)
(α+ γ) +

(
α

β
+
γ

δ

)
(α− γ) ≤ 0,

which is obviously equivalent to the second inequality in (4.3). Indeed, if (4.4)
does not hold, by (4.2) it follows that there is an ε > 0 such that g(t) > 0 on
(0, ε), hence f ′(t) > 0 on (0, ε). Since f(0) = 0 and f is increasing on (0, ε), we
deduce that f(t) > 0 for all t ∈ (0, ε), in contradiction with our assumption.
This contradiction shows that (4.4) holds true.

Sufficiency. Suppose now that (4.3) holds true. Depending on β and δ, we
have the following possible cases:

Case 1. β > 0 and δ < 0.

In this case by (4.3) it follows that 0 ≤ α2

β
≤ γ2

δ
≤ 0, that is α = γ = 0, hence

in (4.1) we have equality.

Case 2. β < 0 and δ > 0.
In this case it is obvious that f(t) ≤ 0 for all t ∈ (0,∞).

Case 3. β > 0 and δ > 0.
If α ≤ γ, then by (4.3) we deduce that

(4.5)

(
α

β
− γ

δ

)
(α+ γ)2k+1 +

(
α

β
+
γ

δ

)
(α− γ)2k+1 ≤ 0

for all k = 0, 1, 2, . . ., hence g(t) ≤ 0 for all t > 0. This means that f ′(t) ≤ 0
for all t > 0, hence f is nonincreasing on (0,∞). Since f(0) = 0, we conclude
that f(t) ≤ 0 for all t ∈ (0,∞).
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Assume now that α > γ. Because the second inequality in (4.3) is equivalent
to (4.4), it follows that (4.4) holds true. Therefore we have

−
α
β
− γ

δ
α
β

+ γ
δ

≥ α− γ

α+ γ
≥
(
α− γ

α+ γ

)2k+1

for all k = 0, 1, 2, . . . . Consequently, (4.5) holds true for all k = 0, 1, 2, . . .,
hence g(t) ≤ 0 for all t > 0. Reasoning as above, we conclude that f(t) ≤ 0
for all t ∈ (0,∞).

Case 4. β < 0 and δ < 0.
From (4.3) it follows that

γ

−δ ≤ α

−β and
γ2

−δ ≤ α2

−β .

By virtue of Case 3, we have

Σ−c,−d(x, y) ≤ Σ−a,−b(x, y) for all x, y ∈ R+.

Taking now into account (P5), we conclude that (2.1) holds true. 2

5. PROOF OF THEOREM 3

Following L. Losonczi and Zs. Páles [10] in their proof of Theorem 1, remark

that Σa,b(x, y) = yΣa,b

(
x

y
, 1

)
= yϕa,b

(
x

y

)
, where

ϕa,b(u) =

(
ua + ub

2

) 1

a+b

=
√
u

(
u

a−b
2 + u−

a−b
2

2

) 1

a+b

=
√
u[cosh((a− b) ln

√
u)]

1

a+b .

Taking this into account, (2.3) becomes

ϕa,b

(
y1

y1 + y2
· x1

y1
+

y2

y1 + y2
· x2

y2

)
≤ y1

y1 + y2
ϕa,b

(
x1

y1

)
+

y2

y1 + y2
ϕa,b

(
x2

y2

)
.

Using the notations
x1

y1
= u ∈ R+,

x2

y2
= v ∈ R+,

y1

y1 + y2
= λ ∈ (0, 1) we see

that the last inequality is equivalent to

(5.1) ϕa,b(λu+ (1 − λ)v) ≤ λϕa,b(u) + (1 − λ)ϕa,b(v).

Consequently, the validity of (2.3) for all x1, x2, y1, y2 ∈ R+ is equivalent to
the convexity of the function ϕa,b on R+. Similarly, the validity of (2.5) for all
x1, x2, y1, y2 ∈ R+ is equivalent to the concavity of ϕa,b on R+.

Next we show that ϕa,b is convex on R+ if and only if (2.4) holds true. The
fact that ϕa,b is concave on R+ if and only if (2.6) holds true can be proved
analogously.
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It is well-known that ϕa,b is convex on R+ if and only if ϕ′′

a,b(u) ≥ 0 for all
u ∈ R+. Since

lnϕa,b(u) =
1

2
lnu+

ln(cosh((a− b) ln
√
u))

a+ b
,

we deduce that

(5.2)
ϕ′

a,b(u)

ϕa,b(u)
=

1

2u
+

a− b

2(a+ b)u
tanh((a− b) ln

√
u).

Therefore we have

ϕ′′

a,b(u)ϕa,b(u) − [ϕ′

a,b(u)]
2

[ϕa,b(u)]2
(5.3)

= − 1

2u2
− (a− b) tanh((a− b) ln

√
u)

2(a+ b)u2

+
(a− b)2

4(a+ b)u2 cosh2((a− b) ln
√
u)
.

From (5.2) and (5.3) it follows that

ϕ′′

a,b(u)

ϕa,b(u)
= − 1

4u2
+

(a− b)2

4(a+ b)2u2
+

(a− b)2(a+ b− 1)

4(a+ b)2u2 cosh2((a− b) ln
√
u)
,

hence

(5.4) 4(a+ b)2u2 cosh2((a− b) ln
√
u)
ϕ′′

a,b(u)

ϕa,b(u)
= ψa,b(ln

√
u),

where

ψa,b(s) = −(a+ b)2 cosh2((a− b)s) + (a− b)2 cosh2((a− b)s)(5.5)

+(a− b)2(a+ b− 1)

= (a− b)2(a+ b− 1) − 4ab cosh2((a− b)s).

By (5.4) it follows that ϕ′′

a,b(u) ≥ 0 for all u ∈ R+ if and only if ψa,b(s) ≥ 0

for all s ∈ R. But this is clearly equivalent to (2.4).
It remains to clarify the cases of equality.
If ab < 0 or (a− b)2(a+ b− 1)− 4ab > 0, then by (5.4) and (5.5) we deduce

that ϕ′′

a,b(u) > 0 for all u ∈ R+. This means that ϕa,b is strictly convex on R+.

Therefore, equality occurs in (5.1) if and only if u = v. Equivalently, equality

occurs in (2.3) if and only if
x1

y1
=
x2

y2
.

Analogously, it can be proved that for ab > 0 or (a−b)2(a+b−1)−4ab < 0,

equality occurs in (2.5) if and only if
x1

y1
=
x2

y2
.

Finally, remark that for a+ b 6= 0 we have

ab = 0 and (a− b)2(a+ b− 1) = 0
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if and only if (a, b) = (0, 1) or (a, b) = (1, 0). In this case ϕa,b is affine on R+,
hence equality holds in (5.1) for all u, v ∈ R+. Equivalently, equality holds in
(2.3) and (2.5) for all x1, x2, y1, y2 ∈ R+. 2
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