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EXPRESSING THE CYCLIC MODULES IN TERMS
OF ELEMENTARY MODULES IN THE CLASSICAL HALL ALGEBRA

CSABA SZANTO

Abstract. Using some results obtained in the Hall algebra of the Kronecker
algebra we obtain a new recursive algorithm for expressing the indecomposable
(cyclic) modules in terms of semisimple (elementary) modules in the classical
Hall algebra.
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1. PRELIMINARIES
[0
Let K : 1___ 2 be the Kronecker-quiver, k a finite field with |k| =
B
qr and kK the corresponding path-algebra over k, called Kronecker algebra.
We will consider the category mod-kK of finitely generated (hence finite)
right modules over kK, which will be identified with the category rep-kK of
the finite dimensional k-representations of the Kronecker quiver. For general
notions concerning the representation theory of quivers, we refer to [1] or [2].
Up to isomorphism we will have two simple objects in mod-kK correspond-
ing to the two vertices. We shall denote them by S7 and S;. For a module
M € mod-kK, [M] will denote the isomorphism class of M. For a module M
let tM :=M&...H M (t-times).
The indecomposable modules in mod-kK are divided into three families:
the preprojectives, the regulars and the preinjectives.
The preprojective indecomposables (seen as representations) up to isomor-
phism have the following form:

(o)

P, : jntl k™ , where n € N.
7
(7)

The preinjective indecomposables are isomorphic to:

(01)

I, : k™ k1 where n € N.

(10)
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We mention here that up to isomorphism Py = Si, P; are the projective
and Iy = S, I; are the injective indecomposables.

Viewed as finite dimensional k-representations of the Kronecker quiver, the
regular indecomposables up to isomorphism are:

X
Ry(t) := k[X]/(X7) ;k[X]/(Xt) ;
id
RY(t) == K[X]/((X = p)") ZZ kIX]/(X = p)")

X
where t > 1 and u € k;

id
Rf'(t) = k[X]/(ou(X)") ; E[X]/(0(X)F)
where ¢ > 1, 1 > 2 and ¢;(X) is a monic irreducible polynomial of degree [
over k.

Let N(qx,l) = %Zd“ ,u(é)q,‘j, where [ > 1, and p is the Mobius function. It
is well known that N(gg,!) is the number of monic, irreducible polynomials of
degree [ over a field with ¢ elements.

Let M(qg,1) := N(qx,l) when [ > 2 and M (g, 1) :== N(qx, 1) +1 =g + 1.

To somewhat simplify the notations, we shall fix in an arbitrary way bi-
jections f1 : {ulp € k} U {o} — {1,....,q + 1} and f; : {¢i|¢; monic irre-
ducible polynomial of degree [ over k } — {1,...,N(qx,!)} (where | > 2) and
then let RO(t) = R (), RE(t) = RI'"™ @), RA(t) = RI'"™(1). So, us-
ing the notations above, our regular indecomposables are Rj(t), where [ > 1,
a=1,M(q,l), t>1.

Using the terminology of the Auslander-Reiten theory (see [1] or [2]) we say
that a sequence of the form [R}(1)],...,[R}'(t)],... is the vertex-sequence of a
homogeneous tube 7}*. In this terminology, the regular indecomposable Rj'(1)
is called quasi-simple and Rj(t) is of quasi-length ¢ and quasi-socle R}'(1). A
module with all its indecomposable direct summands in the tube T} will be
denoted by Rj'.

The Hall algebra H(kK) associated to the Kronecker algebra kK is the
Q-space having as basis the isomorphism classes in mod-kK together with a
multiplication (the so-called Hall product) defined by:

[M[N2] = Fii, [M].
[M]
The structure constants Fy! . = |{M D U| U = Ny, M/U = Ni}| are called
Hall numbers. It is easy to see that the Hall-algebra is a well-defined, asso-

ciative, usually noncommutative algebra with unit element the isomorphism
class of the zero module.
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We will fix now a homogeneous tube T' := T}* with indecomposable regulars
R(t) := R%(t) and modules R := R{. Let q := ¢}. The isomorphism classes
[R] (and [0]) form a Q-basis of a unital Q-subalgebra H(T) of H(kK), called
the Hall algebra of the tube T

We know that H(7T') coincides with the classical Hall algebra studied by
Ph. Hall (see [4]), moreover, the indecomposable R(t) corresponds in classical
terms to a cyclic module and the quasi-semisimple tR(1) to a so called ele-
mentary module. We will use the notation u) := [R(t)] and u(+) = [tR(1)]
for the isoclasses of cyclic, respectively elementary modules.

The following theorem claims that the classical Hall algebra is a polyno-
mial algebra over Q with generators the elementary (respectively the cyclic)
modules. More precisely:

THEOREM 1. ([4]) We have H(T) = Q[u(), ui2), -, uq1ty, --.] and H(T) =
Q[U(l), U(g), ceey u(t), ]
It follows that
(*) Up) = Z bAu(lxl)...u(lxs),
A=(A1,.... s )EP(n)

where by, € Q and P(n) is the set of partitions of n. We already know that
bainy = 1. Our aim is to give a recursive algorithm for computing the other
coefficients by, using some formulas obtained by the author in the Hall algebra
of the Kronecker algebra.

2. THE RECURSIVE ALGORITHM

We start from some formulas obtained by the author in [3]:

(1) U(lt)[Pm] = qt[Pm]U(lt) + [Pm+l]u(1z—1),
t—1 ‘ ‘
2)  w[Pm] = ¢'[Pnlugy + Pl + Y@ = ¢ ) [Prgilugs.
i=1
~ Let A = (A\1,...,As) € P(n), such that \y = ... = A\ > A\y1 and denote

A= (A1 =1, Ae =1, Mg, 05 As). We will then compute wu,)[S1] in two ways.
Firstly, we apply (*) and then formula (1). Secondly, we apply formula (2) and
then (*). Comparing the coefficients of [.Plt]U(lAl—l)...U(lkt—l)u(lktJrl)...U(lks) in
the two cases, we get the formula

qnft)qb)\ + Z c(,u, /\)qn—Zi,;i:uH Mibu _ (qnft _ qnftfl)b;\7
HEP(n)\{A},Ap
where ¢(u, A) is the number of compositions 3, such that 3 ~ A and 8 - p.

Here a composition § = (01, f2, . . .) is a sequence of non-negative integers with
only a finite number of non-zero terms. So, a partition is a composition with



88 Cs. Szantd 4

B1 > P2 > ... . Two compositions «a, 3 are conjugate (in notation a ~ f3) if
they give the same partition after reordering if it is necessary. We write § 4 «
if we have o — 1 < 0; < ay, Vi > 1.
Using the recursive formula above, we can recursively compute the coeffi-
cients by. We present here the first steps of the new algorithm:
For n =1 we get
For n = 2 we get
biz) + 2qb 1) = ( Dby
SO b(g) = —(q + 1).
For n = 3 we get
by =1
qber) + 3(126(111 (¢* — )b
b+ a b<21> (¢ = @by
50 a1y = —(2¢+ 1), by = ¢* + ¢* + ¢.
For n = 4 we get
by =1
q2b(211) + 4q3b(1111) = (¢ - q2)b(111)
b(22) + 2gb(211) + Cid? bii111) = (¢* - Q)b(ll)
qb@in) + 2¢° b(22) +2¢° beo11) = (¢®—q )b(21)
ba +q b1y = (¢° — )b
80 b2a11) = —(3¢ + 1), ba) = 7 +q, ba1) = 2¢> + ¢* + q and by = —(¢*+
¢ +4¢" + )
We can continue in the same way.
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