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EXPONENTIAL STABILITY AND EXPONENTIAL DICHOTOMY OF

SEMIGROUPS OF LINEAR OPERATORS

BOGDAN SASU

Abstract. The aim of this paper is to establish necessary and sufficient condi-
tions for exponential stability of semigroups of linear operators and to show how
this conditions can be applied in order to characterize the exponential dichotomy.
First, we prove that an exponentially bounded semigroup is exponentially sta-
ble if and only if it is (lp(N, X), l∞(N, X))-stable, where p ∈ (1,∞). After that
this result is applied at the study of the exponential dichotomy of exponentially
bounded semigroups. We deduce that an exponentially bounded semigroup is
exponentially dichotomic if and only if the pair (l∞(N, X), lp(N, X)) is admissible
for it and an associated subspace is closed and complemented.

MSC 2000. 34D09, 34D05.

Key words. Semigroup of linear operators, exponential stability, exponential
dichotomy.

1. INTRODUCTION

The theory of the asymptotic behavior of semigroups of linear operators in
infinite dimensional spaces is a well-developed area in the field of differential
equations and their applications. In the last decades significant monographs
were devoted to the analysis of the asymptotic properties of semigroups (see
[1], [3], [4], [5], [9], [15]). The main studies of the last years concerning the
asymptotic behavior of evolution equations focuses on the input-output con-
ditions (see [1], [7], [8], [11], [13], [14], [15]). Moreover, recent studies have
shown that in certain situations the non-autonomous problems can be solved
by passing to the autonomous case: this can be done by associating to an evo-
lution family, or to a linear skew-product flow, diverse evolution semigroups
on function spaces (see [1], [14]).

An interesting question concerning the autonomous case is whether one
of the basic concepts can be used in order to deduce information concern-
ing the others. The main purpose of this paper is to answer this question.
We will show that in certain situations it is sufficient to have a character-
ization for exponential stability and this one can be exploited in order to
obtain important properties concerning the exponential expansiveness and
also the exponential dichotomy. First, we establish the connections between
the (lp(N, X), l∞(N, X))-stability, with p ∈ (1,∞), and the exponential sta-
bility of an exponentially bounded semigroup. We motivate the choice of
the above discrete pair by examples, showing that the (l1(N, X), l∞(N, X))-
stability and the (l1(N, X), c0(N, X))-stability are not sufficient conditions for
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exponential stability. We obtain that an exponentially bounded semigroup
is exponentially stable if and only if there is p ∈ (1,∞) such that the semi-
group is (lp(N, X), l∞(N, X))-stable. Finally, we apply our result at the study
of the exponential dichotomy of semigroups. Under the assumption that an
associated subspace is closed and complemented, we present a detailed and
constructive study for the equivalence between the admissibility of the pair
(l∞(N, X), lp(N, X)), with p ∈ (1,∞), and the exponential dichotomy of an
exponentially bounded semigroup.

2. EXPONENTIAL STABILITY OF SEMIGROUPS

Let X be a real or a complex Banach space. Throughout this paper, the
norm on X and on B(X) – the Banach algebra of all bounded linear operators
on X, will be denoted by || · ||.

Definition 1. A family T = {T (t)}t≥0 ⊂ B(X) is said to be a semigroup

on X, if T (0) = I and T (t + s) = T (t)T (s), for all t, s ≥ 0.

Definition 2. A semigroup T = {T (t)}t≥0 is said to be:
(i) exponentially bounded if there are M ≥ 1 and ω > 0 such that ||T (t)|| ≤

Meωt, for all t ≥ 0;
(ii) C0-semigroup if lim

tց0
T (t)x = x, for all x ∈ X.

Remark 1. If T is a C0-semigroup, then it is exponentially bounded (see
[9, Theorem 2.2, p. 4]).

Definition 3. A semigroup T = {T (t)}t≥0 is said to be exponentially stable

if there are two constants N, ν > 0 such that

||T (t)x|| ≤ N e−νt||x||, ∀(t, x) ∈ R+ × X.

Remark 2. It is easy to see that an exponentially bounded semigroup is
exponentially stable if and only if there are δ > 0 and c ∈ (0, 1) such that
||T (δ)|| ≤ c.

Let ℓ∞(N, X) = {s : N → X| sup
n∈N

||s(n)|| < ∞}, which is a Banach space

with respect to the norm ||s||∞ : = sup
n∈N

||s(n)||. If c0(N, X) = {s : N →

X| lim
n→∞

s(n) = 0}, then c0(N, X) is a closed linear subspace of ℓ∞(N, X).

For p ∈ [1,∞), we consider ℓp(N, X) = {s : N → X |
∞
∑

k=0

||s(k)||p < ∞}.

With respect to the norm ||s||p : = (
∞
∑

k=0

||s(k)||p)1/p, the space ℓp(N, X) is a

Banach space.

Remark 3. For every p, q ∈ [1,∞) with p ≤ q we have that

ℓ1(N, X) ⊂ ℓp(N, X) ⊂ ℓq(N, X) ⊂ c0(N, X) ⊂ ℓ∞(N, X).
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Definition 4. The semigroup T is said to be (I(N, X), O(N, X))-stable if
for every s ∈ I(N, X) the sequence

γs : N → X, γs(n) =
n
∑

k=0

T (n − k)s(k)

belongs to O(N, X).

Remark 4. I(N, X) is called the input space and the space O(N, X) is called
the output space.

In what follows we establish connections between the (I(N, X), O(N, X))-
stability of T and the exponential stability of T.

Naturally, from Remark 3 the problem arises whether the (ℓ1(N, X), ℓ∞(N,
X))-stability or the (ℓ1(N, X), c0(N, X))-stability implies the exponential sta-
bility. The answer is negative as the following example shows:

Example 1. Let X = C0(R+, R) be the linear space of all continuous
functions x : R+ → R with lim

t→∞
x(t) = 0. With respect to the norm ||x|| :=

sup
t≥0

|x(t)|, we have that X is a Banach space.

For every t ≥ 0 consider the operator T (t) : X → X, (T (t)x)(s) = x(s + t).
Then T = {T (t)}t≥0 is a C0-semigroup called the translation semigroup on X.
It is easy to see that ||T (t)|| = 1, for all t ≥ 0.

We prove that T is (l1(N, X), c0(N, X))-stable. Let s ∈ l1(N, X) and let
ε > 0. From s ∈ l1(N, X) it follows that there is n0 ∈ N

∗ such that

∞
∑

k=n0

||s(k)|| <
ε

2
.

Let y =
∑n0−1

k=0
T (n0 − k)s(k). Since y ∈ X, there is p ∈ N

∗ such that |y(t)| <
(ε/2), for all t ≥ p. Then, for n ≥ n0 + p we have that

||T (n − n0)y|| = sup
t≥0

|y(t + n − n0)| ≤
ε

2
.

We obtain that

||γs(n)|| ≤ ||T (n − n0)y|| +
n
∑

k=n0

||T (n − k)|| ||s(k)|| < ε, ∀n ≥ n0 + p,

so γs ∈ c0(N, X). It follows that T is (l1(N, X), c0(N, X))-stable and (l1(N, X),
l∞(N, X))-stable, respectively. But, for all that T is not exponentially stable.

The main result of this section is:

Theorem 1. Let T = {T (t)}t≥0 be an exponentially bounded semigroup on

the Banach space X and let p ∈ (1,∞). Then T is exponentially stable if and

only if T is (lp(N, X), l∞(N, X))-stable.
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Proof. The necessity is immediate.
To prove the sufficiency, let D : lp(N, X) → l∞(N, X), Ds = γs. We have

that D is a closed linear operator, so it is bounded. We set K = ||D||.
Let x ∈ X and

s : N → X, s(n) =

{

x, n = 0
0, n ∈ N

∗.

Then s ∈ lp(N, X) and ||s||p = ||x||. Observing that γs(n) = T (n)x, for all
n ∈ N, we deduce that

||T (n)x|| = ||γs(n)|| ≤ ||γs||∞ ≤ K||s||p = K||x||.

It follows that ||T (n)|| ≤ K, for all n ∈ N. We consider the sequence

α : N → R+, α(n) =
1

n + 1
.

Let x ∈ X and let s : N → X, s(n) = α(n)T (n)x. Then s ∈ lp(N, X) and
||s||p ≤ K||α||p ||x||. Observing that

γs(n) =

(

n
∑

k=0

1

k + 1

)

T (n)x, ∀n ∈ N,

we obtain that

||T (n)x||

(

n
∑

k=0

1

k + 1

)

= ||γs(n)|| ≤ ||γs||∞ ≤ K||s||p ≤ K2||α||p ||x||, ∀n ∈ N.

Let n0 ∈ N
∗ be such that

∑n0

k=0
[1/(k+1)] ≥ 2K2 ||α||p. Then, from the above

relation, we deduce that ||T (n0)x|| ≤ (1/2)||x||.
Taking into account that n0 does not depend on x it follows that ||T (n0)|| ≤

1/2. Using Remark 2 we conclude that T is exponentially stable. �

3. EXPONENTIAL DICHOTOMY OF SEMIGROUPS

In what follows we apply the results obtained in the previous section in
order to obtain input-output characterizations for exponential dichotomy of
exponentially bounded semigroups.

Let X be a real or a complex Banach space and let T = {T (t)}t≥0 be an
exponentially bounded semigroup on X.

Definition 5. The semigroup T is said to be exponentially dichotomic if
there are a projection P ∈ B(X) and two constants K, ν > 0 such that:

(i) T (t)P = PT (t), for all t ≥ 0;
(ii) for every t ≥ 0, the restriction T (t)| : Ker P → Ker P is an isomorphism;

(iii) ||T (t)x|| ≤ Ke−νt||x||, for all t ≥ 0 and all x ∈ Im P ;
(iv) ||T (t)x|| ≥ 1

K eνt||x||, for all t ≥ 0 and all x ∈ Ker P .
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Let p ∈ (1,∞). We consider the discrete-time equation:

(Ed) γ(n + 1) = T (1)γ(n) + s(n + 1), ∀n ∈ N

with γ ∈ ℓ∞(N, X) and s ∈ ℓp(N, X).

Definition 6. The pair (ℓ∞(N, X), ℓp(N, X)) is said to be admissible for T

if for every s ∈ ℓp(N, X) there is γ ∈ ℓ∞(N, X) such that the pair (γ, s) verifies
the equation (Ed).

Definition 7. A subspace Y ⊂ X is said to be T-invariant if T (t)Y ⊂ Y ,
for all t ≥ 0.

In all what follows we suppose that the subspace

X1 = {x ∈ X : sup
t≥0

||T (t)x|| < ∞}

is closed and it has a T-invariant complement, i.e. there is a closed T-invariant
subspace X2 such that X = X1 ⊕ X2. We denote by P the projection corre-
sponding to this decomposition, i.e. ImP = X1 and KerP = X2.

Remark 5. We have that T (t)P = PT (t), for all t ≥ 0.

Denoting T1(t) = T (t)| Im P and T2(t) = T (t)|Ker P , ∀t ≥ 0 we have that
T1 = {T1(t)}t≥0 is an exponentially bounded semigroup on ImP and T2 =
{T2(t)}t≥0 is an exponentially bounded semigroup on KerP .

Theorem 2. If the pair (ℓ∞(N, X), ℓp(N, X)) is admissible for T, then T1

is exponentially stable.

Proof. From hypothesis it follows that the pair (l∞(N, Im P ), lp(N, Im P ))
is admissible for the semigroup T1.

Let s ∈ lp(N, Im P ). From the admissibility of the pair (l∞(N, Im P ), lp(N,
Im P )) we obtain that there is α ∈ l∞(N, Im P ) such that

(1) α(n + 1) = T1(1)α(n) + s(n + 1), ∀n ∈ N.

From relation (1) it follows that

(2) α(n) = T1(n)α(0) +
n
∑

k=1

T1(n − k)s(k), ∀n ∈ N.

From α(0), s(0) ∈ Im P we deduce that the sequences β : N → Im P , β(n) =
T1(n)α(0) and δ : N → Im P , δ(n) = T1(n)s(0) belong to l∞(N, Im P ).
Denoting

γs : N → Im P, γs(n) =
n
∑

k=0

T1(n − k)s(k)

from relation (2) we obtain that γs(n) = α(n) − β(n) + δ(n), ∀n ∈ N, so
γs ∈ l∞(N, Im P ).

It follows that for every s ∈ lp(N, Im P ) the sequence γs ∈ l∞(N, Im P ), so
the semigroup T1 is (lp(N, Im P ), l∞(N, Im P ))-stable. Applying Theorem 1
we deduce that T1 is exponentially stable. �
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Theorem 3. If the pair (ℓ∞(N, X), ℓp(N, X)) is admissible for T, then T2(t)
is invertible, for all t ≥ 0.

Proof. It is sufficient to prove that T2(1) is invertible.
If x ∈ KerT2(1) then sup

t≥0

||T (t)x|| < ∞. This shows that x ∈ Im P . Since

Ker T2(1) ⊂ KerP , it follows that x = 0, so T2(1) is injective.
Let y ∈ X. We consider the sequence

s : N → X, s(n) =

{

−y, n = 1
0, n 6= 1.

From hypothesis, there is γ ∈ ℓ∞(N, X) such that the pair (γ, s) verifies the
equation (Ed). Then we have that

(3) γ(n) = T (n − 1)γ(1), ∀n ∈ N
∗.

Since γ ∈ ℓ∞(N, X), from relation (3) it follows that γ(1) ∈ ImP . In par-
ticular, this implies that (I − P )γ(1) = 0. Because γ(1) = T (1)γ(0) − y, we
obtain that T (1)(I − P )γ(0) = y. Setting x = (I − P )γ(0) we deduce that
T2(1)x = y, so T2(1) is surjective. �

Theorem 4. If the pair (ℓ∞(N, X), ℓp(N, X)) is admissible for T, then there

are K, ν > 0 such that

||T (t)x|| ≥
1

K
eνt ||x||, ∀t ≥ 0, ∀x ∈ KerP.

Proof. Step 1. We prove that there is M > 0 such that

(4) ||γ||∞ ≤ M ||s||p,

for every pair (γ, s) ∈ ℓ∞(N, X)×ℓp(N, X) with the property that (γ, s) verifies
the equation (Ed) and γ(0) ∈ KerP .

Let s ∈ ℓp(N, X). From hypothesis, there is λ ∈ ℓ∞(N, X) such that the pair
(λ, s) verifies the equation (Ed). Then γ : N → X, γ(n) = λ(n) − T (n)Pλ(0)
belongs to ℓ∞(N, X), γ(0) ∈ KerP and the pair (γ, s) verifies the equation
(Ed).

Let γ̃ ∈ ℓ∞(N, X) with the property that (γ̃, s) verifies the equation (Ed)
and γ̃(0) ∈ KerP . Setting α = γ̃ − γ we have that

(5) α(n) = T (n)α(0), ∀n ∈ N.

From relation (5) we obtain that α(0) ∈ Im P . But α(0) = γ̃(0)−γ(0) ∈ KerP .
It follows that α(0) = 0, so α = 0.

This shows that for every s ∈ ℓp(N, X) there is a unique γ ∈ ℓ∞(N, X)
with the property that the pair (γ, s) verifies the equation (Ed) and γ(0) ∈
Ker P . Then it makes sense to consider the operator Q : ℓp(N, X) → ℓ∞(N, X),
Q(s) = γ, where γ ∈ ℓ∞(N, X) with the property that the pair (γ, s) verifies
the equation (Ed) and γ(0) ∈ KerP . It is easy to see that Q is a closed linear
operator, so it is bounded. Taking M = ||Q|| we obtain the relation (4).
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Step 2. From Theorem 3, it makes sense to consider S(t) = T2(t)
−1, for all

t ≥ 0. We have that S = {S(t)}t≥0 is an exponentially bounded semigroup on
Ker P . Let u ∈ ℓp(N, Ker P ) and let

γu : N → Ker P, γu(n) =
n
∑

k=0

S(n − k)u(k).

Let n ∈ N. We consider the sequences

α : N → X, α(k) =

{

0 , k ≥ n + 2 or k = 0
−T (1)u(n + 1 − k), k ∈ {1, ..., n + 1}.

δ : N → X, δ(k) =

{

0 , k ≥ n + 1
γu(n − k), k ∈ {0, ..., n}.

An easy computation shows that the pair (δ, α) verifies the equation (Ed).
Since δ(0) = γu(n) ∈ Ker P from Step 1 it follows that ||δ||∞ ≤ M ||α||p.
Taking into account that

||α||p = (
n+1
∑

k=1

||T (1)u(n + 1 − k)||p)1/p ≤ ||T (1)|| ||u||p,

we obtain that ||γu(n)|| = ||α(0)|| ≤ M ||T (1)|| ||u||p. Since n ∈ N was arbi-
trary, it follows that γu ∈ ℓ∞(N, Ker P ).

Thus, it results that the semigroup S = {S(t)}t≥0 is (ℓp(N, Ker P ), ℓ∞(N,
Ker P ))-stable. Applying Theorem 1, we deduce that S is uniformly exponen-
tially stable, which completes the proof. �

The main result of this section is:

Theorem 5. An exponentially bounded semigroup T = {T (t)}t≥0 is expo-

nentially dichotomic if and only if the pair (ℓ∞(N, X), ℓp(N, X)) is admissible

for T and the subspace

X1 = {x ∈ X : sup
t≥0

||T (t)x|| < ∞}

is closed and complemented in X.

Proof. Necessity. Let P be the projection and let K, ν > 0 be given by
Definition 5. Obviously, ImP ⊂ X1. Conversely, if x ∈ X1 then

||x−Px|| ≤ Ke−νt||T (t)(I−P )x|| ≤ Ke−νt(||T (t)x||+Ke−νt||Px||), ∀t ≥ 0.

This implies that x ∈ Im P . It follows that X1 = ImP , so it is closed and it
has a complement – Ker P – which is T-invariant.

For s ∈ ℓp(N, X), we consider the sequence

γ : N → X, γ(n) =
n
∑

k=0

T (n − k)Ps(k) −
∞
∑

k=n+1

T (k − n)−1

| (I − P )s(k),
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where T (j)−1

| denotes the inverse of the operator T (j)| : Ker P → KerP .

We have that γ ∈ ℓ∞(N, X) and an easy computation shows that the pair
(γ, s) verifies the equation (Ed). It results that the pair (ℓ∞(N, X), ℓp(N, X))
is admissible for T.

Sufficiency. It follows from Remark 1 and Theorems 2–4. �
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