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(Lp, Lq)-COMPLETE ADMISSIBILITY AND EXPONENTIAL

EXPANSIVENESS OF LINEAR SKEW-PRODUCT FLOWS

ADINA LUMINIŢA SASU

Abstract. The goal of this paper is to give necessary and sufficient conditions
for uniform exponential expansiveness of time-varying systems modelled by linear
skew-product flows in infinite-dimensional spaces. If p, q ∈ [1,∞) we prove
that the complete admissibility of the pair (Lp(R+, X), Lq(R+, X)) is a sufficient
condition for uniform exponential expansiveness and it becomes necessary if and
only if p ≤ q.
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1. INTRODUCTION

The input-output characterizations play a very important role in the study
of the asymptotic properties of evolution equations. An impressive list of
interesting problems concerning the connections between stability and control
were solved by means of the input-output conditions (see [1], [3], [4], [6], [7],
[8], [12], [14], [16]). In recent years the asymptotic behavior of linear skew-
product flows was at the center of intensive studies (see [3], [4], [6], [7], [8],
[12], [13], [14], [15]). Exponential stability was characterized in [8], exponential
expansiveness was analyzed in [7] and new concepts of exponential dichotomy
were introduced and studied in [3], [4] and [6].

The main idea in [7] was to associate to a linear skew-product flow π =

(Φ, σ), on X × Θ, the integral equation (Eθ,t0
c ), for every (θ, t0) ∈ Θ × R+,

where

fθ,u(t) = Φ(σ(θ, s), t − s)fθ,u(s) +

∫ t

s
Φ(σ(θ, τ), t − τ)u(τ) dτ, ∀t ≥ s ≥ t0

with f, u ∈ C0([t0,∞), X). One of the main results in [7] gives a charac-
terization for uniform exponential expansiveness of π in terms of the unique

solvability of the equations (Eθ,t0
c ), for every (θ, t0) ∈ Θ × R+.

Naturally, the question arises whether uniform exponential expansiveness
of linear skew-product flows can be characterized in terms of Lp-spaces.

The central purpose of this paper is to answer this question. In what follows
we present a new and unified approach for the uniform exponential expansive-
ness of linear skew-product flows, our arguments being based on input-output
techniques. We present a detailed and constructive study for the uniform
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exponential expansiveness of linear skew-product flows by means of the solv-
ability of an integral equation. We consider a special input space Lq(R+, X)
and we analyze the connections between the uniform exponential expansive-
ness and the complete admissibility of the pair (Lp(R+, X), Lq(R+, X)), with
p, q ∈ [1,∞). We prove that the uniform complete admissibility of the pair
(Lp(R+, X), Lq(R+, X)) implies the uniform exponential expansiveness. An
example will motivate our hypothesis and methods. Finally, for p ≤ q we
obtain that a linear skew-product flow π = (Φ, σ) is uniformly exponentially
expansive if and only if the pair (Lp(R+, X), Lq(R+, X)) is uniformly com-
pletely admissible for it.

2. EXPONENTIAL EXPANSIVENESS OF LINEAR SKEW-PRODUCT FLOWS

Let X be a real or a complex Banach space, let (Θ, d) be a metric space
and let E = X × Θ. The norm on X and on L(X)-the Banach algebra of
all bounded linear operators on X will be denoted by || · ||. Denote by I the
identity operator on X.

Definition 1. A mapping σ : Θ×R → Θ is called a flow on Θ if σ(θ, 0) = θ,
for all θ ∈ Θ and σ(θ, t + s) = σ(σ(θ, t), s), for all (θ, t, s) ∈ Θ × R

2.

Definition 2. A pair π = (Φ, σ) is called linear skew-product flow on E if
σ is a flow on Θ and Φ : Θ × R+ → L(X) has the following properties:

(i) Φ(θ, 0) = I, for all θ ∈ Θ;
(ii) Φ(θ, t + s) = Φ(σ(θ, s), t)Φ(θ, s) (the cocycle identity), for all (θ, t, s) ∈

Θ × R
2
+;

(iii) there are M, ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ×R+;
(iv) for every x ∈ X the mapping (θ, t) 7→ Φ(θ, t)x is continuous.

For interesting examples of linear skew-product flows we refer to [3], [4],
[12], [13].

Definition 3. A linear skew-product flow π = (Φ, σ) is said to be uniformly

exponentially expansive if for every (θ, t) ∈ Θ × R+ the operator Φ(θ, t) is
invertible and there are two constants K, ν > 0 such that

||Φ(θ, t)x|| ≥ Keνt||x||, ∀(x, θ, t) ∈ E × R+.

For every p ∈ [1,∞) consider Lp(R+, X) the space of all Bochner measurable
functions f : R+ → X with

∫ ∞
0 ||f(τ)||p dτ < ∞ which is a Banach space with

respect to the norm

||f ||p :=

(
∫ ∞

0
||f(τ)||p dτ

)1/p

.

Definition 4. Let p, q ∈ [1,∞). The pair (Lp(R+, X), Lq(R+, X)) is said
to be completely admissible for π = (Φ, σ) if for every θ ∈ Θ and every v ∈
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Lq(R+, X) there is a unique continuous function f ∈ Lp(R+, X) such that the
pair (f, v) verifies the integral equation

(Eθ) f(t) = Φ(σ(θ, s), t − s)f(s) +

∫ t

s
Φ(σ(θ, τ), t − τ)v(τ) dτ, ∀t ≥ s ≥ 0.

Theorem 1. If the pair (Lp(R+, X), Lq(R+, X)) is completely admissible

for π = (Φ, σ), then Φ(θ, t) is invertible, for all (θ, t) ∈ Θ × R+.

Proof. Let (θ, t0) ∈ Θ × R
∗
+ and let x ∈ Ker Φ(θ, t0). We consider the

functions

f1, f2 : R+ → X, f1(t) = Φ(θ, t)x, f2(t) = 0.

We have that f1, f2 ∈ Lp(R+, X) and an easy computation shows that the
pairs (f1, 0) and (f2, 0) verify the equation (Eθ). It follows that f1 = f2 which
shows that x = f1(0) = 0. So Φ(θ, t0) is injective.

Let now y ∈ X. We consider a continuous function α : R+ → [0, 1] with
compact support contained in (t0, t0 +2) and with

∫ ∞
t0

α(τ) dτ = 1. We define
the function

v : R+ → X v(t) =

{

−α(t)Φ(σ(θ, t0), t − t0)y, t ≥ t0
0 , t ∈ [0, t0].

We have that v ∈ Lq(R+, X) and then from hypothesis there is f ∈ Lp(R+, X)
such that the pair (f, v) satisfies the equation (Eθ). In particular, it follows
that

(1) f(t) = Φ(σ(θ, s), t − s)f(s) −

(
∫ t

s
α(τ) dτ

)

Φ(σ(θ, t0), t − t0)y,

for all t ≥ s ≥ t0. Let

g : [t0,∞) → X, g(t) =

∫ ∞

t
α(τ) dτ Φ(σ(θ, t0), t − t0)y.

We observe that

(2) g(t) = Φ(σ(θ, s), t − s)g(s) −

(
∫ t

s
α(τ) dτ

)

Φ(σ(θ, t0), t − t0)y,

for all t ≥ s ≥ t0. Setting

ϕ : R+ → X, ϕ(t) = f(t + t0) − g(t + t0),

we have that ϕ ∈ Lp(R+, X). From relations (1) and (2) we deduce that

ϕ(t) = Φ(σ(θ, t0 + s), t − s)ϕ(s), ∀t ≥ s ≥ 0,

so the pair (ϕ, 0) verifies the equation (Eσ(θ,t0)). From hypothesis it follows
that ϕ = 0. In particular, we obtain that f(t0) = g(t0) = y. Since f(t0) =
Φ(θ, t0)f(0) we have that y ∈ Range Φ(θ, t0), so Φ(θ, t0) is surjective. �
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Remark 1. If the pair (Lp(R+, X), Lq(R+, X)) is completely admissible for
π, then for every θ ∈ Θ it makes sense to consider the linear operator

Γθ : Lq(R+, X) → Lp(R+, X), Γθv = f,

where f ∈ Lp(R+, X) is continuous and the pair (f, v) verifies the equation
(Eθ). It is easy to see that Γθ is a closed linear operator, so it is bounded.

Definition 5. The pair (Lp(R+, X), Lq(R+, X)) is said to be uniformly

completely admissible for π if it is completely admissible for π and there is
L > 0 such that

||Γθ|| ≤ L, ∀θ ∈ Θ.

In what follows for every set A ⊂ R we denote by χA its characteristic
function.

The first main result of this paper is:

Theorem 2. If the pair (Lp(R+, X), Lq(R+, X)) is uniformly completely

admissible for π, then π is uniformly exponentially expansive.

Proof. Step 1. Let L > 0 be given by Definition 5. We prove that there is
α > 0 such that

||Φ(θ, t)x|| ≥ α||x||, ∀(x, θ, t) ∈ E × R+.

Let (θ, t0) ∈ Θ × R+ and let x ∈ X. We consider the functions

v : R+ → X, v(t) = −χ[t0+1,t0+2)(t)Φ(θ, t)x,

f : R+ → X, f(t) =

∫ ∞

t
χ[t0+1,t0+2)(τ) dτ Φ(θ, t)x.

We have that (f, v) ∈ Lp(R+, X) × Lq(R+, X). An easy computation shows
that the pair (f, v) verifies the equation (Eθ), so f = Γθv. It follows that

(3) ||f ||p ≤ L||v||q.

If M, ω > 0 are given by Definition 2, then

||v(t)|| = χ[t0+1,t0+2)(t) ||Φ(θ, t)x|| ≤

≤ Meω||Φ(θ, t0 + 1)x|| χ[t0+1,t0+2)(t), ∀t ≥ 0,

so that

(4) ||v||q ≤ Meω||Φ(θ, t0 + 1)x||.

We observe that f(t) = Φ(θ, t)x, for all t ∈ [0, 1]. From

||Φ(θ, 1)x|| χ[0,1)(t) ≤ Meω||Φ(θ, t)x|| χ[0,1)(t) =

= Meω||f(t)|| χ[0,1)(t) ≤ Meω||f(t)||, ∀t ≥ 0

we deduce that

(5) ||Φ(θ, 1)x|| ≤ Meω||f ||p.
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From relations (3)–(5) it results that

(6) α ||Φ(θ, 1)x|| ≤ ||Φ(θ, t0 + 1)x||,

where α = 1/LM2e2ω. Since α does not depend on θ, t0 or x we have that (6)
holds for every (x, θ) ∈ E and every t0 ≥ 0. Taking into account that Φ(θ, 1)
is surjective, it follows that

(7) α ||y|| ≤ ||Φ(σ(θ, 1), t0)y||, ∀(y, θ) ∈ E , ∀t0 ≥ 0.

Observing that σ(σ(θ,−1), 1) = θ, for all θ ∈ Θ we deduce that σ| : Θ×{1} →
Θ is surjective. Hence we may write the relation (7) as follows

(8) ||Φ(θ, t0)y|| ≥ α||y||, ∀(y, θ) ∈ E , ∀t0 ≥ 0.

Step 2. Let h > 0 be such that h > (Le/α2)p. Let θ ∈ Θ and let x ∈ X\{0}.
We consider the functions

u : R+ → X, u(t) = −χ[h,2h)(t)
Φ(θ, t)x

||Φ(θ, t)x||
,

ϕ : R+ → X, ϕ(t) =

∫ ∞

t

χ[h,2h)(s)

||Φ(θ, s)x||
ds Φ(θ, t)x.

We have that (ϕ, u) ∈ Lp(R+, X)×Lq(R+, X) and an easy computation shows
that the pair (ϕ, u) satisfies the equation (Eθ). Then we have that

(9) ||ϕ||p ≤ L||u||q = Lh1/q ≤ Lh.

Setting

a =

∫ 2h

h

1

||Φ(θ, s)x||
ds,

we observe that ϕ(t) = a Φ(θ, t)x, for all t ∈ [0, h). Then using relation (8)
we obtain that

α ||x|| χ[0,h)(t) ≤ ||Φ(θ, t)x|| χ[0,h)(t) =

=
||ϕ(t)||

a
χ[0,h)(t) ≤

||ϕ(t)||

a
, ∀t ≥ 0,

which implies that

(10) α ||x|| h1/p ≤
1

a
||ϕ||p.

From relation (8) we have that

||Φ(θ, 2h)x|| ≥ α ||Φ(θ, s)x||, ∀s ∈ [h, 2h),

which shows that

(11) a ≥
αh

||Φ(θ, 2h)x||
.

From relations (10) and (11) we deduce that

(12) α2h(p+1)/p||x|| ≤ ||Φ(θ, 2h)x|| ||ϕ||p.
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Using relations (9) and (12) it follows that

α2h(p+1)/p||x|| ≤ Lh ||Φ(θ, 2h)x||,

so that

(13) ||Φ(θ, 2h)x|| ≥ (α2/L)h1/p||x|| ≥ e ||x||.

Taking into account that h does not depend on θ or x we have that relation
(13) holds for all (x, θ) ∈ E . Setting ν = 1/2h and K = α/e we obtain that

(14) ||Φ(θ, t)x|| ≥ Keνt||x||, ∀(x, θ, t) ∈ E × R+.

From Theorem 1 and relation (14) we deduce that π is uniformly exponentially
expansive. �

Lemma 1. Let p, q ∈ [1,∞) with p ≥ q and let ν > 0. Then:

(i) for every v ∈ Lq(R+, R+) the function

fv : R+ → R+, fv(t) =

∫ ∞

t
e−ν(τ−t)v(τ) dτ

belongs to Lp(R+, R+);
(ii) there is λ = λ(p, q, ν) > 0 such that

||fv||p ≤ λ||v||q, ∀v ∈ Lq(R+, R+).

Proof. It results using Hölder’s inequality. �

The second main result of this paper is:

Theorem 3. Let π = (Φ, σ) be a linear skew-product flow on E = X×Θ and

let p, q ∈ [1,∞) with p ≥ q. Then π is uniformly exponentially expansive if and

only if the pair (Lp(R+, X), Lq(R+, X)) is uniformly completely admissible for

π.

Proof. Necessity. Let θ ∈ Θ and let v ∈ Lq(R+, X). We consider the
function

f : R+ → X, f(t) = −

∫ ∞

t
Φ(σ(θ, t), τ − t)−1v(τ) dτ.

Then f is continuous and the pair (f, v) verifies the equation (Eθ). From
Lemma 1 we also have that f ∈ Lp(R+, X).

Let f̃ ∈ Lp(R+, X) be such that the pair (f̃ , v) satisfies the equation (Eθ).

Setting ϕ = f − f̃ it follows that

(15) ϕ(t) = Φ(θ, t)ϕ(0), ∀t ≥ 0.

If K, ν > 0 are given by Definition 3 we have that

(16) ||ϕ(t)|| ≥ Keνt||ϕ(0)||, ∀t ≥ 0.

Since ϕ ∈ Lp(R+, X), from relation (16) it results that ϕ(0) = 0. Then

from relation (15) we obtain that ϕ ≡ 0, so f̃ = f . It follows that the pair
(Lp(R+, X), Lq(R+, X)) is completely admissible for π.
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Let λ = λ(p, q, ν) > 0 be given by Lemma 1. Then for every θ ∈ Θ and
every v ∈ Lq(R+, X) we have that

||Γθv||p ≤
λ

K
||v||q,

so the pair (Lp(R+, X), Lq(R+, X)) is uniformly completely admissible for π.
Sufficiency. It results from Theorem 2. �

Remark 2. Generally, if p < q and the linear skew-product flow π on
E = X × Θ is uniformly exponentially expansive, it does not result that the
pair (Lp(R+, X), Lq(R+, X)) is uniformly completely admissible for π.

Example 1. Let X = Θ = R and let σ(θ, t) = θ + t. We define Φ(θ, t)x =
etx, for all (t, x, θ) ∈ R+ × R

2. Then π = (Φ, σ) is a linear skew-product flow
on E = R

2 and it is uniformly exponentially expansive.
If p, q ∈ [1,∞) with p < q and δ ∈ (p, q), we consider the function

u : R+ → R, u(t) =
1

(t + 1)1/δ
.

Then u ∈ Lq(R+, R) \ Lp(R+, R). We observe that for θ ∈ R, there is no con-
tinuous function f ∈ Lp(R+, R), such that the pair (f, u) verifies the equation
(Eθ).

Indeed, suppose by contrary that there exists a continuous function f ∈
Lp(R+, R) such that the pair (f, u) satisfies the equation (Eθ). Then

e−tf(t) = e−sf(s) +

∫ t

s
e−τu(τ) dτ, ∀t ≥ s ≥ 0.

Using the above relation we deduce that

(17) f(t) = −et

∫ ∞

t
e−τu(τ) dτ, ∀t ≥ 0.

But from relation (17) we obtain that

lim
t→∞

|f(t)|

u(t)
= lim

t→∞

u(t)

u(t) − u′(t)
= 1.

Since u /∈ Lp(R+, R) it results that f /∈ Lp(R+, R), which is absurd.
In conclusion, the pair (Lp(R+, R), Lq(R+, R)) is not (uniformly) completely

admissible for π.
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