LOEWNER CHAINS AND A MODIFICATION OF THE ROPER-SUFFRIDGE EXTENSION OPERATOR

GABRIELA KOHR

Abstract

In this paper we continue the study of the Roper-Suffridge extension operator. Let f be a locally univalent function on the unit disc and let Q : $\mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2 . We consider the family of operators extending f to a holomorphic mapping from the unit ball B^{n} in \mathbb{C}^{n} into \mathbb{C}^{n} given by $\Phi_{n, Q}(f)(z)=\left(f\left(z_{1}\right)+Q(\tilde{z}) f^{\prime}\left(z_{1}\right), \widetilde{z}\left(f^{\prime}\left(z_{1}\right)\right)^{1 / 2}\right)$, where $\widetilde{z}=$ $\left(z_{2}, \ldots, z_{n}\right)$. This operator was recently introduced by Muir. In the case $Q \equiv 0$, this operator reduces to the well known Roper-Suffridge extension operator. We prove that if $f \in S$ then $\Phi_{n, Q}(f) \in S^{0}\left(B^{n}\right)$ whenever $\|Q\| \leq 1 / 4$. Our proof yields Muir's result that if $f \in S^{*}$ then $\Phi_{n, Q}(f)$ is also starlike on B^{n}. Moreover, if $f \in K$ is imbedded in a convex subordination chain $f\left(z_{1}, t\right)$ over $[0, \infty)$ then $\Phi_{n, Q}(f)$ is also imbedded in a c.s.c. over $[0, \infty)$ on B^{n} whenever $\|Q\| \leq 1 / 2$.

MSC 2000. Primary: 32H. Secondary: 30C45.
Key words. Convexity, convex subordination chain, Loewner chain, parametric representation, Roper-Suffridge extension operator, starlikeness.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^{n} be the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the Euclidean inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and the Euclidean norm $\|z\|=\langle z, z\rangle^{1 / 2}$. For $n \geq 2$, let $\widetilde{z}=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n-1}$ so that $z=\left(z_{1}, \widetilde{z}\right) \in \mathbb{C}^{n}$. The unit ball in \mathbb{C}^{n} is denoted by B^{n}. In the case of one variable, B^{1} is denoted by U. The ball in \mathbb{C}^{n} of radius $r>0$ and center 0 is denoted by B_{r}^{n}.

Let $L\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ denote the space of continuous linear mappings from \mathbb{C}^{n} into \mathbb{C}^{m} with the standard operator norm,

$$
\|A\|=\sup \{\|A(z)\|:\|z\|=1\}
$$

and let I_{n} be the identity in $L\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$. A mapping $Q: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is called a homogeneous polynomial of degree k if there is a mapping $A: \prod_{j=1}^{k} \mathbb{C}^{n} \rightarrow \mathbb{C}$ which is continuous multilinear of degree k and

$$
Q(z)=L(\underbrace{z, \cdots, z}_{k \text {-times }}), z \in \mathbb{C}^{n} .
$$

Then $Q \in H\left(\mathbb{C}^{n}\right)$ and $D Q(z)(z)=k Q(z)$ for $z \in \mathbb{C}^{n}$.
If Ω is a domain in \mathbb{C}^{n}, let $H(\Omega)$ be the set of holomorphic mappings from Ω into \mathbb{C}^{n}. Also let $H\left(B^{n}, \mathbb{C}\right)$ be the set of holomorphic functions from B^{n} into
C. A mapping $f \in H\left(B^{n}\right)$ is called normalized if $f(0)=0$ and $D f(0)=I_{n}$. If $f \in H\left(B^{n}\right)$ we say that f is locally biholomorphic on B^{n} if the complex Jacobian matrix $D f(z)$ is nonsingular at each $z \in B^{n}$. Let $J_{f}(z)=\operatorname{det} D f(z)$ for $z \in B^{n}$. Let $\mathcal{L} S_{n}$ be the set of normalized locally biholomorphic mappings on B^{n} and let $S\left(B^{n}\right)$ denote the set of normalized biholomorphic mappings on B^{n}. In the case of one variable, the set $S\left(B^{1}\right)$ is denoted by S and $\mathcal{L} S_{1}$ is denoted by $\mathcal{L} S$. A mapping $f \in S\left(B^{n}\right)$ is called starlike (respectively convex) if its image is a starlike domain with respect to the origin (respectively convex domain). The classes of normalized starlike (respectively convex) mappings on B^{n} will be denoted by $S^{*}\left(B^{n}\right)$ (respectively $K\left(B^{n}\right)$). In the case of one variable, $S^{*}\left(B^{1}\right)$ (respectively $K\left(B^{1}\right)$) is denoted by S^{*} (respectively K).

If $f, g \in H\left(B^{n}\right)$ we say that f is subordinate to g (and write $f \prec g$) if there is a Schwarz mapping v (i.e. $v \in H\left(B^{n}\right)$ and $\|v(z)\| \leq\|z\|, z \in B^{n}$) such that $f(z)=g(v(z)), z \in B^{n}$. If g is biholomorphic on B^{n}, this is equivalent to requiring that $f(0)=g(0)$ and $f\left(B^{n}\right) \subseteq g\left(B^{n}\right)$.

We recall that a mapping $f: B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ is called a Loewner chain if $f(\cdot, t)$ is biholomorphic on $B^{n}, f(0, t)=0, D f(0, t)=\mathrm{e}^{t} I_{n}$ for $t \geq 0$, and $f(z, s) \prec f(z, t)$ whenever $0 \leq s \leq t<\infty$ and $z \in B^{n}$. We note that the requirement $f(z, s) \prec f(z, t)$ is equivalent to the condition that there is a unique biholomorphic Schwarz mapping $v=v(z, s, t)$, called the transition mapping associated to $f(z, t)$, such that

$$
f(z, s)=f(v(z, s, t), t), \quad z \in B^{n}, t \geq s \geq 0
$$

We also note that the normalization of $f(z, t)$ implies the normalization $D v(0, s, t)=\mathrm{e}^{s-t} I_{n}$ for $0 \leq s \leq t<\infty$.

Certain subclasses of $S\left(B^{n}\right)$ can be characterized in terms of Loewner chains. In particular, $f \in S^{*}\left(B^{n}\right)$ if and only if $f(z, t)=\mathrm{e}^{t} f(z)$ is a Loewner chain.

The authors [4], [10] (see also [8, Theorem 8.1.6]; cf. [16] and [17]) obtained the following sufficient condition for a mapping to be a Loewner chain.

Lemma 1.1. Let $h_{t}(z)=h(z, t): B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ satisfy the following conditions:
(i) $h(\cdot, t)$ is a normalized holomorphic mapping on B^{n} and $\operatorname{Re}\langle h(z, t), z\rangle \geq$ 0 for $z \in B^{n}, t \geq 0$.
(ii) $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in B^{n}$.

Let $f=f(z, t): B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a mapping such that $f(\cdot, t) \in H\left(B^{n}\right)$, $f(0, t)=0, D f(0, t)=\mathrm{e}^{t} I_{n}$ for $t \geq 0$, and $f(z, \cdot)$ is locally absolutely continuous on $[0, \infty)$ locally uniformly with respect to $z \in B^{n}$. Assume that

$$
\frac{\partial f}{\partial t}(z, t)=D f(z, t) h(z, t) \quad \text { a.e. } \quad t \geq 0, \forall z \in B^{n} .
$$

Further, assume that there exists an increasing sequence $\left\{t_{m}\right\}_{m \in \mathbb{N}}$ such that $t_{m}>0, t_{m} \rightarrow \infty$ and

$$
\lim _{m \rightarrow \infty} \mathrm{e}^{-t_{m}} f\left(z, t_{m}\right)=F(z)
$$

locally uniformly on B^{n}. Then $f(z, t)$ is a Loewner chain.
Graham, Hamada and Kohr [5] have recently introduced the notion of a convex subordination chain in \mathbb{C}^{n}. In the case of one variable, see [19].

Definition 1.2. Let J be an interval in \mathbb{R}. A mapping $f=f(z, t)$ is called a convex subordination chain (c.s.c.) over J if the following conditions hold:
(i) $f(0, t)=0$ and $f(\cdot, t)$ is convex for $t \in J$.
(ii) $f\left(\cdot, t_{1}\right) \prec f\left(\cdot, t_{2}\right)$ for $t_{1}, t_{2} \in J, t_{1} \leq t_{2}$.

Definition 1.3. (see [11], [4]) We say that a normalized mapping $f \in$ $H\left(B^{n}\right)$ has parametric representation if there exists a mapping $h: B^{n} \times$ $[0, \infty) \rightarrow \mathbb{C}^{n}$ which satisfies the following conditions:
(i) $h(\cdot, t) \in H\left(B^{n}\right), h(0, t)=0, D h(0, t)=I_{n}, t \geq 0, \operatorname{Re}\langle h(z, t), z\rangle \geq 0$, for $z \in B^{n}, t \geq 0$;
(ii) $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in B^{n}$,
such that $f(z)=\lim _{t \rightarrow \infty} \mathrm{e}^{t} v(z, t)$ locally uniformly on B^{n}, where $v=v(z, t)$ is the unique solution of the initial value problem

$$
\frac{\partial v}{\partial t}=-h(v, t) \quad \text { a.e. } \quad t \geq 0, v(z, 0)=z
$$

for all $z \in B^{n}$.
In [10] (see also [8]) it is proved that a mapping $f \in H\left(B^{n}\right)$ has parametric representation if and only if there exists a Loewner chain $f(z, t)$ such that $\left\{\mathrm{e}^{-t} f(\cdot, t)\right\}_{t \geq 0}$ is a normal family on B^{n} and $f=f(\cdot, 0)$.

Let $S^{0}\left(B^{\bar{n}}\right)$ be the set of mappings which have parametric representation on B^{n}.

Definition 1.4. (see [18]) The Roper-Suffridge extension operator Φ_{n} : $\mathcal{L} S \rightarrow \mathcal{L} S_{n}$ is defined by

$$
\Phi_{n}(f)(z)=\left(f\left(z_{1}\right), \widetilde{z} \sqrt{f^{\prime}\left(z_{1}\right)}\right), \quad z=\left(z_{1}, \widetilde{z}\right) \in B^{n} .
$$

We choose the branch of the power function such that

$$
\left.\sqrt{f^{\prime}\left(z_{1}\right)}\right|_{z_{1}=0}=1
$$

Roper and Suffridge [18] proved that if f is convex on U then $\Phi_{n}(f)$ is also convex on B^{n}. Graham and Kohr [7] proved that if f is starlike on U then so is $\Phi_{n}(f)$ on B^{n}, and in [9] (see also [8]) it is shown that if $f \in S$ then $\Phi_{n}(f) \in S^{0}\left(B^{n}\right)$. On the other hand, Gong and Liu (see [2] and [3]) studied a number of properties of the Roper-Suffridge extension operator on some Reinhardt domains in \mathbb{C}^{n}.

Motivated by recent results concerning extreme points of the family $K\left(B^{n}\right)$, $n \geq 2$ (see [13] and [14]), Muir [12] introduced the following new extension operator that under certain conditions takes extreme points of K into extreme points of $K\left(B^{n}\right)$.

DEFINITION 1.5. Let $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2. The modification Roper-Suffridge extension operator $\Phi_{n, Q}: \mathcal{L} S \rightarrow \mathcal{L} S_{n}$ is defined by

$$
\Phi_{n, Q}(f)(z)=\left(f\left(z_{1}\right)+Q(\widetilde{z}) f^{\prime}\left(z_{1}\right), \widetilde{z} \sqrt{f^{\prime}\left(z_{1}\right)}\right), \quad z=\left(z_{1}, \widetilde{z}\right) \in B^{n}
$$

We choose the branch of the power function such that

$$
\left.\sqrt{f^{\prime}\left(z_{1}\right)}\right|_{z_{1}=0}=1
$$

Muir [12] proved that if $\|Q\| \leq 1 / 2$ then the operator $\Phi_{n, Q}$ preserves convexity and if $\|Q\| \leq 1 / 4$ then $\Phi_{n, Q}$ preserves starlikeness. In this paper we prove that if $f \in S$ and $\|Q\| \leq 1 / 4$ then $\Phi_{n, Q} \in S^{0}\left(B^{n}\right)$. In particular, if $f \in S^{*}$ then $\Phi_{n, Q} \in S^{*}\left(B^{n}\right)$ whenever $\|Q\| \leq 1 / 4$. Moreover, if $f \in K$ is imbedded in a convex subordination chain $f\left(z_{1}, t\right)$ over $[0, \infty)$ then $\Phi_{n, Q}(f)$ is also imbedded in a convex subordination chain over $[0, \infty)$ on B^{n} whenever $\|Q\| \leq 1 / 2$.

2. LOEWNER CHAINS AND THE OPERATOR $\Phi_{N, Q}$

We begin this section with the following result. In the case $Q \equiv 0$, see [8] and [9].

ThEOREM 2.1. Let $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $\|Q\| \leq 1 / 4$ and let $f\left(z_{1}, t\right): U \times[0, \infty) \rightarrow \mathbb{C}$ be a Loewner chain. Also let $F(z, t): B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be the mapping given by
$F(z, t)=\left(f\left(z_{1}, t\right)+Q(\widetilde{z}) f^{\prime}\left(z_{1}, t\right), \widetilde{z} \mathrm{e}^{t / 2}\left(f^{\prime}\left(z_{1}, t\right)\right)^{1 / 2}\right), z=\left(z_{1}, \widetilde{z}\right) \in B^{n}, t \geq 0$.
We choose the branch of the power function such that $\left.\left(f^{\prime}\left(z_{1}, t\right)\right)^{1 / 2}\right|_{z_{1}=0}=\mathrm{e}^{t / 2}$ for $t \geq 0$. Then $F(z, t)$ is a Loewner chain.

Proof. Clearly $F(0, t)=0$ and since Q is a homogeneous polynomial of degree 2 , it follows that $D F(0, t)=\mathrm{e}^{t} I_{n}$ for $t \geq 0$. It is easily seen that $\mathrm{e}^{-t} F(z, t)=\Phi_{n, Q}\left(\mathrm{e}^{-t} f(\cdot, t)\right)(z)$ for $z \in B^{n}$ and $t \geq 0$. Also it is not difficult to deduce that $F(\cdot, t)$ is biholomorphic on B^{n}. On the other hand, since $f\left(z_{1}, t\right)$ is a Loewner chain, $f\left(z_{1}, \cdot\right)$ is locally absolutely continuous on $[0, \infty)$, locally uniformly with respect to $z_{1} \in U$, and there is a function $p\left(z_{1}, t\right)$ such that $p(\cdot, t) \in H(U), p(0, t)=1, \operatorname{Re} p\left(z_{1}, t\right)>0,\left|z_{1}\right|<1, t \geq 0$, and

$$
\frac{\partial f}{\partial t}\left(z_{1}, t\right)=z_{1} f^{\prime}\left(z_{1}, t\right) p\left(z_{1}, t\right) \quad \text { a.e. } \quad t \geq 0, \forall z_{1} \in U
$$

Moreover, the limit

$$
\lim _{t \rightarrow \infty} \mathrm{e}^{-t} f\left(z_{1}, t\right)=g\left(z_{1}\right)
$$

exists locally uniformly on U (see e.g. [8]). Clearly g is a holomorphic function on U and since $g(0)=0, g^{\prime}(0)=1$, we deduce by Hurwitz's theorem that
$g \in S$. Then $F(z, \cdot)$ is also locally absolutely continuous on $[0, \infty)$ locally uniformly with respect to $z \in B^{n}$ and

$$
\lim _{t \rightarrow \infty} \mathrm{e}^{-t} F(z, t)=\Phi_{n, Q}(g)(z)
$$

locally uniformly on B^{n}.
Now, let

$$
h(z, t)=\left(z_{1} p\left(z_{1}, t\right)-Q(\widetilde{z}), \frac{\widetilde{z}}{2}\left(1+p\left(z_{1}, t\right)+z_{1} p^{\prime}\left(z_{1}, t\right)+Q(\widetilde{z}) \frac{f^{\prime \prime}\left(z_{1}, t\right)}{f^{\prime}\left(z_{1}, t\right)}\right)\right)
$$

for all $z \in B^{n}$ and $t \geq 0$. Then $h(\cdot, t)$ is a normalized holomorphic mapping on B^{n} for $t \geq 0$ and $h(z, \cdot)$ is measurable on $[0, \infty)$ for all $z \in B^{n}$. Using elementary computations and the equality (see e.g. [8, Chapter 11])

$$
\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial z_{1}}\right)\left(z_{1}, t\right)=\frac{\partial}{\partial z_{1}}\left(\frac{\partial f}{\partial t}\right)\left(z_{1}, t\right) \quad \text { a.e. } \quad t \geq 0, \forall z_{1} \in U
$$

we obtain that

$$
\frac{\partial F}{\partial t}(z, t)=D F(z, t) h(z, t) \quad \text { a.e. } \quad t \geq 0, \forall z \in B^{n}
$$

On the other hand, since $\mathrm{e}^{-t} f(\cdot, t) \in S, t \geq 0$, it is well known that

$$
\begin{equation*}
\left|\frac{1-\left|z_{1}\right|^{2}}{2} \cdot \frac{f^{\prime \prime}\left(z_{1}, t\right)}{f^{\prime}\left(z_{1}, t\right)}-\bar{z}_{1}\right| \leq 2,\left|z_{1}\right|<1, t \geq 0 . \tag{2.2}
\end{equation*}
$$

Next, using the fact that $\|Q\| \leq 1 / 4$, the above inequality and arguments similar to those in the proof of [6, Theorem 2.1], we obtain that $\operatorname{Re}\langle h(z, t), z\rangle \geq 0$ for $z \in B^{n}$ and $t \geq 0$. Indeed, if $\widetilde{z}=0$ then

$$
\operatorname{Re}\langle h(z, t), z\rangle=\left|z_{1}\right|^{2} \operatorname{Re} p\left(z_{1}, t\right) \geq 0,\left|z_{1}\right|<1
$$

Next, we assume that $\widetilde{z} \neq 0$. Then it is easy to see that $h(\cdot, t)$ is holomorphic in a neighborhood of each point $z=\left(z_{1}, \widetilde{z}\right) \in \bar{B}^{n}$ with $\widetilde{z} \neq 0$, and in view of the minimum principle for harmonic functions, it suffices to prove that

$$
\operatorname{Re}\langle h(z, t), z\rangle \geq 0, z=\left(z_{1}, \widetilde{z}\right) \in \partial B^{n}, \widetilde{z} \neq 0, t \geq 0 .
$$

Since $p(0, t)=1$ and $\operatorname{Re} p\left(z_{1}, t\right)>0$, it follows that (see e.g. [8])

$$
\begin{equation*}
\left|p^{\prime}\left(z_{1}, t\right)\right| \leq \frac{2}{1-\left|z_{1}\right|^{2}} \operatorname{Re} p\left(z_{1}, t\right),\left|z_{1}\right|<1, t \geq 0 \tag{2.3}
\end{equation*}
$$

Fix $t \geq 0$ and let $z=\left(z_{1}, \widetilde{z}\right) \in \partial B^{n}$ with $\widetilde{z} \neq 0$. In view of the relations (2.2) and (2.3), we obtain

$$
\begin{gathered}
\operatorname{Re}\langle h(z, t), z\rangle=\frac{1+\left|z_{1}\right|^{2}}{2} \operatorname{Re} p\left(z_{1}, t\right)+\frac{1-\left|z_{1}\right|^{2}}{2} \operatorname{Re}\left[z_{1} p^{\prime}\left(z_{1}, t\right)\right] \\
\quad+\frac{1-\left|z_{1}\right|^{2}}{2}+\operatorname{Re}\left[Q(\widetilde{z})\left\{\frac{1-\left|z_{1}\right|^{2}}{2} \cdot \frac{f^{\prime \prime}\left(z_{1}, t\right)}{f^{\prime}\left(z_{1}, t\right)}-\bar{z}_{1}\right\}\right] \\
\geq \frac{\left(1-\left|z_{1}\right|\right)^{2}}{2} \operatorname{Re} p\left(z_{1}, t\right)+\frac{1-\left|z_{1}\right|^{2}}{2}-2\left(1-\left|z_{1}\right|^{2}\right)\|Q\| \geq 0,
\end{gathered}
$$

whenever $\|Q\| \leq 1 / 4$. Taking into account Lemma 1.1 , we deduce that $F(z, t)$ is a Loewner chain. This completes the proof.

We next obtain the following consequences of Theorem 2.1.
Corollary 2.2. Let $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $\|Q\| \leq 1 / 4$ and let $f \in S$. Also let $F=\Phi_{n, Q}(f)$. Then $F \in$ $S^{0}\left(B^{n}\right)$.

Proof. Since $f \in S$ there is a Loewner chain $f\left(z_{1}, t\right)$ such that $f=f(\cdot, 0)$. In view of Theorem 2.1, $F(z, t)$ given by (2.1) is a Loewner chain. Since $\left\{\mathrm{e}^{-t} F(\cdot, t)\right\}_{t \geq 0}$ is a normal family on B^{n} by the proof of Theorem 2.1 and $F=$ $F(\cdot, 0)$, we deduce that $F=\Phi_{n, Q}(f) \in S^{0}\left(B^{n}\right)$, as desired. This completes the proof.

The following result is due to Muir [12]. In the case $Q \equiv 0$, see [7]. We have
Corollary 2.3. Let $f \in S^{*}$ and $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $\|Q\| \leq 1 / 4$. Then $\Phi_{n, Q}(f) \in S^{*}\left(B^{n}\right)$.

Proof. Since $f \in S^{*}$ it follows that $f\left(z_{1}, t\right)=\mathrm{e}^{t} f\left(z_{1}\right)$ is a Loewner chain. With this choice of $f\left(z_{1}, t\right)$, we deduce that $F(z, t)$ given by (2.1) is a Loewner chain by Theorem 2.1 and the fact that $\|Q\| \leq 1 / 4$. On the other hand, since

$$
F(z, t)=\left(\mathrm{e}^{t} f\left(z_{1}\right)+Q(\widetilde{z}) \mathrm{e}^{t} f^{\prime}\left(z_{1}\right), \widetilde{z} \mathrm{e}^{t} \sqrt{f^{\prime}\left(z_{1}\right)}\right)=\mathrm{e}^{t} \Phi_{n}(f)(z), z \in B^{n}, t \geq 0
$$

we deduce that $\Phi_{n}(f) \in S^{*}\left(B^{n}\right)$. This completes the proof.
Another consequence of Theorem 2.1 is given in the following growth result for mappings in the class $\Phi_{n, Q}(S)$.

Corollary 2.4. Let $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $\|Q\| \leq 1 / 4$. If $f \in S$ then

$$
\frac{\|z\|}{(1+\|z\|)^{2}} \leq\left\|\Phi_{n, Q}(f)(z)\right\| \leq \frac{\|z\|}{(1-\|z\|)^{2}}, z \in B^{n}
$$

This result is sharp.
Proof. It suffices to apply Theorem 2.1 and [8, Corollary 8.3.9].
In the next result we prove that if $f\left(z_{1}, t\right)$ is a c.s.c. over $[0, \infty)$ then $F(z, t)$ given by (2.1) is also a c.s.c. whenever $\|Q\| \leq 1 / 2$. Muir [12] proved that $\Phi_{n, Q}(K) \subseteq K\left(B^{n}\right)$ if and only if $\|Q\| \leq 1 / 2$.

Theorem 2.5. If $f\left(z_{1}, t\right): U \times[0, \infty) \rightarrow \mathbb{C}$ is a c.s.c. over $[0, \infty)$ with $f^{\prime}(0, t)=\mathrm{e}^{t}, t \geq 0$, and if $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ is a homogeneous polynomial of degree 2 such that $\|Q\| \leq 1 / 2$, then the mapping $F(z, t)$ given by (2.1) is a convex subordination chain over $[0, \infty)$.

Proof. Since $f\left(z_{1}, t\right)$ is a c.s.c. and $\|Q\| \leq 1 / 2$, we may use similar arguments to those in the proof of Theorem 2.1 and the fact that (see e.g. [8])

$$
\left|\frac{1-\left|z_{1}\right|^{2}}{2} \cdot \frac{f^{\prime \prime}\left(z_{1}, t\right)}{f^{\prime}\left(z_{1}, t\right)}-\bar{z}_{1}\right| \leq 1,\left|z_{1}\right|<1, t \geq 0
$$

to deduce that $F(z, t)$ is also a Loewner chain. Next, let $q_{t}\left(z_{1}\right)=\mathrm{e}^{-t} f_{t}\left(z_{1}\right)$. Then $q_{t} \in K$ and since

$$
\mathrm{e}^{-t} F(z, t)=\left(q_{t}\left(z_{1}\right)+Q(\widetilde{z}) q_{t}^{\prime}\left(z_{1}\right), \widetilde{z}\left(q_{t}^{\prime}\left(z_{1}\right)\right)^{1 / 2}\right)=\Phi_{n, Q}\left(q_{t}\right)(z), z \in B^{n}, t \geq 0
$$

we conclude by [12, Theorem 3.1] that $\mathrm{e}^{-t} F(\cdot, t) \in K\left(B^{n}\right), t \geq 0$. Hence $F(z, t)$ is a c.s.c. over $[0, \infty)$, as desired.

Remark 2.6. Let $Q: \mathbb{C}^{n-1} \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree 2. Also, let $\Lambda\left[\Phi_{n, Q}(K)\right]$ be the linear invariant family (L.I.F.) generated by the set $\Phi_{n, Q}(K)$ and $\operatorname{ord} \Lambda\left[\Phi_{n, Q}(K)\right]$ be the order of this L.I.F. (see for details [15] and [8, Chapter 10]). Using arguments similar to those in the proofs of [1, Theorem 1] and [8, Theorem 10.3.8], it is possible to prove that $\operatorname{ord} \Lambda\left[\Phi_{n, Q}(K)\right]=(n+1) / 2$ which is the minimum order of L.I.F.'s in \mathbb{C}^{n}. If $\|Q\|>1 / 2$ then $\Phi_{n, Q}(K) \nsubseteq K\left(B^{n}\right)$, and thus the operator $\Phi_{n, Q}$ provides an example of a L.I.F. in \mathbb{C}^{n} of minimum order which is not a subset of $K\left(B^{n}\right)$ for $n \geq 2$.

REFERENCES

[1] Godula, J., Liczberski, P. and Starkov, V., Order of linearly invariant family of mappings in \mathbb{C}^{n}, Complex Variables, 42 (2000), 89-96.
[2] Gong, S. and Liu, T.S., On the Roper-Suffridge extension operator, J. Anal. Math., 88 (2002), 397-404.
[3] Gong, S. and Liu, T.S., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284 (2003), 425-434.
[4] Graham, I., Hamada, H. and Kohr, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54 (2002), 324-351.
[5] Graham, I., Hamada, H. and Kohr, G., Convex subordination chains in several complex variables, preprint.
[6] Graham, I., Hamada, H., Kohr, G. and Suffridge, T.J., Extension operators for locally univalent mappings, Michigan Math. J., 50 (2002), 37-55.
[7] Graham, I. and Kohr, G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Analyse Math., 81 (2000), 331-342.
[8] Graham, I. and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
[9] Graham, I., Kohr, G. and Kohr, M., Loewner chains and the Roper-Suffridge extension operator, J. Math. Anal. Appl., 247 (2000), 448-465.
[10] Graham, I., Kohr, G. and Kohr, M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281 (2003), 425-438.
[11] Kонr, G., Using the method of Löwner chains to introduce some subclasses of biholomorphic mappings in \mathbb{C}^{n}, Rev. Roum. Math. Pures Appl., 46 (2001), 743-760.
[12] Muir, J.R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 5 (2005), 237-251.
[13] Muir, J.R. and Suffridge, T.J., Unbounded convex mappings of the ball in \mathbb{C}^{n}, Trans. Amer. Math. Soc., to appear.
[14] Muir, J.R. and Suffridge, T.J., Extreme points for convex mappings of B_{n}, J. Anal. Math., to appear.
[15] Pfaltzgraff, J.A., Distortion of locally biholomorphic maps of the n-ball, Complex Variables, 33 (1997), 239-253.
[16] Pfaltzgraff, J.A., Subordination chains and univalence of holomorphic mappings in \mathbb{C}^{n}, Math. Ann., 210 (1974), 55-68.
[17] Poreda, T., On the univalent subordination chains of holomorphic mappings in Banach spaces, Comment. Math. 28 (1989), 295-304.
[18] Roper, K. and Suffridge, T.J., Convex mappings on the unit ball of \mathbb{C}^{n}, J. Anal. Math., 65 (1995), 333-347.
[19] Ruschweyh, S., Convolutions in Geometric Function Theory, Les Presses de l'Université de Montreal, 1982.
[20] Suffridge, T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, in Lecture Notes in Math., 599, pp. 146-159, SpringerVerlag, New York, 1976.

Received November 26, 2005 Faculty of Mathematics and Computer Science
"Babeş-Bolyai" University
Str. M. Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: gkohr@math.ubbcluj.ro

