LOEWNER CHAINS AND A MODIFICATION OF THE ROPER-SUFFRIDGE EXTENSION OPERATOR

GABRIELA KOHR

Abstract. In this paper we continue the study of the Roper-Suffridge extension operator. Let f be a locally univalent function on the unit disc and let Q: $\mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2. We consider the family of operators extending f to a holomorphic mapping from the unit ball B^n in \mathbb{C}^n into \mathbb{C}^n given by $\Phi_{n,Q}(f)(z) = (f(z_1) + Q(\tilde{z})f'(z_1), \tilde{z}(f'(z_1))^{1/2})$, where $\tilde{z} = (z_2, \ldots, z_n)$. This operator was recently introduced by Muir. In the case $Q \equiv 0$, this operator reduces to the well known Roper-Suffridge extension operator. We prove that if $f \in S$ then $\Phi_{n,Q}(f) \in S^0(B^n)$ whenever $||Q|| \leq 1/4$. Our proof yields Muir's result that if $f \in S^*$ then $\Phi_{n,Q}(f)$ is also starlike on B^n . Moreover, if $f \in K$ is imbedded in a convex subordination chain $f(z_1, t)$ over $[0, \infty)$ then $\Phi_{n,Q}(f)$ is also imbedded in a c.s.c. over $[0, \infty)$ on B^n whenever $||Q|| \leq 1/2$.

MSC 2000. Primary: 32H. Secondary: 30C45.

Key words. Convexity, convex subordination chain, Loewner chain, parametric representation, Roper-Suffridge extension operator, starlikeness.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^n be the space of n complex variables $z = (z_1, \ldots, z_n)$ with the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w}_j$ and the Euclidean norm $||z|| = \langle z, z \rangle^{1/2}$. For $n \geq 2$, let $\tilde{z} = (z_2, \ldots, z_n) \in \mathbb{C}^{n-1}$ so that $z = (z_1, \tilde{z}) \in \mathbb{C}^n$. The unit ball in \mathbb{C}^n is denoted by B^n . In the case of one variable, B^1 is denoted by U. The ball in \mathbb{C}^n of radius r > 0 and center 0 is denoted by B_r^n .

Let $L(\mathbb{C}^n, \mathbb{C}^m)$ denote the space of continuous linear mappings from \mathbb{C}^n into \mathbb{C}^m with the standard operator norm,

$$||A|| = \sup\{||A(z)||: ||z|| = 1\}$$

and let I_n be the identity in $L(\mathbb{C}^n, \mathbb{C}^n)$. A mapping $Q : \mathbb{C}^n \to \mathbb{C}$ is called a homogeneous polynomial of degree k if there is a mapping $A : \prod_{j=1}^k \mathbb{C}^n \to \mathbb{C}$

which is continuous multilinear of degree k and

$$Q(z) = L(\underbrace{z, \cdots, z}_{k-\text{times}}), z \in \mathbb{C}^n$$

Then $Q \in H(\mathbb{C}^n)$ and DQ(z)(z) = kQ(z) for $z \in \mathbb{C}^n$.

If Ω is a domain in \mathbb{C}^n , let $H(\Omega)$ be the set of holomorphic mappings from Ω into \mathbb{C}^n . Also let $H(B^n, \mathbb{C})$ be the set of holomorphic functions from B^n into \mathbb{C} . A mapping $f \in H(B^n)$ is called normalized if f(0) = 0 and $Df(0) = I_n$. If $f \in H(B^n)$ we say that f is locally biholomorphic on B^n if the complex Jacobian matrix Df(z) is nonsingular at each $z \in B^n$. Let $J_f(z) = \det Df(z)$ for $z \in B^n$. Let $\mathcal{L}S_n$ be the set of normalized locally biholomorphic mappings on B^n and let $S(B^n)$ denote the set of normalized biholomorphic mappings on B^n . In the case of one variable, the set $S(B^1)$ is denoted by S and $\mathcal{L}S_1$ is denoted by $\mathcal{L}S$. A mapping $f \in S(B^n)$ is called starlike (respectively convex) if its image is a starlike domain with respect to the origin (respectively convex) domain). The classes of normalized starlike (respectively convex) mappings on B^n will be denoted by $S^*(B^n)$ (respectively $K(B^n)$). In the case of one variable, $S^*(B^1)$ (respectively $K(B^1)$) is denoted by S^* (respectively K).

If $f, g \in H(B^n)$ we say that f is subordinate to g (and write $f \prec g$) if there is a Schwarz mapping v (i.e. $v \in H(B^n)$ and $||v(z)|| \leq ||z||, z \in B^n$) such that $f(z) = g(v(z)), z \in B^n$. If g is biholomorphic on B^n , this is equivalent to requiring that f(0) = g(0) and $f(B^n) \subseteq g(B^n)$.

We recall that a mapping $f: B^n \times [0, \infty) \to \mathbb{C}^n$ is called a Loewner chain if $f(\cdot, t)$ is biholomorphic on B^n , f(0, t) = 0, $Df(0, t) = e^t I_n$ for $t \ge 0$, and $f(z, s) \prec f(z, t)$ whenever $0 \le s \le t < \infty$ and $z \in B^n$. We note that the requirement $f(z, s) \prec f(z, t)$ is equivalent to the condition that there is a unique biholomorphic Schwarz mapping v = v(z, s, t), called the transition mapping associated to f(z, t), such that

$$f(z,s) = f(v(z,s,t),t), \quad z \in B^n, \ t \ge s \ge 0.$$

We also note that the normalization of f(z,t) implies the normalization $Dv(0,s,t) = e^{s-t}I_n$ for $0 \le s \le t < \infty$.

Certain subclasses of $S(B^n)$ can be characterized in terms of Loewner chains. In particular, $f \in S^*(B^n)$ if and only if $f(z,t) = e^t f(z)$ is a Loewner chain.

The authors [4], [10] (see also [8, Theorem 8.1.6]; cf. [16] and [17]) obtained the following sufficient condition for a mapping to be a Loewner chain.

LEMMA 1.1. Let $h_t(z) = h(z,t) : B^n \times [0,\infty) \to \mathbb{C}^n$ satisfy the following conditions:

(i) $h(\cdot,t)$ is a normalized holomorphic mapping on B^n and $\operatorname{Re} \langle h(z,t), z \rangle \geq 0$ for $z \in B^n$, $t \geq 0$.

(ii) $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in B^n$.

Let $f = f(z,t) : B^n \times [0,\infty) \to \mathbb{C}^n$ be a mapping such that $f(\cdot,t) \in H(B^n)$, f(0,t) = 0, $Df(0,t) = e^t I_n$ for $t \ge 0$, and $f(z,\cdot)$ is locally absolutely continuous on $[0,\infty)$ locally uniformly with respect to $z \in B^n$. Assume that

$$\frac{\partial f}{\partial t}(z,t) = Df(z,t)h(z,t) \quad a.e. \quad t \ge 0, \, \forall z \in B^n.$$

Further, assume that there exists an increasing sequence $\{t_m\}_{m\in\mathbb{N}}$ such that $t_m > 0, t_m \to \infty$ and

$$\lim_{m \to \infty} e^{-t_m} f(z, t_m) = F(z)$$

locally uniformly on B^n . Then f(z,t) is a Loewner chain.

Graham, Hamada and Kohr [5] have recently introduced the notion of a convex subordination chain in \mathbb{C}^n . In the case of one variable, see [19].

DEFINITION 1.2. Let J be an interval in \mathbb{R} . A mapping f = f(z, t) is called a convex subordination chain (c.s.c.) over J if the following conditions hold:

(i) f(0,t) = 0 and $f(\cdot,t)$ is convex for $t \in J$.

(ii) $f(\cdot, t_1) \prec f(\cdot, t_2)$ for $t_1, t_2 \in J, t_1 \le t_2$.

DEFINITION 1.3. (see [11], [4]) We say that a normalized mapping $f \in H(B^n)$ has parametric representation if there exists a mapping $h : B^n \times [0, \infty) \to \mathbb{C}^n$ which satisfies the following conditions:

(i) $h(\cdot, t) \in H(B^n)$, h(0, t) = 0, $Dh(0, t) = I_n$, $t \ge 0$, Re $\langle h(z, t), z \rangle \ge 0$, for $z \in B^n$, $t \ge 0$;

(ii) $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in B^n$,

such that $f(z) = \lim_{t \to \infty} e^t v(z, t)$ locally uniformly on B^n , where v = v(z, t) is the unique solution of the initial value problem

$$\frac{\partial v}{\partial t} = -h(v,t) \quad a.e. \quad t \ge 0, \ v(z,0) = z$$

for all $z \in B^n$.

In [10] (see also [8]) it is proved that a mapping $f \in H(B^n)$ has parametric representation if and only if there exists a Loewner chain f(z,t) such that $\{e^{-t}f(\cdot,t)\}_{t\geq 0}$ is a normal family on B^n and $f = f(\cdot,0)$.

Let $S^{0}(\overline{B^{n}})$ be the set of mappings which have parametric representation on B^{n} .

DEFINITION 1.4. (see [18]) The Roper-Suffridge extension operator Φ_n : $\mathcal{L}S \to \mathcal{L}S_n$ is defined by

$$\Phi_n(f)(z) = \left(f(z_1), \widetilde{z}\sqrt{f'(z_1)}\right), \quad z = (z_1, \widetilde{z}) \in B^n.$$

We choose the branch of the power function such that

$$\left. \sqrt{f'(z_1)} \right|_{z_1=0} = 1.$$

Roper and Suffridge [18] proved that if f is convex on U then $\Phi_n(f)$ is also convex on B^n . Graham and Kohr [7] proved that if f is starlike on U then so is $\Phi_n(f)$ on B^n , and in [9] (see also [8]) it is shown that if $f \in S$ then $\Phi_n(f) \in S^0(B^n)$. On the other hand, Gong and Liu (see [2] and [3]) studied a number of properties of the Roper-Suffridge extension operator on some Reinhardt domains in \mathbb{C}^n .

Motivated by recent results concerning extreme points of the family $K(B^n)$, $n \ge 2$ (see [13] and [14]), Muir [12] introduced the following new extension operator that under certain conditions takes extreme points of K into extreme points of $K(B^n)$.

G. Kohr

DEFINITION 1.5. Let $Q : \mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2. The modification Roper-Suffridge extension operator $\Phi_{n,Q} : \mathcal{L}S \to \mathcal{L}S_n$ is defined by

$$\Phi_{n,Q}(f)(z) = \left(f(z_1) + Q(\widetilde{z})f'(z_1), \widetilde{z}\sqrt{f'(z_1)}\right), \quad z = (z_1, \widetilde{z}) \in B^n.$$

We choose the branch of the power function such that

$$\left. \sqrt{f'(z_1)} \right|_{z_1=0} = 1.$$

Muir [12] proved that if $||Q|| \leq 1/2$ then the operator $\Phi_{n,Q}$ preserves convexity and if $||Q|| \leq 1/4$ then $\Phi_{n,Q}$ preserves starlikeness. In this paper we prove that if $f \in S$ and $||Q|| \leq 1/4$ then $\Phi_{n,Q} \in S^0(B^n)$. In particular, if $f \in S^*$ then $\Phi_{n,Q} \in S^*(B^n)$ whenever $||Q|| \leq 1/4$. Moreover, if $f \in K$ is imbedded in a convex subordination chain $f(z_1, t)$ over $[0, \infty)$ then $\Phi_{n,Q}(f)$ is also imbedded in a convex subordination chain over $[0, \infty)$ on B^n whenever $||Q|| \leq 1/2$.

2. LOEWNER CHAINS AND THE OPERATOR $\Phi_{N,O}$

We begin this section with the following result. In the case $Q \equiv 0$, see [8] and [9].

THEOREM 2.1. Let $Q : \mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $||Q|| \leq 1/4$ and let $f(z_1,t) : U \times [0,\infty) \to \mathbb{C}$ be a Loewner chain. Also let $F(z,t) : B^n \times [0,\infty) \to \mathbb{C}^n$ be the mapping given by (2.1)

$$F(z,t) = \left(f(z_1,t) + Q(\tilde{z})f'(z_1,t), \tilde{z}e^{t/2}(f'(z_1,t))^{1/2}\right), z = (z_1,\tilde{z}) \in B^n, t \ge 0.$$

We choose the branch of the power function such that $(f'(z_1,t))^{1/2}|_{z_1=0} = e^{t/2}$ for $t \ge 0$. Then F(z,t) is a Loewner chain.

Proof. Clearly F(0,t) = 0 and since Q is a homogeneous polynomial of degree 2, it follows that $DF(0,t) = e^t I_n$ for $t \ge 0$. It is easily seen that $e^{-t}F(z,t) = \Phi_{n,Q}(e^{-t}f(\cdot,t))(z)$ for $z \in B^n$ and $t \ge 0$. Also it is not difficult to deduce that $F(\cdot,t)$ is biholomorphic on B^n . On the other hand, since $f(z_1,t)$ is a Loewner chain, $f(z_1, \cdot)$ is locally absolutely continuous on $[0, \infty)$, locally uniformly with respect to $z_1 \in U$, and there is a function $p(z_1,t)$ such that $p(\cdot,t) \in H(U), p(0,t) = 1$, Re $p(z_1,t) > 0, |z_1| < 1, t \ge 0$, and

$$\frac{\partial f}{\partial t}(z_1, t) = z_1 f'(z_1, t) p(z_1, t) \quad a.e. \quad t \ge 0, \, \forall z_1 \in U$$

Moreover, the limit

$$\lim_{t \to \infty} \mathrm{e}^{-t} f(z_1, t) = g(z_1)$$

exists locally uniformly on U (see e.g. [8]). Clearly g is a holomorphic function on U and since g(0) = 0, g'(0) = 1, we deduce by Hurwitz's theorem that

 $g \in S$. Then $F(z, \cdot)$ is also locally absolutely continuous on $[0, \infty)$ locally uniformly with respect to $z \in B^n$ and

$$\lim_{t \to \infty} e^{-t} F(z,t) = \Phi_{n,Q}(g)(z)$$

locally uniformly on B^n .

Now, let

$$h(z,t) = \left(z_1 p(z_1,t) - Q(\widetilde{z}), \frac{\widetilde{z}}{2} \left(1 + p(z_1,t) + z_1 p'(z_1,t) + Q(\widetilde{z}) \frac{f''(z_1,t)}{f'(z_1,t)}\right)\right),$$

for all $z \in B^n$ and $t \ge 0$. Then $h(\cdot, t)$ is a normalized holomorphic mapping on B^n for $t \ge 0$ and $h(z, \cdot)$ is measurable on $[0, \infty)$ for all $z \in B^n$. Using elementary computations and the equality (see e.g. [8, Chapter 11])

$$\frac{\partial}{\partial t} \left(\frac{\partial f}{\partial z_1} \right) (z_1, t) = \frac{\partial}{\partial z_1} \left(\frac{\partial f}{\partial t} \right) (z_1, t) \quad a.e. \quad t \ge 0, \, \forall z_1 \in U,$$

we obtain that

$$\frac{\partial F}{\partial t}(z,t) = DF(z,t)h(z,t) \quad a.e. \quad t \ge 0, \, \forall z \in B^n.$$

On the other hand, since $e^{-t}f(\cdot,t) \in S$, $t \ge 0$, it is well known that

(2.2)
$$\left|\frac{1-|z_1|^2}{2} \cdot \frac{f''(z_1,t)}{f'(z_1,t)} - \overline{z}_1\right| \le 2, \, |z_1| < 1, \, t \ge 0.$$

Next, using the fact that $||Q|| \leq 1/4$, the above inequality and arguments similar to those in the proof of [6, Theorem 2.1], we obtain that Re $\langle h(z,t), z \rangle \geq 0$ for $z \in B^n$ and $t \geq 0$. Indeed, if $\tilde{z} = 0$ then

Re
$$\langle h(z,t), z \rangle = |z_1|^2$$
Re $p(z_1,t) \ge 0, |z_1| < 1.$

Next, we assume that $\tilde{z} \neq 0$. Then it is easy to see that $h(\cdot, t)$ is holomorphic in a neighborhood of each point $z = (z_1, \tilde{z}) \in \overline{B}^n$ with $\tilde{z} \neq 0$, and in view of the minimum principle for harmonic functions, it suffices to prove that

Re
$$\langle h(z,t), z \rangle \ge 0, \ z = (z_1, \tilde{z}) \in \partial B^n, \ \tilde{z} \ne 0, \ t \ge 0$$

Since p(0,t) = 1 and Re $p(z_1,t) > 0$, it follows that (see e.g. [8])

(2.3)
$$|p'(z_1,t)| \le \frac{2}{1-|z_1|^2} \operatorname{Re} p(z_1,t), |z_1| < 1, t \ge 0.$$

Fix $t \ge 0$ and let $z = (z_1, \tilde{z}) \in \partial B^n$ with $\tilde{z} \ne 0$. In view of the relations (2.2) and (2.3), we obtain

$$\begin{aligned} \operatorname{Re} \left\langle h(z,t), z \right\rangle &= \frac{1+|z_1|^2}{2} \operatorname{Re} \, p(z_1,t) + \frac{1-|z_1|^2}{2} \operatorname{Re} \, \left[z_1 p'(z_1,t) \right] \\ &+ \frac{1-|z_1|^2}{2} + \operatorname{Re} \, \left[Q(\widetilde{z}) \left\{ \frac{1-|z_1|^2}{2} \cdot \frac{f''(z_1,t)}{f'(z_1,t)} - \overline{z}_1 \right\} \right] \\ &\geq \frac{(1-|z_1|)^2}{2} \operatorname{Re} \, p(z_1,t) + \frac{1-|z_1|^2}{2} - 2(1-|z_1|^2) \|Q\| \ge 0, \end{aligned}$$

whenever $||Q|| \leq 1/4$. Taking into account Lemma 1.1, we deduce that F(z,t) is a Loewner chain. This completes the proof.

We next obtain the following consequences of Theorem 2.1.

COROLLARY 2.2. Let $Q : \mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $||Q|| \leq 1/4$ and let $f \in S$. Also let $F = \Phi_{n,Q}(f)$. Then $F \in S^0(B^n)$.

Proof. Since $f \in S$ there is a Loewner chain $f(z_1, t)$ such that $f = f(\cdot, 0)$. In view of Theorem 2.1, F(z, t) given by (2.1) is a Loewner chain. Since $\{e^{-t}F(\cdot, t)\}_{t\geq 0}$ is a normal family on B^n by the proof of Theorem 2.1 and $F = F(\cdot, 0)$, we deduce that $F = \Phi_{n,Q}(f) \in S^0(B^n)$, as desired. This completes the proof. \Box

The following result is due to Muir [12]. In the case $Q \equiv 0$, see [7]. We have

COROLLARY 2.3. Let $f \in S^*$ and $Q : \mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $||Q|| \leq 1/4$. Then $\Phi_{n,Q}(f) \in S^*(B^n)$.

Proof. Since $f \in S^*$ it follows that $f(z_1, t) = e^t f(z_1)$ is a Loewner chain. With this choice of $f(z_1, t)$, we deduce that F(z, t) given by (2.1) is a Loewner chain by Theorem 2.1 and the fact that $||Q|| \leq 1/4$. On the other hand, since

$$F(z,t) = \left(\mathrm{e}^t f(z_1) + Q(\widetilde{z})\mathrm{e}^t f'(z_1), \widetilde{z}\mathrm{e}^t \sqrt{f'(z_1)}\right) = \mathrm{e}^t \Phi_n(f)(z), \ z \in B^n, \ t \ge 0,$$

we deduce that $\Phi_n(f) \in S^*(B^n)$. This completes the proof.

Another consequence of Theorem 2.1 is given in the following growth result for mappings in the class $\Phi_{n,Q}(S)$.

COROLLARY 2.4. Let $Q : \mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2 such that $||Q|| \leq 1/4$. If $f \in S$ then

$$\frac{\|z\|}{(1+\|z\|)^2} \le \|\Phi_{n,Q}(f)(z)\| \le \frac{\|z\|}{(1-\|z\|)^2}, \ z \in B^n.$$

This result is sharp.

Proof. It suffices to apply Theorem 2.1 and [8, Corollary 8.3.9].

In the next result we prove that if $f(z_1, t)$ is a c.s.c. over $[0, \infty)$ then F(z, t) given by (2.1) is also a c.s.c. whenever $||Q|| \leq 1/2$. Muir [12] proved that $\Phi_{n,Q}(K) \subseteq K(B^n)$ if and only if $||Q|| \leq 1/2$.

THEOREM 2.5. If $f(z_1,t): U \times [0,\infty) \to \mathbb{C}$ is a c.s.c. over $[0,\infty)$ with $f'(0,t) = e^t$, $t \ge 0$, and if $Q: \mathbb{C}^{n-1} \to \mathbb{C}$ is a homogeneous polynomial of degree 2 such that $||Q|| \le 1/2$, then the mapping F(z,t) given by (2.1) is a convex subordination chain over $[0,\infty)$.

Proof. Since $f(z_1, t)$ is a c.s.c. and $||Q|| \le 1/2$, we may use similar arguments to those in the proof of Theorem 2.1 and the fact that (see e.g. [8])

$$\left|\frac{1-|z_1|^2}{2} \cdot \frac{f''(z_1,t)}{f'(z_1,t)} - \overline{z}_1\right| \le 1, \, |z_1| < 1, \, t \ge 0,$$

to deduce that F(z,t) is also a Loewner chain. Next, let $q_t(z_1) = e^{-t} f_t(z_1)$. Then $q_t \in K$ and since

$$e^{-t}F(z,t) = \left(q_t(z_1) + Q(\widetilde{z})q'_t(z_1), \widetilde{z}(q'_t(z_1))^{1/2}\right) = \Phi_{n,Q}(q_t)(z), \ z \in B^n, \ t \ge 0,$$

we conclude by [12, Theorem 3.1] that $e^{-t}F(\cdot,t) \in K(B^n)$, $t \ge 0$. Hence F(z,t) is a c.s.c. over $[0,\infty)$, as desired.

REMARK 2.6. Let $Q : \mathbb{C}^{n-1} \to \mathbb{C}$ be a homogeneous polynomial of degree 2. Also, let $\Lambda[\Phi_{n,Q}(K)]$ be the linear invariant family (L.I.F.) generated by the set $\Phi_{n,Q}(K)$ and $\operatorname{ord}\Lambda[\Phi_{n,Q}(K)]$ be the order of this L.I.F. (see for details [15] and [8, Chapter 10]). Using arguments similar to those in the proofs of [1, Theorem 1] and [8, Theorem 10.3.8], it is possible to prove that $\operatorname{ord}\Lambda[\Phi_{n,Q}(K)] = (n+1)/2$ which is the minimum order of L.I.F.'s in \mathbb{C}^n . If $\|Q\| > 1/2$ then $\Phi_{n,Q}(K) \not\subseteq K(B^n)$, and thus the operator $\Phi_{n,Q}$ provides an example of a L.I.F. in \mathbb{C}^n of minimum order which is not a subset of $K(B^n)$ for $n \geq 2$.

REFERENCES

- GODULA, J., LICZBERSKI, P. and STARKOV, V., Order of linearly invariant family of mappings in Cⁿ, Complex Variables, 42 (2000), 89–96.
- [2] GONG, S. and LIU, T.S., On the Roper-Suffridge extension operator, J. Anal. Math., 88 (2002), 397–404.
- [3] GONG, S. and LIU, T.S., The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284 (2003), 425–434.
- [4] GRAHAM, I., HAMADA, H. and KOHR, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54 (2002), 324–351.
- [5] GRAHAM, I., HAMADA, H. and KOHR, G., Convex subordination chains in several complex variables, preprint.
- [6] GRAHAM, I., HAMADA, H., KOHR, G. and SUFFRIDGE, T.J., Extension operators for locally univalent mappings, Michigan Math. J., 50 (2002), 37–55.
- [7] GRAHAM, I. and KOHR, G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Analyse Math., 81 (2000), 331–342.
- [8] GRAHAM, I. and KOHR, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., New York, 2003.
- [9] GRAHAM, I., KOHR, G. and KOHR, M., Loewner chains and the Roper-Suffridge extension operator, J. Math. Anal. Appl., 247 (2000), 448–465.
- [10] GRAHAM, I., KOHR, G. and KOHR, M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281 (2003), 425–438.
- [11] KOHR, G., Using the method of Löwner chains to introduce some subclasses of biholomorphic mappings in Cⁿ, Rev. Roum. Math. Pures Appl., 46 (2001), 743–760.
- [12] MUIR, J.R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 5 (2005), 237–251.

- [13] MUIR, J.R. and SUFFRIDGE, T.J., Unbounded convex mappings of the ball in \mathbb{C}^n , Trans. Amer. Math. Soc., to appear.
- [14] MUIR, J.R. AND SUFFRIDGE, T.J., *Extreme points for convex mappings of* B_n , J. Anal. Math., to appear.
- [15] PFALTZGRAFF, J.A., Distortion of locally biholomorphic maps of the n-ball, Complex Variables, 33 (1997), 239–253.
- [16] PFALTZGRAFF, J.A., Subordination chains and univalence of holomorphic mappings in \mathbb{C}^n , Math. Ann., **210** (1974), 55–68.
- [17] POREDA, T., On the univalent subordination chains of holomorphic mappings in Banach spaces, Comment. Math. 28 (1989), 295–304.
- [18] ROPER, K. and SUFFRIDGE, T.J., Convex mappings on the unit ball of \mathbb{C}^n , J. Anal. Math., 65 (1995), 333–347.
- [19] RUSCHWEYH, S., Convolutions in Geometric Function Theory, Les Presses de l'Université de Montreal, 1982.
- [20] SUFFRIDGE, T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, in Lecture Notes in Math., 599, pp. 146–159, Springer-Verlag, New York, 1976.

Received November 26, 2005

Faculty of Mathematics and Computer Science "Babeş-Bolyai" University Str. M. Kogălniceanu nr. 1 400084 Cluj-Napoca, Romania E-mail: gkohr@math.ubbcluj.ro