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LOEWNER CHAINS AND A MODIFICATION OF THE

ROPER-SUFFRIDGE EXTENSION OPERATOR

GABRIELA KOHR

Abstract. In this paper we continue the study of the Roper-Suffridge extension
operator. Let f be a locally univalent function on the unit disc and let Q :
C

n−1 → C be a homogeneous polynomial of degree 2. We consider the family
of operators extending f to a holomorphic mapping from the unit ball Bn in
C

n into C
n given by Φn,Q(f)(z) = (f(z1) + Q(z̃)f ′(z1), ez(f ′(z1))

1/2), where ez =
(z2, . . . , zn). This operator was recently introduced by Muir. In the case Q ≡ 0,
this operator reduces to the well known Roper-Suffridge extension operator. We
prove that if f ∈ S then Φn,Q(f) ∈ S0(Bn) whenever ‖Q‖ ≤ 1/4. Our proof
yields Muir’s result that if f ∈ S∗ then Φn,Q(f) is also starlike on Bn. Moreover,
if f ∈ K is imbedded in a convex subordination chain f(z1, t) over [0,∞) then
Φn,Q(f) is also imbedded in a c.s.c. over [0,∞) on Bn whenever ‖Q‖ ≤ 1/2.
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1. INTRODUCTION AND PRELIMINARIES

Let C
n be the space of n complex variables z = (z1, . . . , zn) with the Euclid-

ean inner product 〈z, w〉 =
n∑

j=1

zjwj and the Euclidean norm ‖z‖ = 〈z, z〉1/2.

For n ≥ 2, let z̃ = (z2, . . . , zn) ∈ C
n−1 so that z = (z1, z̃) ∈ C

n. The unit ball
in C

n is denoted by Bn. In the case of one variable, B1 is denoted by U . The
ball in C

n of radius r > 0 and center 0 is denoted by Bn
r .

Let L(Cn, Cm) denote the space of continuous linear mappings from C
n into

C
m with the standard operator norm,

‖A‖ = sup{‖A(z)‖ : ‖z‖ = 1}

and let In be the identity in L(Cn, Cn). A mapping Q : C
n → C is called a

homogeneous polynomial of degree k if there is a mapping A :
k∏

j=1

C
n → C

which is continuous multilinear of degree k and

Q(z) = L(z, · · · , z︸ ︷︷ ︸
k-times

), z ∈ C
n.

Then Q ∈ H(Cn) and DQ(z)(z) = kQ(z) for z ∈ C
n.

If Ω is a domain in C
n, let H(Ω) be the set of holomorphic mappings from Ω

into C
n. Also let H(Bn, C) be the set of holomorphic functions from Bn into
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C. A mapping f ∈ H(Bn) is called normalized if f(0) = 0 and Df(0) = In.
If f ∈ H(Bn) we say that f is locally biholomorphic on Bn if the complex
Jacobian matrix Df(z) is nonsingular at each z ∈ Bn. Let Jf (z) = detDf(z)
for z ∈ Bn. Let LSn be the set of normalized locally biholomorphic mappings
on Bn and let S(Bn) denote the set of normalized biholomorphic mappings
on Bn. In the case of one variable, the set S(B1) is denoted by S and LS1 is
denoted by LS. A mapping f ∈ S(Bn) is called starlike (respectively convex)
if its image is a starlike domain with respect to the origin (respectively convex
domain). The classes of normalized starlike (respectively convex) mappings
on Bn will be denoted by S∗(Bn) (respectively K(Bn)). In the case of one
variable, S∗(B1) (respectively K(B1)) is denoted by S∗ (respectively K).

If f, g ∈ H(Bn) we say that f is subordinate to g (and write f ≺ g) if there
is a Schwarz mapping v (i.e. v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such that
f(z) = g(v(z)), z ∈ Bn. If g is biholomorphic on Bn, this is equivalent to
requiring that f(0) = g(0) and f(Bn) ⊆ g(Bn).

We recall that a mapping f : Bn × [0,∞) → C
n is called a Loewner chain

if f(·, t) is biholomorphic on Bn, f(0, t) = 0, Df(0, t) = etIn for t ≥ 0, and
f(z, s) ≺ f(z, t) whenever 0 ≤ s ≤ t < ∞ and z ∈ Bn. We note that the
requirement f(z, s) ≺ f(z, t) is equivalent to the condition that there is a
unique biholomorphic Schwarz mapping v = v(z, s, t), called the transition
mapping associated to f(z, t), such that

f(z, s) = f(v(z, s, t), t), z ∈ Bn, t ≥ s ≥ 0.

We also note that the normalization of f(z, t) implies the normalization
Dv(0, s, t) = es−tIn for 0 ≤ s ≤ t < ∞.

Certain subclasses of S(Bn) can be characterized in terms of Loewner
chains. In particular, f ∈ S∗(Bn) if and only if f(z, t) = etf(z) is a Loewner
chain.

The authors [4], [10] (see also [8, Theorem 8.1.6]; cf. [16] and [17]) obtained
the following sufficient condition for a mapping to be a Loewner chain.

Lemma 1.1. Let ht(z) = h(z, t) : Bn × [0,∞) → C
n satisfy the following

conditions:

(i) h(·, t) is a normalized holomorphic mapping on Bn and Re 〈h(z, t), z〉 ≥
0 for z ∈ Bn, t ≥ 0.

(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn.

Let f = f(z, t) : Bn × [0,∞) → C
n be a mapping such that f(·, t) ∈ H(Bn),

f(0, t) = 0, Df(0, t) = etIn for t ≥ 0, and f(z, ·) is locally absolutely continu-

ous on [0,∞) locally uniformly with respect to z ∈ Bn. Assume that

∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ≥ 0, ∀z ∈ Bn.

Further, assume that there exists an increasing sequence {tm}m∈N such that

tm > 0, tm → ∞ and

lim
m→∞

e−tmf(z, tm) = F (z)
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locally uniformly on Bn. Then f(z, t) is a Loewner chain.

Graham, Hamada and Kohr [5] have recently introduced the notion of a
convex subordination chain in C

n. In the case of one variable, see [19].

Definition 1.2. Let J be an interval in R. A mapping f = f(z, t) is called
a convex subordination chain (c.s.c.) over J if the following conditions hold:

(i) f(0, t) = 0 and f(·, t) is convex for t ∈ J .
(ii) f(·, t1) ≺ f(·, t2) for t1, t2 ∈ J , t1 ≤ t2.

Definition 1.3. (see [11], [4]) We say that a normalized mapping f ∈
H(Bn) has parametric representation if there exists a mapping h : Bn ×
[0,∞) → C

n which satisfies the following conditions:
(i) h(·, t) ∈ H(Bn), h(0, t) = 0, Dh(0, t) = In, t ≥ 0, Re 〈h(z, t), z〉 ≥ 0, for

z ∈ Bn, t ≥ 0;
(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn,

such that f(z) = lim
t→∞

etv(z, t) locally uniformly on Bn, where v = v(z, t) is

the unique solution of the initial value problem

∂v

∂t
= −h(v, t) a.e. t ≥ 0, v(z, 0) = z,

for all z ∈ Bn.

In [10] (see also [8]) it is proved that a mapping f ∈ H(Bn) has parametric
representation if and only if there exists a Loewner chain f(z, t) such that
{e−tf(·, t)}t≥0 is a normal family on Bn and f = f(·, 0).

Let S0(Bn) be the set of mappings which have parametric representation
on Bn.

Definition 1.4. (see [18]) The Roper-Suffridge extension operator Φn :
LS → LSn is defined by

Φn(f)(z) =
(
f(z1), z̃

√
f ′(z1)

)
, z = (z1, z̃) ∈ Bn.

We choose the branch of the power function such that
√

f ′(z1)
∣∣∣
z1=0

= 1.

Roper and Suffridge [18] proved that if f is convex on U then Φn(f) is also
convex on Bn. Graham and Kohr [7] proved that if f is starlike on U then
so is Φn(f) on Bn, and in [9] (see also [8]) it is shown that if f ∈ S then
Φn(f) ∈ S0(Bn). On the other hand, Gong and Liu (see [2] and [3]) studied
a number of properties of the Roper-Suffridge extension operator on some
Reinhardt domains in C

n.

Motivated by recent results concerning extreme points of the family K(Bn),
n ≥ 2 (see [13] and [14]), Muir [12] introduced the following new extension
operator that under certain conditions takes extreme points of K into extreme
points of K(Bn).
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Definition 1.5. Let Q : C
n−1 → C be a homogeneous polynomial of degree

2. The modification Roper-Suffridge extension operator Φn,Q : LS → LSn is
defined by

Φn,Q(f)(z) =
(
f(z1) + Q(z̃)f ′(z1), z̃

√
f ′(z1)

)
, z = (z1, z̃) ∈ Bn.

We choose the branch of the power function such that
√

f ′(z1)
∣∣∣
z1=0

= 1.

Muir [12] proved that if ‖Q‖ ≤ 1/2 then the operator Φn,Q preserves con-
vexity and if ‖Q‖ ≤ 1/4 then Φn,Q preserves starlikeness. In this paper we
prove that if f ∈ S and ‖Q‖ ≤ 1/4 then Φn,Q ∈ S0(Bn). In particular, if
f ∈ S∗ then Φn,Q ∈ S∗(Bn) whenever ‖Q‖ ≤ 1/4. Moreover, if f ∈ K is
imbedded in a convex subordination chain f(z1, t) over [0,∞) then Φn,Q(f) is
also imbedded in a convex subordination chain over [0,∞) on Bn whenever
‖Q‖ ≤ 1/2.

2. LOEWNER CHAINS AND THE OPERATOR ΦN,Q

We begin this section with the following result. In the case Q ≡ 0, see [8]
and [9].

Theorem 2.1. Let Q : C
n−1 → C be a homogeneous polynomial of degree

2 such that ‖Q‖ ≤ 1/4 and let f(z1, t) : U × [0,∞) → C be a Loewner chain.

Also let F (z, t) : Bn × [0,∞) → C
n be the mapping given by

(2.1)

F (z, t) =
(
f(z1, t) + Q(z̃)f ′(z1, t), z̃et/2(f ′(z1, t))

1/2

)
, z = (z1, z̃) ∈ Bn, t ≥ 0.

We choose the branch of the power function such that (f ′(z1, t))
1/2|z1=0 = et/2

for t ≥ 0. Then F (z, t) is a Loewner chain.

Proof. Clearly F (0, t) = 0 and since Q is a homogeneous polynomial of
degree 2, it follows that DF (0, t) = etIn for t ≥ 0. It is easily seen that
e−tF (z, t) = Φn,Q(e−tf(·, t))(z) for z ∈ Bn and t ≥ 0. Also it is not difficult to
deduce that F (·, t) is biholomorphic on Bn. On the other hand, since f(z1, t)
is a Loewner chain, f(z1, ·) is locally absolutely continuous on [0,∞), locally
uniformly with respect to z1 ∈ U , and there is a function p(z1, t) such that
p(·, t) ∈ H(U), p(0, t) = 1, Re p(z1, t) > 0, |z1| < 1, t ≥ 0, and

∂f

∂t
(z1, t) = z1f

′(z1, t)p(z1, t) a.e. t ≥ 0, ∀z1 ∈ U.

Moreover, the limit

lim
t→∞

e−tf(z1, t) = g(z1)

exists locally uniformly on U (see e.g. [8]). Clearly g is a holomorphic function
on U and since g(0) = 0, g′(0) = 1, we deduce by Hurwitz’s theorem that
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g ∈ S. Then F (z, ·) is also locally absolutely continuous on [0,∞) locally
uniformly with respect to z ∈ Bn and

lim
t→∞

e−tF (z, t) = Φn,Q(g)(z)

locally uniformly on Bn.
Now, let

h(z, t) =

(
z1p(z1, t) − Q(z̃),

z̃

2

(
1 + p(z1, t) + z1p

′(z1, t) + Q(z̃)
f ′′(z1, t)

f ′(z1, t)

))
,

for all z ∈ Bn and t ≥ 0. Then h(·, t) is a normalized holomorphic mapping
on Bn for t ≥ 0 and h(z, ·) is measurable on [0,∞) for all z ∈ Bn. Using
elementary computations and the equality (see e.g. [8, Chapter 11])

∂

∂t

(
∂f

∂z1

)
(z1, t) =

∂

∂z1

(
∂f

∂t

)
(z1, t) a.e. t ≥ 0, ∀z1 ∈ U,

we obtain that
∂F

∂t
(z, t) = DF (z, t)h(z, t) a.e. t ≥ 0, ∀z ∈ Bn.

On the other hand, since e−tf(·, t) ∈ S, t ≥ 0, it is well known that

(2.2)

∣∣∣∣
1 − |z1|

2

2
·
f ′′(z1, t)

f ′(z1, t)
− z1

∣∣∣∣ ≤ 2, |z1| < 1, t ≥ 0.

Next, using the fact that ‖Q‖ ≤ 1/4, the above inequality and arguments sim-
ilar to those in the proof of [6, Theorem 2.1], we obtain that Re 〈h(z, t), z〉 ≥ 0
for z ∈ Bn and t ≥ 0. Indeed, if z̃ = 0 then

Re 〈h(z, t), z〉 = |z1|
2Re p(z1, t) ≥ 0, |z1| < 1.

Next, we assume that z̃ 6= 0. Then it is easy to see that h(·, t) is holomorphic
in a neighborhood of each point z = (z1, z̃) ∈ B

n
with z̃ 6= 0, and in view of

the minimum principle for harmonic functions, it suffices to prove that

Re 〈h(z, t), z〉 ≥ 0, z = (z1, z̃) ∈ ∂Bn, z̃ 6= 0, t ≥ 0.

Since p(0, t) = 1 and Re p(z1, t) > 0, it follows that (see e.g. [8])

(2.3) |p′(z1, t)| ≤
2

1 − |z1|2
Re p(z1, t), |z1| < 1, t ≥ 0.

Fix t ≥ 0 and let z = (z1, z̃) ∈ ∂Bn with z̃ 6= 0. In view of the relations (2.2)
and (2.3), we obtain

Re 〈h(z, t), z〉 =
1 + |z1|

2

2
Re p(z1, t) +

1 − |z1|
2

2
Re [z1p

′(z1, t)]

+
1 − |z1|

2

2
+ Re

[
Q(z̃)

{
1 − |z1|

2

2
·
f ′′(z1, t)

f ′(z1, t)
− z1

}]

≥
(1 − |z1|)

2

2
Re p(z1, t) +

1 − |z1|
2

2
− 2(1 − |z1|

2)‖Q‖ ≥ 0,



46 G. Kohr 6

whenever ‖Q‖ ≤ 1/4. Taking into account Lemma 1.1, we deduce that F (z, t)
is a Loewner chain. This completes the proof. �

We next obtain the following consequences of Theorem 2.1.

Corollary 2.2. Let Q : C
n−1 → C be a homogeneous polynomial of degree

2 such that ‖Q‖ ≤ 1/4 and let f ∈ S. Also let F = Φn,Q(f). Then F ∈
S0(Bn).

Proof. Since f ∈ S there is a Loewner chain f(z1, t) such that f = f(·, 0).
In view of Theorem 2.1, F (z, t) given by (2.1) is a Loewner chain. Since
{e−tF (·, t)}t≥0 is a normal family on Bn by the proof of Theorem 2.1 and F =
F (·, 0), we deduce that F = Φn,Q(f) ∈ S0(Bn), as desired. This completes
the proof. �

The following result is due to Muir [12]. In the case Q ≡ 0, see [7]. We have

Corollary 2.3. Let f ∈ S∗ and Q : C
n−1 → C be a homogeneous polyno-

mial of degree 2 such that ‖Q‖ ≤ 1/4. Then Φn,Q(f) ∈ S∗(Bn).

Proof. Since f ∈ S∗ it follows that f(z1, t) = etf(z1) is a Loewner chain.
With this choice of f(z1, t), we deduce that F (z, t) given by (2.1) is a Loewner
chain by Theorem 2.1 and the fact that ‖Q‖ ≤ 1/4. On the other hand, since

F (z, t) =
(
etf(z1) + Q(z̃)etf ′(z1), z̃et

√
f ′(z1)

)
= etΦn(f)(z), z ∈ Bn, t ≥ 0,

we deduce that Φn(f) ∈ S∗(Bn). This completes the proof. �

Another consequence of Theorem 2.1 is given in the following growth result
for mappings in the class Φn,Q(S).

Corollary 2.4. Let Q : C
n−1 → C be a homogeneous polynomial of degree

2 such that ‖Q‖ ≤ 1/4. If f ∈ S then

‖z‖

(1 + ‖z‖)2
≤ ‖Φn,Q(f)(z)‖ ≤

‖z‖

(1 − ‖z‖)2
, z ∈ Bn.

This result is sharp.

Proof. It suffices to apply Theorem 2.1 and [8, Corollary 8.3.9]. �

In the next result we prove that if f(z1, t) is a c.s.c. over [0,∞) then F (z, t)
given by (2.1) is also a c.s.c. whenever ‖Q‖ ≤ 1/2. Muir [12] proved that
Φn,Q(K) ⊆ K(Bn) if and only if ‖Q‖ ≤ 1/2.

Theorem 2.5. If f(z1, t) : U × [0,∞) → C is a c.s.c. over [0,∞) with

f ′(0, t) = et, t ≥ 0, and if Q : C
n−1 → C is a homogeneous polynomial of

degree 2 such that ‖Q‖ ≤ 1/2, then the mapping F (z, t) given by (2.1) is a

convex subordination chain over [0,∞).
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Proof. Since f(z1, t) is a c.s.c. and ‖Q‖ ≤ 1/2, we may use similar argu-
ments to those in the proof of Theorem 2.1 and the fact that (see e.g. [8])

∣∣∣∣
1 − |z1|

2

2
·
f ′′(z1, t)

f ′(z1, t)
− z1

∣∣∣∣ ≤ 1, |z1| < 1, t ≥ 0,

to deduce that F (z, t) is also a Loewner chain. Next, let qt(z1) = e−tft(z1).
Then qt ∈ K and since

e−tF (z, t) =
(
qt(z1) + Q(z̃)q′t(z1), z̃(q′t(z1))

1/2

)
= Φn,Q(qt)(z), z ∈ Bn, t ≥ 0,

we conclude by [12, Theorem 3.1] that e−tF (·, t) ∈ K(Bn), t ≥ 0. Hence
F (z, t) is a c.s.c. over [0,∞), as desired. �

Remark 2.6. Let Q : C
n−1 → C be a homogeneous polynomial of de-

gree 2. Also, let Λ[Φn,Q(K)] be the linear invariant family (L.I.F.) generated
by the set Φn,Q(K) and ordΛ[Φn,Q(K)] be the order of this L.I.F. (see for
details [15] and [8, Chapter 10]). Using arguments similar to those in the
proofs of [1, Theorem 1] and [8, Theorem 10.3.8], it is possible to prove that
ordΛ[Φn,Q(K)] = (n + 1)/2 which is the minimum order of L.I.F.’s in C

n. If
‖Q‖ > 1/2 then Φn,Q(K) 6⊆ K(Bn), and thus the operator Φn,Q provides an
example of a L.I.F. in C

n of minimum order which is not a subset of K(Bn)
for n ≥ 2.
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