INEQUALITIES FOR ONE MAXIMUM OF PARTIAL SUMS
 OF RANDOM VARIABLES OBTAINED BY USING SUBADDITIVE FUNCTIONS

LECH GRUSZECKI

Abstract

This note extends the Hájek-Rényi inequality by using a class of subadditive functions. It also extends some results of Kounias and Weng (cf. [2]) and Szynal (cf. [3]). MSC 2000. 30C45. Key words. Hájek-Rényi inequality, non-decreasing function, random variable, subbaditive function.

1. INTRODUCTION AND NOTATION

In this article we present some inequalities which generalize the well-known Hájek-Rényi inequality and also generalize results obtained by Kounias and Weng (cf. [2]) and Szynal (cf. [3]). We obtain our results by using a family of subadditive functions.

Let us denote by \mathcal{N} the class of all non-decreasing functions $N:[0, \infty) \mapsto$ $[0, \infty), N(0)=0$ which are subadditive, i.e. $N(a+b) \leq N(a)+N(b), a, b \geq 0$. The class \mathcal{N} contains, of course, functions $x \mapsto x^{r}, 0<r \leq 1$. However, \mathcal{N} includes also functions increasing slower than each power function.

Let $\left\{X_{i}, i \geq 1\right\}$ be a sequence of random variables and put $S_{n}=\sum_{i=1}^{n} X_{i}$.

2. RESULTS

First, we present a theorem which generalizes Theorem 1 of Kounias and Weng (cf. [2]).

Theorem 1. Let $\left\{X_{i}, i \geq 1\right\}$ be a sequence of random variables such that $E N\left(\left|X_{i}\right|\right)<\infty$ for some $N \in \mathcal{N}$ and all $i \geq 1$. If $\left\{c_{i}, i \geq 1\right\}$ is a nondecreasing sequence of positive constants, then for every positive integers m, n with $m<n$ and arbitrary $\epsilon>0$.

$$
\begin{equation*}
\left.P\left(\max _{m \leq k \leq n} c_{k}\left|S_{k}\right| \geq \epsilon\right) \leq \sum_{i=1}^{m} E N\left(c_{m}\left|X_{i}\right|\right)+\sum_{i=m+1}^{n} E N\left(c_{i}\left|X_{i}\right|\right)\right) / N(\epsilon) . \tag{1}
\end{equation*}
$$

Proof. Let us put

$$
A_{i}=\left\{\omega: c_{m}\left|S_{m}(\omega)\right|<\epsilon, \ldots, c_{i-1}\left|S_{i-1}(\omega)\right|<\epsilon, c_{i}\left|S_{i}(\omega)\right| \geq \epsilon\right\}
$$

$i=m, m+1, \ldots, n$. Then $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$ and $A=\bigcup_{i=m}^{n} A_{i}$, where $A=\left\{w: \max _{m \leq i \leq n} c_{i}\left|S_{i}(\omega)\right| \geq \epsilon\right\}$.

Now write

$$
\begin{gathered}
Z=N\left(c_{n}\left|S_{n}\right|\right)+\sum_{k=m}^{n-1}\left(N\left(c_{k}\left|S_{k}\right|\right)-N\left(c_{k+1}\left|S_{k}\right|\right)\right) \\
+\sum_{k=m}^{n-1} I_{A_{k}}\left(N\left(c_{k}\left|S_{k}\right|\right)-N\left(c_{n}\left|S_{n}\right|\right)-\sum_{i=k}^{n-1}\left(N\left(c_{i}\left|S_{i}\right|\right)-N\left(c_{i+1}\left|S_{i}\right|\right)\right)\right.
\end{gathered}
$$

where $I_{A_{k}}$ is the indicator of the event A_{k}. Observe that $Z \geq 0$ everywhere and $Z \geq N(\epsilon)$ in A. Furthermore, if $F\left(x_{1}, \ldots, x_{n}\right)$ is the joint distribution of $X=\left(X_{1}, \ldots, X_{n}\right)$, then

$$
P\left(\max _{m \leq i \leq n} c_{i}\left|S_{i}\right| \geq \epsilon\right)=P(X \in A)=\int_{A} \mathrm{~d} F \leq \int_{A} Z \mathrm{~d} F / N(\epsilon) \leq E Z / N(\epsilon)
$$

It is easy to see that

$$
Z=N\left(c_{m}\left|S_{m}\right|\right)+\sum_{k=m+1}^{n}\left(N\left(c_{k}\left|S_{k}\right|\right)-N\left(c_{k}\left|S_{k-1}\right|\right)\right)\left(1-I_{A_{k-1}}-\ldots-I_{A_{m}}\right)
$$

As the events A_{i} are disjoint, then $I_{A_{m}}+\ldots+I_{A_{n}} \leq 1$. Note that

$$
N\left(c_{k}\left|S_{k}\right|\right) \leq N\left(c_{k}\left|S_{k-1}\right|+c_{k}\left|X_{k}\right|\right) \leq N\left(c_{k}\left|S_{k-1}\right|\right)+N\left(c_{k}\left|X_{k}\right|\right)
$$

Thus

$$
Z \leq \sum_{k=1}^{m} N\left(c_{m}\left|S_{k}\right|\right)+\sum_{k=m+1}^{n} N\left(c_{k}\left|X_{k}\right|\right)
$$

which completes the proof.
THEOREM 2. If $\left\{X_{i}, i \geq 1\right\}$ is a sequence of random variables and $N \in \mathcal{N}$, then for every $\epsilon>0$

$$
\begin{equation*}
P\left(\max _{1 \leq i \leq n}\left|S_{i}\right| \geq 2 \epsilon\right) \leq 2 \sum_{i=1}^{n} E\left[N\left(\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(\left|X_{i}\right|\right)\right)\right] \tag{2}
\end{equation*}
$$

Proof. Put $X_{i}^{*}=X_{i} I_{\left[\left|X_{i}\right|<\epsilon\right]}, X_{i}^{* *}=X_{i} I_{\left[\left|X_{i}\right| \geq \epsilon\right]}$. We have

$$
\begin{equation*}
P\left(\max _{1 \leq i \leq n}\left|S_{i}\right| \geq 2 \epsilon\right) \leq P\left(\max _{1 \leq i \leq n}\left|S_{i}^{*}\right| \geq \epsilon\right)+P\left(\max _{1 \leq i \leq n} \mid S_{i}^{* *} \geq \epsilon\right) \tag{3}
\end{equation*}
$$

where $S_{i}^{*}=\sum_{j=1}^{i} X_{j}^{*}$ and $S_{i}^{* *}=\sum_{j=1}^{i} X_{j}^{* *}$.
By Theorem 1 we get

$$
P\left(\max _{1 \leq i \leq n}\left|S_{i}^{*}\right| \geq \epsilon\right) \leq\left(\sum_{i=1}^{n} E N\left(\left|X_{i}^{*}\right|\right)\right) / N(\epsilon)
$$

Note that $E N\left(\left|X_{i}^{*}\right|\right) / N(\epsilon) \leq 2 E\left(N\left(\left|X_{i}^{*}\right|\right) /\left(N(\epsilon)+N\left(\left|X_{i}^{*}\right|\right)\right)\right)$. Thus

$$
\begin{equation*}
P\left(\max _{1 \leq i \leq n}\left|S_{i}^{*}\right| \geq \epsilon\right) \leq 2 \sum_{i=1}^{n} E\left[\left(N\left(\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(\left|X_{i}\right|\right)\right) I_{\left[\mid X_{i}[<\epsilon]\right.}\right.\right. \tag{4}
\end{equation*}
$$

On the other hand

$$
\begin{array}{r}
P\left(\max _{1 \leq i \leq n}\left|S_{i}^{* *}\right| \geq \epsilon\right) \leq \sum_{i=1}^{n} P\left(\left|X_{i}\right| \geq \epsilon\right) \\
\leq 2 \sum_{i=1}^{n} E\left[N\left(\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(\left|X_{i}\right|\right)\right) I_{\left[\left|X_{i}\right|>\epsilon\right]}\right] . \tag{5}
\end{array}
$$

Taking into account (4) and (5) we get (2).
If we put in Theorem $2 N(x)=x^{r}, 0<r \leq 1$, then we get [3, Lemma 1] (in the case $0<r \leq 1$ and $s=1$).

Theorem 3. If $\left\{X_{i}, i \geq 1\right\}$ is a sequence of random variables and $\left\{c_{i}, i \geq 1\right\}$ is a non-decreasing sequence of positive integers, then for all $m, n \in \mathbb{N}$ with $m<n$ and every $\epsilon>0$

$$
\begin{align*}
P\left(\max _{m \leq i \leq n} c_{i}\left|S_{i}\right| \geq 3 \epsilon\right) \leq & 2\left(\sum_{i=1}^{m} E\left(N\left(c_{m}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{m}\left|X_{i}\right|\right)\right)\right)\right. \\
& \left.+\sum_{i=m+1}^{n} E\left(N\left(c_{i}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{i}\left|X_{i}\right|\right)\right)\right)\right) \tag{6}
\end{align*}
$$

Proof. Let us put $X_{i}^{*}=X_{i} I_{\left[c_{i}\left|X_{i}\right|<\epsilon\right]}, X_{i}^{* *}=X_{i} I_{\left[c_{i}\left|X_{i}\right|>\epsilon\right]}, S_{i}^{*}=\sum_{j=1}^{i} X_{j}^{*}$ and $S_{i}^{* *}=\sum_{j=1}^{i} X_{j}^{* *}$.

Define $Y_{i}=N\left(c_{i}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{i}\left|X_{i}\right|\right)\right)$. Thus, by Theorem 1 , we get

$$
\begin{align*}
P & \left(\max _{m \leq i \leq n} c_{i}\left|S_{i}^{*}\right| \geq \epsilon\right) \\
\leq & 2\left(\sum_{i=1}^{m} E\left(N\left(c_{m}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{m}\left|X_{i}\right|\right)\right)\right) I_{\left[c_{i}\left|X_{i}\right|<\epsilon\right]}\right. \tag{7}\\
& \left.+\sum_{i=m+1}^{n} E Y_{i} I_{\left[c_{i}\left|X_{i}\right|<\epsilon\right]}\right)
\end{align*}
$$

Furthermore, we have

$$
\begin{align*}
& P\left(\max _{m \leq i \leq n} c_{i}\left|S_{i}^{* *}\right| \geq 2 \epsilon\right)=P\left(c_{m}\left|S_{m}^{* *}\right| \geq 2 \epsilon\right) \\
& +\sum_{i=m+1}^{n} P\left(\bigcap_{j=m}^{i-1}\left(\left[c_{j}\left|S_{j}^{* *}\right|<2 \epsilon\right] \cap\left[c_{i}\left|S_{i}^{* *}\right| \geq 2 \epsilon\right]\right)\right) \tag{8}\\
& \leq P\left(c_{m}\left|S_{m}^{* *}\right| \geq 2 \epsilon\right)+\sum_{i=m+1}^{n} P\left(c_{i}\left|X_{i}\right| \geq \epsilon\right)
\end{align*}
$$

By (2) we have

$$
P\left(c_{m}\left|S_{m}^{* *}\right| \geq 2 \epsilon\right) \leq 2\left(\sum_{i=1}^{m} E\left[N\left(c_{m}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{m}\left|X_{i}\right|\right)\right) I_{\left[c_{i}\left|X_{i}\right| \geq \epsilon\right]}\right)\right.
$$

Thus, by (8) we get

$$
\begin{align*}
P & \left(\max _{m \leq i \leq n} c_{i}\left|S_{i}^{* *}\right| \geq 2 \epsilon\right) \\
\leq & 2\left(\sum _ { i = 1 } ^ { m } E \left[N\left(c_{m}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{m}\left|X_{i}\right|\right)\right] I_{\left[c_{i}\left|X_{i}\right| \geq \epsilon\right]}\right.\right. \tag{9}\\
& \left.+\sum_{i=m+1}^{n} E Y_{i} I_{\left[c_{i}\left|X_{i}\right| \geq \epsilon\right]}\right) .
\end{align*}
$$

Therefore, taking into account (7) and (9), we get (6).
Theorem 3 is an extension of Lemma 3 in [3] (in the case $0<r \leq 1$ and $s=1$).

Corollary 4. Under the assumptions of Theorem 3 we get

$$
\begin{equation*}
P\left(\max _{m \leq i \leq n} c_{i}\left|S_{i}\right| \geq 3 \epsilon\right) \leq 2\left(\sum_{i=1}^{n} E\left[N\left(c_{m}\left|X_{i}\right|\right) /\left(N\left(\epsilon+N\left(c_{m}\left|X_{i}\right|\right)\right)\right]\right)\right. \tag{10}
\end{equation*}
$$

Corollary 5. Under the assumption of Theorem 2 we have

$$
\begin{equation*}
P\left(c_{n}\left|S_{n}\right| \geq 2 \epsilon\right) \leq 2\left(\sum_{i=1}^{n} E\left[N\left(c_{n}\left|X_{i}\right|\right) /\left(N(\epsilon)+N\left(c_{n}\left|X_{i}\right|\right)\right)\right]\right) \tag{11}
\end{equation*}
$$

REFERENCES

[1] Hájek, J. and Rényi, A., Generalization of an inequality of Kolmogorov, Acta Math. Sci. Acad. Hungar., 6 (1955), 281-283.
[2] Kounias, E.G. and Weng, T.-S., An inequality and almost sure convergence, Ann. Math. Statist., 40 (1969), 1091-1093.
[3] Szynal, D., An extension of the Hájek-Rényi inequality for one maximum of partial sums, Ann. Statist., 1 (4) (1973), 740-744.

Received February 18, 2005
Department of Mathematics Catholic University of Lublin Al. Ractawickie 14 20-037 Lublin, Poland

