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ON PRECONNECTED SPACES

ERDAL EKICI

Abstract. In this paper, properties of preconnected spaces, preseparated sub-
sets and ps-connected subsets are studied.
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1. INTRODUCTION

In 1990, Noiri and Popa [5] introduced the concept of preconnected spaces.
This form is a strong form of connected spaces. In this paper, properties of
preconnected spaces are investigated.

Throughout the present paper, X and Y are topological spaces. Let A be
a subset of X. We denote the interior and the closure of the set A by int(A)
and cl(A), respectively. A subset A of a space X is said to be preopen [2] if
A ⊂ int(cl(A)). The complement of a preopen set is called preclosed [2]. The
intersection of all preclosed sets containing A is called the preclosure [1] of A

and is denoted by pcl(A). The preinterior of A is defined by the union of all
preopen sets contained in A and is denoted by p-int(A). A subset A is said to
be α-open [4] if A ⊂ int(cl(int(A))). The family of all α-open (resp. preopen,
preclosed, preclopen) sets of X is denoted by αO(X) (resp. PO(X), PC(X),
PCO(X)). The family of all preopen (resp. preclosed) sets of X containing a
point x is denoted by PO(X, x) (resp. PC(X, x)).

2. PRECONNECTED SPACES

Definition 1. ([5]) A topological space X is called preconnected if X can
not be expressed as the union of two nonempty disjoint preopen sets of X.

Definition 2. A subset A of a topological space X is called preconnected
if A is preconnected as a subspace of X.

Definition 3. Nonempty subsets A, B of a topological space X are said
to be preseparated if A ∩ pcl(B) = ∅ = pcl(A) ∩ B.

Lemma 1. ([3]) Let A and Y be subsets of a topological space X.

(1) If Y ∈ αO(X) and A ∈ PO(X), then A ∩ Y ∈ PO(Y ),
(2) If A ⊂ Y ⊂ X, A ∈ PO(Y ) and Y ∈ PO(X), then A ∈ PO(X).

Lemma 2. Let X be a topological space and A, Y subsets of X such that

A ⊂ Y ⊂ X and Y ∈ αO(X). Then A ∈ PO(Y ) if and only if A ∈ PO(X).
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Proof. Let A ∈ PO(Y ). Since Y ∈ αO(X) ⊂ PO(X), by Lemma 1, we
have A ∈ PO(X).

Conversely, let A ∈ PO(X). By Lemma 1, A = A ∩ Y ∈ PO(Y ). �

Theorem 1. Let X be a topological space. If A and B are preseparated sets

of X and A ∪ B ∈ αO(X), then A, B ∈ PO(X).

Proof. Since A and B are preseparated in X, then we have (A ∪ B) ∩
(X\pcl(B)) = A. Since A∪B ∈ αO(X) and pcl(B) is preclosed in X, we have
A ∈ PO(X) by Lemmas 1 and 2. In a similar way we obtain B ∈ PO(X). �

Lemma 3. Let X be a topological space and A, Y subsets of X such that

A ⊂ Y ⊂ X and Y ∈ αO(X). Then pcl(A) ∩ Y = pclY (A), where pclY (A)
denotes the preclosure of A in the subspace Y .

Proof. Let x ∈ pcl(A) ∩ Y and V ∈ PO(Y, x). Then by Lemma 1, V ∈
PO(X, x) and hence V ∩ A 6= ∅. Therefore, x ∈ pclY (A).

Conversely, let x ∈ pclY (A) and V ∈ PO(X, x). Then x ∈ V ∩ Y ∈ PO(Y )
and hence ∅ 6= A∩ (V ∩Y ) ⊂ A∩V . Therefore, we obtain x ∈ pcl(A)∩Y . �

Theorem 2. Let X be a topological space. If X is preconnected and Y ∈
PO(X), then Y is preconnected.

Proof. Suppose that Y is not preconnected. Then there exists a preclopen
set A of the subspace Y such that A 6= ∅ and A 6= Y . Since Y ∈ PO(X), by
Lemma 1, A ∈ PCO(X). Thus X is not preconnected, which is a contradic-
tion. �

Theorem 3. Let X be a topological space, Y an α-open set of X and A,

B be subsets of Y . Then A, B are preseparated in Y if and only if A, B are

preseparated in X.

Proof. By Lemma 3, we have pclY (A) ∩ B = ∅ = A ∩ pclY (B) if and only
if pcl(A) ∩ B = ∅ = A ∩ pcl(B). �

Definition 4. A subset G of a topological space X is said to be ps-
connected if G is not the union of two preseparated sets in X.

Theorem 4. If A is a ps-connected set of a topological space X and U , V

are preseparated sets of X such that A ⊂ U ∪V , then either A ⊂ U or A ⊂ V .

Proof. Since A = (A ∩ U) ∪ (A ∩ V ), we have

(A ∩ U) ∩ pcl(A ∩ V ) ⊂ U ∩ pcl(V ) = ∅.

In a similar way, we obtain (A∩ V )∩ pcl(A∩U) = ∅. If A∩U and A∩ V are
nonempty, then A is not ps-connected, which is a contradiction. Hence either
A ∩ U = ∅ or A ∩ V = ∅. It follows that either A ⊂ U or A ⊂ V . �

Theorem 5. Let Y be an α-open set of a topological space X. Then Y is

ps-connected in X if and only if Y is preconnected in X.
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Proof. (⇒) Suppose that Y is not preconnected. Then there exist nonempty
disjoint A, B ∈ PO(Y ) such that A ∪ B = Y . Since Y ∈ αO(X), by Lemma
1, A, B ∈ PO(X). Since A and B are disjoint, we have pcl(A) ∩ B = ∅ =
A∩ pcl(B). This shows that A, B are preseparated sets in X. Hence Y is not
ps-connected in X. This is a contradiction.

(⇐) Suppose that Y is not ps-connected in X. Then there exist preseparated
sets A, B such that Y = A∪B. By Theorem 1, A, B ∈ PO(X) and by Lemma
1, A, B ∈ PO(Y ). Since A and B are preseparated in X, they are nonempty
disjoint. Hence Y is not preconnected. This is a contradiction. �

Corollary 1. If A is an α-open and preconnected set of a topological space

X and U , V are preseparated sets of X such that A ⊂ U∪V , then either A ⊂ U

or A ⊂ V .

Proof. It can be obtained from Theorems 4 and 5. �

Theorem 6. If A is a ps-connected set of a topological space X and A ⊂
S ⊂ pcl(A), then S is ps-connected.

Proof. Suppose that S is not ps-connected. Then there exist preseparated
sets U and V such that S = U ∪ V . Hence U and V are nonempty and
U ∩ pcl(V ) = ∅ = V ∩ pcl(U). By Theorem 4, we obtain either A ⊂ U or
A ⊂ V .

(1) Suppose that A ⊂ U . Then pcl(A) ⊂ pcl(U) and V ∩ pcl(A) = ∅. We
have V ⊂ S ⊂ pcl(A) and V = pcl(A) ∩ V = ∅. Hence V is an empty set.
This is a contradiction since V is nonempty.

(2) Suppose that A ⊂ V . In a similar way, we obtain that U is empty. This
is a contradiction.

This implies that S is ps-connected. �

Corollary 2. Let X be a topological space and K ⊂ X. If K is a ps-

connected set, then the preclosure of K is ps-connected.

Theorem 7. Let A and B be subsets of a topological space X. If A and

B are α-open, preconnected and not preseparated in X, then A∪B is precon-

nected.

Proof. Suppose that A ∪ B is not preconnected. Since A ∪ B ∈ αO(X), by
Theorem 5, A ∪ B is not ps-connected. There exist preseparated sets M , N

in X such that A ∪ B = M ∪ N . Since A is α-open preconnected in X and
A ⊂ M ∪ N , by Corollary 1, we have either A ⊂ M or A ⊂ N . Similarly, we
obtain that either B ⊂ M or B ⊂ N . If A ⊂ M and B ⊂ M , then A∪B ⊂ M

and hence N is empty. This is a contradiction. Hence A ⊂ M and B ⊂ N .
Similarly, A ⊂ N and B ⊂ M . Hence we obtain pcl(A)∩B ⊂ pcl(M)∩N = ∅
and pcl(B) ∩ A ⊂ pcl(M) ∩ N = ∅. Therefore, A, B are preseparated in X.
This is a contradiction. Hence A ∪ B is preconnected. �
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Theorem 8. If {Bi : i ∈ I} is a nonempty family of ps-connected sets of a

topological space X such that
⋂

i∈I

Bi 6= ∅, then
⋃

i∈I

Bi is ps-connected.

Proof. Suppose that A =
⋃

i∈I

Bi and A is not ps-connected. Then A = U∪V ,

where U and V are preseparated sets in X. Since
⋂

i∈I

Bi 6= ∅, we can choose a

point x in
⋂

i∈I

Bi. Since x ∈ A, either x ∈ U or x ∈ V .

(1) Suppose that x ∈ U . Since x ∈ Bi for each i ∈ I, Bi and U intersect for
each i ∈ I. By Theorem 4, Bi must be in either U or V . Since U and V are
disjoint, Bi ⊂ U for all i ∈ I and hence A ⊂ U . This means that V is empty,
which is a contradiction.

(2) Suppose that x ∈ V . Then, in a similar way, we obtain that U is empty,
which is a contradiction.

Hence
⋃

i∈I

Bi is ps-connected. �

Corollary 3. If {Bi : i ∈ I} is a nonempty family of preconnected α-open

sets of a topological space X such that
⋂

i∈I

Bi 6= ∅, then
⋃

i∈I

Bi is ps-connected.

Proof. It can be obtained from Theorem 5 and Theorem 8. �

Theorem 9. If {An : n ∈ N} is an infinite sequence of preconnected α-open

sets of a topological space X and An ∩An+1 6= ∅ for each n ∈ N , then
⋃

n∈N

An

is preconnected.

Proof. By induction on the natural number n, the set Bn =
⋃

k≤n

Ak is a

preconnected α-open set for each n ∈ N by Corollary 3. The sets Bn have a
nonempty intersection and hence

⋃

n∈N

An is preconnected by Corollary 3. �

Definition 5. Let X be a topological space and x a point of X. The
precomponent of X containing x is the union of all ps-connected subsets of X

containing x.

Remark 1. Since the union of any family of ps-connected subsets of X

containing a point x ∈ X has nonempty intersection, by Theorem 8, the
precomponent of X containing x is ps-connected.

Theorem 10. Let X be a topological space. Then each precomponent of X

is a maximal ps-connected set of X.

Proof. Obvious. �

Theorem 11. Let X be a topological space. Then the set of all distinct

precomponents of X forms a partition of X.
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Proof. Suppose that U and V are two distinct precomponents of X. If
U and V intersect, then U ∪ V is ps-connected in X by Theorem 8. Since
U ⊂ U ∪ V , then U is not maximal. Hence U and V are disjoint. �

Theorem 12. Let X be a topological space. Then each precomponent of X

is preclosed in X.

Proof. Let V be any precomponent of X. By Theorem 6, pcl(V ) is ps-
connected and V = pcl(V ). Hence V is preclosed in X. �
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