NEW CRITERIA FOR MEROMORPHIC P-VALENT CONVEX FUNCTIONS

M.K. AOUF, F.M. AL-OBOUDI and M.M. HAIDAN

Abstract. Let $G_{n}(\alpha)$ be the class of functions of the form $f(z)=\frac{a_{-p}}{z^{p}}+$ $\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \ldots\}\right)$ which are regular in the punctured $\operatorname{disc} U^{*}=\{z: 0<|z|<1\}$ and satisfying $\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-\alpha$ $\left(n \in N_{0}=\{0,1,2, \ldots\},|z|<1,0 \leq \alpha<p\right)$, where $D^{n} f(z)=\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n}$ $a_{m-1} z^{m-1}$. It is proved that $G_{n+1}(\alpha) \subset G_{n}(\alpha)$. Since $G_{0}(\alpha)$ is the class of meromorphically p-valent convex functions of order $\alpha, 0 \leq \alpha<p$, all functions in $G_{n}(\alpha)$ are p-valent convex. A property preserving integrals is also considered.
MSC 2000. 30C45.
Key words. Regular, p-valent, convex, meromorphic.

1. INTRODUCTION

Let Σ_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{-p}}{z^{p}}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{-p} \neq 0, p \in N=\{1,2, \ldots\}\right) \tag{1.1}
\end{equation*}
$$

which are regular in the punctured disc $U^{*}=\{z: 0<|z|<1\}$. Define

$$
\begin{equation*}
D^{0} f(z)=f(z), \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
& D^{1} f(z)=\frac{a_{-p}}{z^{p}}+(p+1) a_{0}+(p+2) a_{1} z+(p+3) a_{2} z^{2}+\ldots \\
&=\frac{\left(z^{p+1} f(z)\right)^{\prime}}{z^{p}} \tag{1.3}\\
& \quad D^{2} f(z)=D\left(D^{1} f(z)\right), \tag{1.4}
\end{align*}
$$

and for $n=1,2, \ldots$

$$
\begin{align*}
D^{n} f(z) & =D\left(D^{n-1} f(z)\right)=\frac{a_{-p}}{z^{p}}+\sum_{m=1}^{\infty}(p+m)^{n} a_{m-1} z^{m-1} \tag{1.5}\\
& =\frac{\left(z^{p+1} D^{n-1} f(z)\right)^{\prime}}{z^{p}} .
\end{align*}
$$

In this paper, we shall show that a function $f(z)$ in \sum_{p}, which satisfies the conditions

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-\alpha \quad(z \in U=\{z:|z|<1\}) \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<p)$ and $n \in N_{0}=\{0,1,2, \ldots\}$, is meromorphically p-valent convex in U^{*}. More precisely, it is proved that, for the classes $G_{n}(\alpha)$ of functions in \sum_{p} satisfying (1.6),

$$
\begin{equation*}
G_{n+1}(\alpha) \subset G_{n}(\alpha) \tag{1.7}
\end{equation*}
$$

holds. Since $G_{0}(\alpha)$ equals $\sum_{k}^{*}(\alpha)$ (the class of meromorphically p-valent convex functions of order $\alpha, 0 \leq \alpha<p)$, the convexity of members of $G_{n}(\alpha)$ is a consequence of (1.7). Further for $c>0$, let

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1} f(t) \mathrm{d} t . \tag{1.8}
\end{equation*}
$$

It is shown that $F(z) \in G_{n}(\alpha)$ whenever $f(z) \in G_{n}(\alpha)$. Some known results of Bajpai [2], Goel and Sohi [3] and Uralegaddi and Somanatha [6] are extended. In [5] Rusheweyh obtained the new criteria for univalent functions.

In [1] Aouf and Hossen obtained a new criteria for meromorphic p-valent starlike functions via the basic inclusion relationship $B_{n+1}(\alpha) \subset B_{n}(\alpha), 0 \leq$ $\alpha<p$ and $n \in N_{0}$, where $B_{n}(\alpha)$ is the class of functions $f(z) \in \sum_{p}$ satisfying

$$
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-(p+1)\right\}<-\alpha,
$$

$0 \leq \alpha<p, n \in N_{0}$ and $|z|<1$.

2. PROPERTIES OF THE CLASS $G_{n}(\alpha)$

In proving our main results [Theorem 2 and Theorem 3 below], we shall need the following lemma due to Jack [4].

Lemma 1. Let $w(z)$ be non-constant regular in $U=\{z:|z|<1\}, w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where k is a real number, $k \geq 1$.

Theorem 2. $G_{n+1}(\alpha) \subset G_{n}(\alpha)$ for each integer $n \in N_{0}$.
Proof. Let $f(z) \in G_{n+1}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+2} f(z)\right)^{\prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-(p+1)\right\}<-\alpha, \quad|z|<1 \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-\alpha \tag{2.2}
\end{equation*}
$$

Define a regular function $w(z)$ in U by

$$
\begin{equation*}
\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)=-\frac{p+(2 \alpha-p) w(z)}{1+w(z)} . \tag{2.3}
\end{equation*}
$$

Clearly $w(0)=0$. Equation (2.3) may be written as

$$
\begin{equation*}
\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}=\frac{1+(2 p+1-2 \alpha) w(z)}{1+w(z)} \tag{2.4}
\end{equation*}
$$

Differentiating (2.4) logarithmically and using the identity (easy to verify)

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=D^{n+1} f(z)-(p+1) D^{n} f(z) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime \prime}=\left(D^{n+1} f(z)\right)^{\prime}-(p+2)\left(D^{n} f(z)\right)^{\prime} \tag{2.6}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \frac{\frac{\left(D^{n+2} f(z)\right)^{\prime}}{\left(D^{n+1} f(z)\right)^{\prime}}-(p+1)+\alpha}{p-\alpha} \tag{2.7}\\
& =\frac{2 z w^{\prime}(z)}{(1+w(z))[1+(2 p+1-2 \alpha) w(z)]}-\frac{1-w(z)}{1+w(z)} .
\end{align*}
$$

We claim that $|w(z)|<1$ in U. For otherwise (by Jack's lemma) there exists a point z_{o} in U such that

$$
\begin{equation*}
z_{o} w^{\prime}\left(z_{o}\right)=k w\left(z_{o}\right), \tag{2.8}
\end{equation*}
$$

where $\left|w\left(z_{o}\right)\right|=1$ and $k \geq 1$. From (2.7) and (2.8), we obtain

$$
\begin{align*}
& \frac{\left(D^{n+2} f\left(z_{o}\right)\right)^{\prime}}{\left(D^{n+1} f\left(z_{o}\right)\right)^{\prime}}-(p+1)+\alpha \tag{2.9}\\
& p-\alpha \\
& =\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left[1+(2 p+1-2 \alpha) w\left(z_{0}\right)\right]}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)} .
\end{align*}
$$

Thus

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{\left(D^{n+2} f\left(z_{0}\right)\right)^{\prime}}{\left(D^{n+1} f\left(z_{0}\right)\right)^{\prime}}-(p+1)+\alpha}{p-\alpha}\right\} \geq \frac{1}{2(1+p-\alpha)}>0 \tag{2.10}
\end{equation*}
$$

which contradicts (2.1). Hence $|w(z)|<1$ in U and from (2.3) it follows that $f(z) \in G_{n}(\alpha)$.

Theorem 3. Let $f(z) \in \sum_{p}$ satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}-(p+1)\right\}<-\alpha+\frac{p-\alpha}{2(p-\alpha+c)} \quad(z \in U), \tag{2.11}
\end{equation*}
$$

for a given $n \in N_{0}$ and $c>0$. Then

$$
F(z)=\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1} f(t) \mathrm{d} t,
$$

belongs to $G_{n}(\alpha)$.
Proof. From the definition of $F(z)$, we have

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime \prime}=c\left(D^{n} f(z)\right)^{\prime}-(c+p+1)\left(D^{n} F(z)\right)^{\prime}, \tag{2.12}
\end{equation*}
$$

and also

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime \prime}=\left(D^{n+1} F(z)\right)^{\prime}-(p+2)\left(D^{n} F(z)\right)^{\prime} \tag{2.13}
\end{equation*}
$$

Using (2.12) and (2.13), the condition (2.11) may be written as
(2.14) $\operatorname{Re}\left\{\frac{\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}+c-1}{1+(c-1) \frac{\left(D^{n} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}}-(p+1)\right\}<-\alpha+\frac{p-\alpha}{2(p-\alpha+c)}$.

We have to prove that (2.14) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-(p+1)\right\}<-\alpha . \tag{2.15}
\end{equation*}
$$

Define $w(z)$ in U by

$$
\begin{equation*}
\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-(p+1)=-\frac{p+(2 \alpha-p) w(z)}{1+w(z)} . \tag{2.16}
\end{equation*}
$$

Clearly $w(z)$ is regular and $w(0)=0$. The equation (2.16) may be written as

$$
\begin{equation*}
\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}=\frac{1+(2 p+1-2 \alpha) w(z)}{1+w(z)} . \tag{2.17}
\end{equation*}
$$

Differentiating (2.17) logarithmically and using (2.12), we obtain

$$
\begin{equation*}
\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}=\frac{2(p-\alpha) z w^{\prime}(z)}{(1+w(z))[1+(2 p+1-2 \alpha) w(z)]} \tag{2.18}
\end{equation*}
$$

The above equation may be written as

$$
\begin{gathered}
\frac{\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}+(c-1)}{1+(c-1) \frac{\left(D^{n} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}-(p+1)=\frac{\left(D^{n+1} F(z)\right)^{\prime}}{\left(D^{n} F(z)\right)^{\prime}}-(p+1)} \\
+\left[\frac{2(p-\alpha) z w^{\prime}(z)}{(1+w(z))[1+(2 p+1-2 \alpha) w(z)]}\right]\left[\frac{1}{1+(c-1) \frac{\left(D^{n} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}}\right]
\end{gathered}
$$

which by using (2.16) and (2.17) reduces to

$$
\begin{aligned}
\frac{\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}+(c-1)}{1+(c-1) \frac{\left(D^{n} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}}-(p+1)= & -\left[\alpha+(p-\alpha) \frac{1-w(z)}{1+w(z)}\right] \\
& +\frac{2(p-\alpha) z w^{\prime}(z)}{(1+w(z))[c+(c+2(p-\alpha)) w(z)]}
\end{aligned}
$$

The remaining part of the proof is similar to that of Theorem 2.
Remark 1. (i) Putting $p=1, a_{-1}=1, n=0$ and $\alpha=0$ in Theorem 3, we get the result of Goel and Sohi [3,Corollary 2].
(ii) For $p=1, a_{-1}=1, n=0, \alpha=0$ and $c=1$ the above theorem extends a result of Bajpai [2, Theorem 1].

Theorem 4. $f(z) \in G_{n}(\alpha)$ if and only if

$$
F(z)=\frac{1}{z^{1+p}} \int_{0}^{z} t^{p} f(t) \mathrm{d} t \in G_{n+1}(\alpha) .
$$

Proof. From the definition of $F(z)$, we have

$$
D^{n}\left(z F^{\prime}(z)\right)+(1+p) D^{n} F(z)=D^{n} f(z),
$$

that is

$$
\begin{equation*}
z\left(D^{n} F(z)\right)^{\prime \prime}+(2+p)\left(D^{n} F(z)\right)^{\prime}=\left(D^{n} f(z)\right)^{\prime} \tag{2.19}
\end{equation*}
$$

By using the identity (2.13), (2.19) reduces to

$$
\left(D^{n} f(z)\right)^{\prime}=\left(D^{n+1} F(z)\right)^{\prime} .
$$

Hence

$$
\left(D^{n+1} f(z)\right)^{\prime}=\left(D^{n+2} F(z)\right)^{\prime} .
$$

Therefore

$$
\frac{\left(D^{n+1} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{\prime}}=\frac{\left(D^{n+2} F(z)\right)^{\prime}}{\left(D^{n+1} F(z)\right)^{\prime}}
$$

and the result follows.

REFERENCES

[1] Aouf, M. K. and Hossen, H. M., New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17 (1993), 481-486.
[2] Bajpai, S. K., A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl., 22 (1977), 295-297.
[3] Goel, R. M. and Sohi, N. S., On a class of meromorphic functions, Glas. Mat., 17 (1981), 19-28.
[4] Jack, I. S., Functions starlike and convex of order α, J. London Math. Soc., 2 (1971), 469-474.
[5] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[6] Uralegaddi, B. A. and Somanatha, C., New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.

Received December 20, 2004
Mathematics Department
Girls College of Education
Science Sections
Jeddah, Saudi Arabia
Mathematics Department
Girls College of Education
Riyadh, Saudi Arabia
E-mail: fma34@yahoo.com
Mathematics Department
Girls College of Education
Abha, Saudi Arabia
E-mail: majbh2001@yahoo.com

