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GROUP GRADED ALGEBRAS AND THE RELATIVE FREENESS
OF POINTED GROUPS

CAMELIA DICU

Abstract. The main result of Zhou [1] characterizes relative freeness of pointed
groups on a G-algebra. We show here that this theorem follows from results on
induced modules over group graded algebras.
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1. INTRODUCTION

1.1. Let O be a complete discrete valuation ring with residue field k of
characteristic p > 0, and A be an O-algebra. Recall that o € P(A) is a
point of A if « is a conjugacy class of primitive idempotents of A. Let G be
a finite group. A is a G-algebra over O if there is a group homomorphism
¢ : G — Autp(A). Throughout this paper, A is a G-algebra. If a € A
and g € G we write af instead of ¢(g7!)(a), and for any H < G denote
AH ={a € A|a" =aforall h € H} the set of H-fixed elements of A. The

G . AH H -
trace map Try : A% — A% maps a € A" to de[G/H} a?

1.2. A pointed group Hg on A is a pair (H, ) where H < G and 3 € P(AH).
Given two pointed groups G, and Hy on A, we say that G, is projective
relative to Hy if H < G and o C Tr%(AT9AH); further G, is free relative
to Hy if there exist i« € o and j € (3 such that ¢ = Trf](j) and jj9 = 0 for
any g € G\ H. A pointed group P, is local if it is not relative projective
to any pointed group of @ on A for any () < P. The pointed group P, is a
defect pointed group of the pointed group G, if P, < G, P, is local and G,
is relative projective to P,.

In general, if j is an idempotent of A”, Tr%(j) need not be an idempotent.
We say that j has an orthogonal G/H-trace if for any g € G\ H we have
jj9 = 0. The existence of orthogonal G/H-trace is needed to define induction
of divisors. The G-algebra A is called inductively complete if for any pointed
group Hg on A, there exist j € 3 such that j has an orthogonal G/H-trace.
Denote D(A™M) the set of divisors of A”. The following results are due to Puig
[4, Chapter 5].

THEOREM 1.3. Assume that A is an inductively complete G-algebra. Then
there exists a unique linear map

ind% : D(AY) — D(AY),
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mapping 3 € P(AM) to the divisor o containing the idempotent Trg(j), where
J € B satisfies jj9 =0 for any g € G\ H.

THEOREM 1.4. For any G-algebra A, there exist an inductively complete
G-algebra B and a divisor w € D(BY) such that A ~ B, (so in particular, A
and B are Morita equivalent).

1.5. This paper is a sequel of [2], and our notation is explained there. By us-
ing the bijection established in [2, Proposition 2.4] we can interpret a pointed
group Hg on A as an isomorphism class of indecomposable Rp-direct sum-
mand of A, where R = A x G is the G-graded skew group algebra of A and G.
This allows us to consider induction of pointed groups without having to pass
to an inductively complete G-algebra as above.

Let G, and Hg be two pointed groups on A, and let Ai, i € o and Aj,
J € 0 be the corresponding indecomposable R and Rp-modules. We have that
G is free relative to Hg if and only if A7 ~ R ®g, Aj. Moreover, by using
the characterization of relative projectivity in [2], we see that P, is a defect
pointed group of G, if and only if P is a vertex of Ai and Ae is a source of Az,
where e € . Thus the pointed group version of the Green correspondence can
be easily deduced from the version for group graded algebras (see [3, Theorem
1.4.23]).

1.6. We fix a strongly G-graded O-algebra R. If Kand H are subgroups
of G, we denote by [H\G/K] a set of representatives for the double cosets of
(H,K) in G, and if K < H and V is an Rg-module, we denote Ind&t Vv =
Ry ® Ry V.

By the above remarks, the following theorem, applied to the G-graded al-
gebra A x G, implies [1, Theorem 1.6]. We shall give a module theoretic proof
using Green’s theory of vertices and sources and the Green correspondence for
group graded algebras.

THEOREM 1.7. Let R be a strongly G-graded algebra, P a p-subgroup of G
and H a subgroup of G containing P. Let U an indecomposable R-module
with vertex P and U’ an indecomposable Rp-module with vertex P. Let U €
Ry (py-mod and U e Ry, (py-mod be the Green correspondents of U and U’
respectively.

Then U ~ Ind% U' if and only if U ~ Ind%i((P))ﬁ and for any Q < P

Q

!
P )
and any t € [Ng(P)\G/H] satisfying Q <'H, Ind%ig(c)?) ResjﬁH(Q)tU’ has no
indecomposable Ry, q)-summand with verter Q.

2. PROOF OF THEOREM 1.7

For the proof we need two preliminary results. The first is a generalization of
a theorem of Burry (see [5, Theorem 2.9]). Recall that if V' is an R-module and
Vi,...,V, a complete set of nonisomorphic indecomposable direct summands
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of V such that V ~ @;:1 n; Vi, then n; € N is called the multiplicity of V; in
the module V.

ProproSITION 2.1. Let R be a strongly G-graded algebra, P a p-subgroup of
G and H a subgroup of G containing P. Let fg be the Green correspondence
with respect to (G, P, Ng(P)), and denote

Ip ={t € [Na(P\G/H] | P <'H}.

a) If V is an Ry-module, then fg induces a multiplicity-preserving bijec-
tion between the nonisomorphic indecomposable direct summands of Indg \%4
with vertex P and the nonisomorphic indecomposable direct summands of

D.c I Ind%f:&),) Resj\gH( ) tV with vertex P.

b) If V' is an indecomposable Ry-module with vertex P, then fg induces a
multiplicity-preserving bijection between the nonisomorphic indecomposable
direct summand of Ind% V with vertex P and the nonisomorphic indecompos-

Ng(P)

able direct summands of Ind N (P) Res%H (P) V with vertex P.

Proof. a) Let Vi,...,V, be nonisomorphic indecomposable R-modules such
that IndeV ~ P;_, n;Vi. We may assume that for an s < r, all Vi,...,V;
have vertex P. Then for any ¢ € {1,...,s}, Res%c( py Vi has a unique inde-
composable direct summand with vertex P, namely fo(V;). If s < j < r,
then V; doesn’t have vertex P, so by the Burry-Carlson theorem (see [5, The-
orem 2.6(ii)]), Res%a( p) V; has no indecomposable direct summand with ver-
tex P. Then fg induces a multiplicity-preserving bijection between the non-
isomorphic indecomposable direct summands with vertex P of Indgv and
Res%c (P) Indg V. Note that by the Mackey decomposition,

Ng(P @ x
Res%G( P) Ind% V ~ @ Ind, gé ]JG (p) Res. A Nep) V-
z€[Na(P)\G/H]

Thus it suffices to show that if M is an indecomposable Ry, p)-module with

vertex P and M| Indivgélj\;c( P) Reszgm Ne(P) *V, then P < *H. But this follows

from the fact that M is relatively *H N Ng(P)-projective and M has vertex
P, so P is Ng(P)-conjugate to a subgroup of *H N Ng(P). Therefore P < *H
and the assertion follows.

b) By a), it suffices to show that if for ¢ € Ip, Ind%f:(?,) ReSE\I,{H P) 'V has

an indecomposable direct summand M with vertex P, then t € Ng(P)H. But
since M| Indxtc(l(?)) Resz\gH (P) tV we may choose an indecomposable Ry, ,.(p)-
H

module W such that W|Res§§{ (P)tV and M |Ind%G(P) W. Since M is a
tH
Na(P)

iH(P)
summand of Ind Ni oy (P) W and M has vertex P, P is contained in a vertex
H

Q of W. If U is a source of 'V, we have that W]Rest]gH(P) Indzg U. By
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the Mackey decomposition it is easy to deduce that @ is contained in a ‘H-
conjugate of tP. Then P is ! H-conjugate to P, hence th € Ng(P) for some
h € H, and the result is established. O

ProrosITION 2.2. With notations of Theorem 1.7, if U ~ Ind% U’ then
U~ Ind%i((?)) U
Proof. Observe that Indxc((l;)) U’ is relatively P-projective since U’ has ver-

tex P. Denote by M a source of U’. We first prove that Ind%fl((];)) U’ has no in-

decomposable direct summand with vertex @@ < P. Suppose W | Ind]]gfl((};)) U is
an indecomposable direct summand which is relatively ()-projective, for some
Q < P. Therefore W| IndgG(P) W' for some Rg-module W', so we have that

W] IndgG(P) Indg W'. By the Mackey decomposition we have

Resp? W € (a5 w),
9€lNG(P)/P)

where 9 (Indg W’) is a relative Q-projective module. Thus any indecompos-
N (P)

able direct summand of Resp

c(P

not possible, since if V| Resg )W is an indecomposable direct summand,

then V|Reng(P) IndgG(P) M, hence V is isomorphic to 9M for some g €
[Ng(P)/P], and therefore has vertex P.

We now apply Proposition 2.1 b) to the indecomposable Rp-module U’.
It follows that fo(U) = U is the unique indecomposable direct summand of

W is relatively Q-projective. But this is

In dNG ((?) Res% (P) U’ with vertex P. But any indecomposable summand with
vertex P of IndNG((Z)) U’ is a direct summand of IndNG((P)) Resf! Nut(P) U’, then is
isomorphic to U and U is the only direct summand of IndNG((P)) U’ with vertex
P and has multiplicity 1. This implies that U ~ Ind%fl(( P)) U'. g

Proof of Theorem 1.7. Assume that U ~ Indg U’. Proposition 2.2 implies
that U ~ Ind%i((i)) U’. For any Q < P, by Proposition 2.1 a) applied to the
Rp-module U’ instead of V and @ instead of P, we have that for any ¢ € Ig,

Ind%fé%) Resj\gH(Q) tU’ has no indecomposable R Ne(@)-Summand with vertex

Conversely, by the Green correspondence, RGS%H( )U has a unique inde-
composable direct summand with vertex P, namely U’. But IndNG((P)) U ~U

SO Ind%i((};)) ResﬁH (P) U’ has a unique indecomposable direct summand with

vertex P, namely U. By Proposition 2.1 b), Ind% U’ has a unique indecompos-
able direct summand with vertex P and multiplicity 1, namely f. Yoy =u.
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But our hypothesis and Proposition 2.1(i) imply that Ind% U’ has no inde-
composable direct summands with vertex @), for any Q < P. Therefore
U ~ Ind% U’ and the theorem is proved.
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