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A DIRECT WAY TO OBTAIN STRONG DUALITY RESULTS IN
LINEAR SEMIDEFINITE AND LINEAR SEMI-INFINITE

PROGRAMMING

PETRICĂ POP and GEORG STILL

Abstract. In linear programming it is known that an appropriate non-homo-
geneous Farkas Lemma leads to a short proof of the strong duality results for a
pair of primal and dual programs. By using a corresponding generalized Farkas
lemma we give a similar proof of the strong duality results for semidefinite pro-
grams under constraint qualifications. The proof also provides optimality condi-
tions. The same approach leads to corresponding results for linear semi-infinite
programs. For completeness, the proofs for linear programs and the proofs of all
auxiliary lemmata for the semidefinite case are included.
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1. STRONG DUALITY RESULTS IN LINEAR PROGRAMMING

Consider the pair of primal and dual linear programs,

P : max
x∈Rn

cTx s.t. Ax ≤ b

D : min
y∈Rm

bTy s.t. ATy = c , y ≥ 0 ,

where A is an (m×n)-matrix (m ≥ n) and c ∈ Rn, b ∈ Rm. Let vP denote the
maximum value of the primal program P and vD the minimum value of the
dual problem D. The feasible sets of P and D are abbreviated by FP and FD.
Most commonly a homogeneous Farkas Lemma is used to prove optimality
conditions for P and D. We will use the following non-homogeneous version to
prove in one step existence of solutions, strong duality results and optimality
conditions.

Lemma 1. Let be given an (m×n)-matrix B, an (k×n)-matrix C and
b ∈ Rm, c ∈ Rk. Then precisely one of the following alternatives is valid.

(a) There is a solution x ∈ Rn of Bx ≤ b, Cx = c.
(b) There exist vectors µ ∈ Rm, µ ≥ 0, λ ∈ Rk such that(

BT

bT

)
µ +

(
CT

cT

)
λ =

(
0
−1

)
·
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This result is an easy corollary of a common version of Farkas Lemma (see
[1] for a proof). We begin with the weak duality result.

Lemma 2. (Weak Duality) Let be given x ∈ FP , y ∈ FD. Then

(1) bTy − cTx = yT(b−Ax) ≥ 0.

If in (1) we have bTy−cTx = 0, then x, y are solutions of P, D with vP = vD.

A proof of the weak duality lemma can be found in [1].
We now present the strong duality result, the existence of solutions and

optimality conditions.

Theorem 1. (Strong Duality) The following hold:
(a) Suppose FP 6= ∅. Then FD = ∅ if and only if vP = ∞.

Suppose FD 6= ∅. Then FP = ∅ if and only if vD = −∞.
(b) Suppose FP , FD 6= ∅. Then P and D have solutions x and y satis-

fying cTx = bTy, i.e. vP = vD. Moreover, the following optimality
conditions hold

x ∈ FP solves P ⇐⇒ there exists y ∈ FD such that yT(b−Ax) = 0 ,

y ∈ FD solves D ⇐⇒ there exists x ∈ FP such that yT(b−Ax) = 0 .

A proof of the strong duality theorem can be found in [1].

2. STRONG DUALITY RESULTS IN SEMIDEFINITE PROGRAMMING

In this section we will give a similar proof of the strong duality result and
optimality conditions in semidefinite programming. Consider the pair of pri-
mal and dual linear semidefinite programs

P : max
x∈Rn

c◦x s.t. A(x) := B −
n∑

i=1

xiAi�0

D : min
Y

B◦Y s.t. Ai◦Y = ci , i = 1, . . . , n , Y�0 ,

where B, Ai are symmetric (m×m)-matrices and c ∈ Rn. We write Y�0 for a
positive semidefinite, and Y�0 for a positive definite matrix Y . By B◦Y we
denote the inner product B◦Y =

∑
ij bijyij (coinciding with the trace of BY ).

For convenience of notation we also have replaced cTx by c◦x. Let again vP ,
vD be the maximum, minimum values of P, D, respectively and FP , FD the
feasible sets. Points x ∈ FP , Y ∈ FD are called strictly feasible if A(x), Y
are positive definite. We firstly present a generalized non-homogeneous Farkas
Lemma (see Section 4 for a proof). For a given set S let cone (S) denote the
convex cone, lin (S) the linear hull and clos (S) the closure of S.

Lemma 3. Let be given S0 = {(bk, βk) | bk ∈ Rq, βk ∈ R, k ∈ K}, K
a possibly infinite set, and S1 = {(cj , γj), cj ∈ Rq, γj ∈ R, j ∈ J}, J
a finite set. Then precisely one of the following alternatives is valid with
S := cone (S0) + lin (S1).
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(a) There is a solution ξ of bT
k ξ ≤ βk, k ∈ K, cT

j ξ = γj, j ∈ J .
(b)

(
0
−1

)
∈ clos (S).

We need a result for semidefinite matrices. A proof is given in Section 4.

Lemma 4. Let be given A, B�0. Then A◦B ≥ 0 and A◦B = 0 if and only
if A ·B = 0. If moreover A�0 then A◦B = 0 ⇔ B = 0.

We treat the semidefinite problem as a direct generalization of the linear
case. This approach is based on the following observation. Let Vm denote
the compact set Vm = {V = vvT | v ∈ Rm, ||v|| = 1}. Then, in view of
A◦vvT = vTAv, it follows

(2) A�0 ⇐⇒ A◦V ≥ 0 for all V ∈ Vm .

We now proceed as in the case of linear programs.

Lemma 5. (Weak Duality) Let be given x ∈ FP , Y ∈ FD. Then

(3) B◦Y − c◦x = Y ◦A(x) ≥ 0.

If in (1) we have B◦Y −c◦x = 0, then x, Y are solutions of P, D with vP = vD.

Proof. For feasible x, Y we find B◦Y − c◦x = B◦Y −
∑n

i=1 xiAi◦Y =
Y ◦A(x) ≥ 0 (see Lemma 4) or B◦Y ≥ c◦x. The equal sign implies that Y
is minimal for D and x is maximal for P with the same value B◦Y = vD =
c◦x = vP . �

We prove the strong duality results together with optimality conditions
under usual constraint qualifications.

Theorem 2. (Strong Duality) The following hold.
(a) Suppose P is strictly feasible. Then FD = ∅ if and only if vP = ∞.

Suppose D is strictly feasible. Then FP = ∅ if and only if vD = −∞.
(b) Suppose P and D are strictly feasible. Then P and D have solutions

x and Y satisfying c◦x = B◦Y . Moreover, the following optimality
conditions hold

x ∈ FP solves P ⇐⇒ there exists Y ∈ FD such that Y ·A(x) = 0
Y ∈ FD solves D ⇐⇒ there exists x ∈ FP such that Y ·A(x) = 0 .

Proof. In P we can assume that Ai, i = 1, . . . , n are linearly independent.
(a): Assuming FD 6= ∅, then with Y ∈ FD we obtain from Lemma 5, B◦Y ≥
vP , i.e. vP < ∞. Suppose now that FD = ∅, i.e. there is no solution Y of

Ai◦Y = ci, i = 1, . . . , n, −Y ◦V ≤ 0, for all V ∈ Vm.

By Lemma 3,
(

0
−1

)
∈ clos

(
cone (−Vm, 0)) + lin {(Ai, ci), i = 1, . . . , n}

)
, i.e.

there exist V ν
k ∈ Vm, µν

k ≥ 0, k ∈ Kν , λν
i ∈ R such that∑

k∈Kν

µν
k

(
−V ν

k
0

)
+

n∑
i=1

λν
i

(
Ai

ci

)
→

(
0
−1

)
for ν →∞ .
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Putting Sν =
∑

k∈Kν
µν

kV
ν
k and xν = −λν this is equivalent to

(4) −
n∑

i=1

xν
i Ai + Eν = Sν�0, −c◦xν = −1 + εν

0 with εν := ||(Eν , εν
0)|| → 0

for ν → ∞. Here, the element (Eν , εν
0) is to be seen as a vector in Rm2+1.

With a strictly feasible x we have A(x)�0 and we can choose M > 0 large
enough such that MενA(x)− Eν�0, ν ∈ N. This implies

MενB −
N∑

i=1

(
Mενxi + xν

i

)
Ai�0, c◦

(
Mενx + xν

)
= 1− εν

0 + Mενc◦x .

Dividing by Mεν and using εν → 0 we obtain

B −
N∑

i=1

(
xi +

xν
i

Mεν

)
Ai�0, c◦

(
x +

xν

Mεν

)
≥ 1

Mεν
− 1

M
+ c◦x →∞ .

The other case can be proven similarly.
(b): In view of Lemma 5 and using (2), to prove the first part of the statement,
it is sufficient to show that there exist a solution x, Y of

(5)

∑n
i=1 xiAi◦V ≤ B◦V, V ∈ Vm

−Y ◦V ≤ 0, V ∈ Vm

Y ◦Ai = ci, i = 1, . . . , n

−
∑n

i=1 xici + B◦Y ≤ 0 .

Suppose that this system is not solvable. By Lemma 3 there exist αν ≥ 0,
V ν

l , V ν
k ∈ Vm, µν

k, µ
ν
l ≥ 0, k ∈ Kν , l ∈ Lν , λν

i ∈ R such that for ν →∞

X
l∈Lν

µν
l

0
BBBBBB@

A1◦V ν
l

.

..
An◦V ν

l
0

B◦V ν
l

1
CCCCCCA

+
X

k∈Kν

µν
k

0
BBBBBB@

0
.
..
0

−V ν
k

0

1
CCCCCCA

+

nX
i=1

λν
i

0
BBBBBB@

0
.
..
0

Ai

ci

1
CCCCCCA

+ αν

0
BBBBBB@

−c1
.
..

−cn

B

0

1
CCCCCCA
→

0
BBBBBB@

0
.
..
0

0

−1

1
CCCCCCA

Putting Y ν =
∑

l∈Lν
µν

l V
ν
l , Sν =

∑
k∈Kν

µν
kV

ν
k , xν = −λν , this is equivalent

to

(6)
Ai◦Y ν − ανci + εν

i = 0, i = 1, . . . n,

ανB −
∑n

i=1 xν
i Ai + Eν = Sν�0,

B◦Y ν − c◦xν = −1 + εν
0 ,

where εν := ||(εν
1 , . . . , ε

ν
n, Eν , εν

0)|| → 0 for ν → ∞. By defining the numbers
κν := max{||(Y ν , Sν)||, ||xν ||, αν} we distinguish between two cases.

Case κν ≤ M , ν ∈ N: Then there exist convergent subsequences Y ν → Y ,
Sν → S, xν → x, αν → α and from (6) we find

(7) Ai◦Y = αci, i = 1, . . . , n, αB −
n∑

i=1

xiAi = S�0, B◦Y − c◦x = −1 .
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If α > 0 then by dividing the relations (7) by α we obtain a solution of the
system (5), a contradiction. If α = 0 then in view of (7) with x ∈ FP , Y ∈ FD

the vectors x(t) = x + tx, Y (t) = Y + tY are feasible with B◦Y (t)− c◦x(t) =
B◦Y − c◦x− t → −∞ for t →∞ contradicting our assumption.

Case κν →∞, ν →∞ (for some subsequence): By dividing (6) by κν and
taking converging subsequences we obtain with some Ŷ�0, Ŝ�0, α̂ ≥ 0, x̂,

(8)


A1◦Ŷ

:
An◦Ŷ
−Ŝ

B◦Ŷ

−
n∑

i=1

x̂i


0
:
0
Ai

ci

 + α̂


−c1

:
−cn

B
0

 =


0
:
0
0
0


and max{||(Ŷ , Ŝ)||, ||x̂||, α̂} = 1. It now follows that α̂ > 0. In fact for
α̂ = 0, by multiplying (8) with (−x,−Y , 1), x, Y strict feasible we find using
−Ai◦Y + ci = 0

(9) A(x)◦Ŷ + Ŝ◦Y = 0 with A(x), Y�0 .

In view of Lemma 4 it follows Ŷ = Ŝ = 0 and by the linear independency of
Ai in (8) also x̂ = 0, a contradiction. The relation α̂ > 0 implies that (6) is
valid with αν → ∞ (some subsequence). Now we can choose Y ν

ε such that
with some M0 > 0

(10) Ai◦Y ν
ε = εν

i , i = 1, . . . , n and ||Y ν
ε || ≤ M0ε

ν for all ν ∈ N .

Thus, with strictly feasible x, Y there exists M > 0 such that

(11) Y ν
ε + MενY�0, Mεν

(
B −

n∑
i=1

xiAi

)
− Eν�0, ν ∈ N .

For Y ν +Y ν
ε +MενY�0, xν +Mενx we find using (6), (10), (11) and εν , εν

0 → 0
(12)

Ai◦(Y ν + Y ν
ε + MενY )− (αν + Mεν)ci = 0, i = 1, . . . n,

(αν + Mεν)B −
∑n

i=1

(
xν

i + Mενxi

)
Ai � 0,

B◦(Y ν + Y ν
ε + MενY )− c◦(xν + Mενx) = −1 + εν

0 + O(εν) ≤ −1
2 .

for any fixed ν large enough. Since αν →∞ we obtain αν +Mεν > 0 for large
ν. By dividing (12) by αν +Mεν > 0 we have a solution of (5) in contradiction
to our assumption. This shows the first part of (b).

The optimality conditions are obtained as follows. Suppose x is a solution
of P. As shown, there exists a solution Y of D with 0 = B◦Y − c◦x = Y ◦A(x).
Lemma 4 implies Y · A(x) = 0. On the other hand if for x ∈ FP the vector
Y ∈ FD satisfies Y ·A(x) = 0 and thus Y ◦A(x) = 0 then, by Lemma 5, x is a
solution of P. The optimality conditions for Y ∈ FD are obtained similarly. �
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The proof for the semidefinite case is longer than for linear programs. This
is because the set

S = cone (S1
0) + cone (S2

0) + lin (S1) + cone {s0}

with S1
0 = {(A1◦V, .., An◦V, 0, B◦V ) | V ∈ Vm}, S2

0 = {(0, .., 0,−V, 0) | V ∈
Vm}, S1 = {(0, .., 0, Ai, ci) | i = 1, . . . , n}, s0 = (−c1, ..,−cn, B, 0), need not to
be closed. This, although the strict feasibility assumptions in Theorem 2(b)
imply that the set cone (S1

0)+cone (S2
0)+lin (S1) is closed. Hence, in the proof

of Theorem 2(b), the case κν → ∞ cannot be excluded. This complication
is not present in linear programming since cones generated by finitely many
vectors are always closed.

For further details on semidefinite programming, such as duality gaps, we
refer to [4]. Commonly the duality results and optimality conditions for semi-
definite problems are obtained by transforming the semidefinite programs into
a more abstract cone-constrained form. Our approach avoids such a trans-
formation by transforming the programs into a special case of a semi-infinite
problem (see also Section 3).

3. STRONG DUALITY RESULTS IN SEMI-INFINITE PROGRAMMING

In this section we briefly outline how the same approach can be applied to
linear semi-infinite programs. A common linear semi-infinite problem is of the
form

P : max
x∈Rn

c◦x s.t. b(t)−
n∑

i=1

xiai(t) ≥ 0 , for all t ∈ T ,

where c ∈ Rn is a given vector and b(t), ai(t) ∈ C(T, R), T a compact sub-
set of a topological space. Again we have replaced cTx by c◦x. C(T, R)
denotes the space of real-valued functions f , continuous on T , with norm
||f || = max{|f(t) | t ∈ T}. Note, that in view of (2) the semidefinite program
in the previous section can be written as a semi-infinite program by defining

b(t) = tTBt, ai(t) = tTAit, i = 1, . . . , n, t ∈ T := {t ∈ Rm | ||t|| = 1} .

For f ∈ C(T, R) we write f ≥ 0 (f > 0) if f(t) ≥ 0 (f(t) > 0) for all t ∈ T .
The dual C(T, R)∗ of the space C(T, R) is the space of all real-valued Borel
measures y on T (see [3]). We define

f◦y =
∫

T
f(t)dy(t) , f ∈ C(T, R), y ∈ C(T, R)∗.

The measure y is said to be non-negative (notation y ≥ 0) if f◦y ≥ 0 for all
f ∈ C(T, R), f ≥ 0 and positive (y > 0) if f◦y > 0 for all f ∈ C(T, R), f ≥ 0,
f 6= 0. The dual of P then reads

D : min
y∈C(T,R)∗

b◦y s.t. ai◦y = ci , i = 1, . . . , n , y ≥ 0 .
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As before let vP , vD denote the values of P,D and FP , FD the feasible sets.
Elements x ∈ FP and y ∈ FD are said to be strictly feasible if

a(x) := b−
n∑

i=1

xiai > 0 and y > 0 .

We introduce the set K+
1 = {f ∈ C(T, R) | f ≥ 0, ||f || ≤ 1}.

With these settings we can proceed as in the semidefinite case. The full
system for the solutions x of P , y of D corresponding to (5), for example,
becomes in the semi-infinite case:∑n

i=1 xiai(t) ≤ b(t), t ∈ T,

−q◦y ≤ 0, q ∈ K+
1 ,

ai◦y = ci, i = 1, . . . , n,

−
∑n

i=1 xici + b◦y ≤ 0 .

By considering some appropriate modifications in the proofs of Section 2 we
can prove weak and strong duality results for semi-infinite programs along the
same lines as in the semidefinite case. For shortness we only give the strong
duality result.

Theorem 3. (Strong Duality) The following hold.
(a) Suppose P is strictly feasible. Then FD = ∅ if and only if vP = ∞.

Suppose D is strictly feasible. Then FP = ∅ if and only if vD = −∞.
(b) Suppose P and D are strictly feasible. Then P and D have solutions x

and y satisfying c◦x = b◦y. Moreover, the following optimality condi-
tions hold

x ∈ FP solves P ⇐⇒ there exists y ∈ FD such that a(x)◦y
y ∈ FD solves D ⇐⇒ there exists x ∈ FP such that a(x)◦y = 0 .

For further details on semi-infinite programming we refer to the paper [2].
In [1] the results of Theorem 2 are obtained in a different way by treating
semidefinite programs as a special case of semi-infinite problems.

4. PROOFS OF THE AUXILIARY LEMMATA

For completeness, in this section, the proofs of all auxiliary lemmata of
Section 2 will be presented.

Proof of Lemma 3. We prove the statement by using the following standard
separation theorem: Let S ⊂ Rq be a convex closed set and y ∈ Rq. Then
precisely one of the alternatives (a’), (b’) holds,

(a’) There exist ξ ∈ Rq, α ∈ R such that ξTs ≤ α, s ∈ S, ξTy > α,
(b’) y ∈ S.
It is easy to show that if (b) is valid then (a) cannot hold. Suppose now

that (b) is not true. By putting y = (0,−1), S := clos
(
cone (S0) + lin (S1)

)
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the condition (b’) is not fulfilled. Thus by (a’) there exist a vector (ξ, ξq) ∈ Rq,
α ∈ R such that

ξ
T
b + ξqβ ≤ α for all (b, β) ∈ cone (S0)

ξ
T
c + ξqγ ≤ α for all (c, γ) ∈ lin (S1)(13)

−ξq > α .

With (c, γ) ∈ lin (S1), (b, β) ∈ cone (S0) these relations also holds for ±t(c, γ),
t(b, β), t ≥ 0. This implies ξ

T
c + ξqγ = 0, ξ

T
b + ξqβ ≤ 0 and we can choose

α = 0. By dividing (13) by −ξq we obtain with ξ = −ξ/ξq the relation ξTb ≤ β,
ξTc = γ for all (b, β) ∈ cone (S0), (c, γ) ∈ lin (S1), i.e. (a). �

Proof of Lemma 4: A · B = 0 directly implies A◦B = tr (A · B) = 0.
To prove the converse, consider the transformation of A,B�0 to diagonal
form, A =

∑n
i=1 αiqiq

T
i , B =

∑n
j=1 βjvjv

T
j , where qi, vj are the orthonormal

eigenvectors and αi, βj the corresponding eigenvalues of A,B. Then with
A◦B = tr (A ·B) we find using αiβj ≥ 0

A◦B =
n∑

i,j=1

αiβj tr (qiq
T
i vjv

T
j ) =

n∑
i,j=1

αiβj (vT
j qiq

T
i vj) =

n∑
i,j=1

αiβj (qT
i vj)2 ≥ 0 .

Moreover, A◦B = 0 implies αiβj(qT
i vj)2 = 0 or αiβj(qT

i vj) = 0 for all i, j and
then

A ·B =
n∑

i,j=1

αiβj qiq
T
i vjv

T
j =

n∑
i,j=1

αiβj (qT
i vj) qiv

T
j = 0 .

When A�0 then in particular, the matrix A is regular and A · B = 0 implies
B = A−10 = 0. �
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