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LINEAR OPERATOR ON p-VALENT FUNCTION
OF COMPLEX ORDER
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Abstract. We introduce two novel families of meromorphic multivalent func-
tions, by using linear operator and study some properties (inclusion properties,
basic properties) of these families. We also determine the neighborhood of these
subclasses.
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1. INTRODUCTION AND DEFINITIONS

Let us denote by X, the class of functions f(z) of the form
o0
(1) f(z):zfp—i—Zanz”*p(nzp,peN:{l,Z,B,...})
n=1

which are analytic and p-valent in the annulus U* = {z: 0 < |z| < 1,z € C} =

U\ {0}.
We define the Hadamard product of the functions f(z) € 3, given by (1)
and g € X, given

g(z) =27+ Z bpz""P (peN)
n=1
as

(fxg)(z)=2"P+ Z anbpz" P,
n=1

For real or complex numbers a and ¢ (¢ # 0, —1, -2, .. .), we define the function
¢p(a, c; z) by

(2) opla,c;z) =2"P + Z ((anz”p,
n=1 n

where (z),, denotes the Pochhammer symbol defined by

Jzz+1)(x+2)---(z+n-1), n=1,2.3,...
($)n—{1 n=>0

)

We define the linear operator £,(a,c) on ¥, by the convolution

(3) Ly(a,c)f(z) = epla,c; z) * f(2).
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From (3) and (2), we can write
(4) 2(Ly(a,e)f(2)) =alyla+1,¢)f(z) — (a+p)Lpy(a,c) f(2).

Let f and F be two analytic functions in the unit disk U, we say that f
is subordinate to F' if there exists an analytic function w(z) with w(0) = 0
and |w(z)| < 1(z € U) such that f = F(w(z)). We denote by f < F this
subordination.

Let Hgc(p; A, B,b, i) denote the class of functions of the form (1) which
satisfies the condition
(5) _ 1 z(ﬁp(av C)f(Z))/ 1 + Az

L Ly(a,c)f(z) 1+ Bz’
where 0 < p < 1,a € R,c e R\{0,—-1,-2,-3,---},-1<B<A<1,peNb
non-zero complex number.

DEFINITION. Let Nj(f) denotes the d-neighborhood of the function f € 3,
of the form (1), that is

—i—p} <P — pHp+pp

Ns(f)={heX,:h(z _zp+sz

and

o~ (71 +|B]) +pulp|(A = B)\ (@),
Z( pulbl(A — B) ) |an — by| <6,

n=1
where
a>0,c>0,-1<B<A<1,§>0}.

We denote by H(ic(p; A, B, b, i) the class of functions f(z) € Hq(p; A, B, b, 1),
and f(z) of the form

(6) f(z) =277+ lan|z" (p € N).

n=p

Let N;(f) denotes the §-neighborhood of the function f € ¥, of the form (6),
by

Ny () ={9€%p:9(z) =27+ [balz"},

and

i (Mp(l — A)[b] +n(l - B)) (a)n-i—PHa | = |ba]| <6
= pulb|(A - B) ()ntp -
where a >0, ¢ >0, -1 <8< A<1, 0<pu<1,§ >0,bnon-zero complex
number.

We can re-write the condition (5) as

(7) ‘ Z(‘Cp(av C)f(z))/ +pﬁp(a,c)f(z)

B(Ly(a, ) f(2)) + Bl — ib) + ApblLy( [ (2) | ~
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We note that the definition of linear operator L(a,c) was motivated by
Carlson, Shaffer [1] in space of univalent functions (see also [7]).

Also we note that the concept of §-neighborhoods Ny(f) of analytic func-
tions f(z) was introduced by Ruscheweyh [6] and [2], but for meromorphic
p-valent function studied by Liu and Srivastava [4]. In the present paper, we
derive the generalization of the result by [4].

REMARK 1. (1) When we consider b = 1 and u = 1, Hyc(p; A, B,b, i)
reduces to the class H, .(p; A, B), which was studied by [4],

(2) When we consider a = 1, ¢ =1, b = 1, and p = 1, we get the class
H1+,1 (p; A, B), which was investigated earlier by Mogra [5].

LEMMA 1. (Jack [3]). Let the function w(z) (non-constant) be analytic in
U with w(0) = 0. If |w(z)| attains its mazimum value on the circle |z] =r < 1
at a point zg € U, then zow'(z0) = Mw(z0), when X is a real number and X > 1.

2. SOME BASIC PROPERTIES OF THE CLASSES H ;{ o(P;A,B,B, 1)
AND HA7C(P;A,B,B,/,L)
In this section we consider a > 0, ¢ >0, A+ B <0, where (-1 < B< A<
1).
We start to derive the necessary and sufficient condition of the function in
the class H,.(p; A, B, b, ).

THEOREM 1. Let a function f(z) defined by (6) be in X,,. Then the function
f(2) belongs to the class H;:c(p; A, B,b, ) if and only if

[e o]

®) Y0l = B)+ (1= B bl A~ BN o] < pupl(4 - B).

The result is sharp for the function f(z) given by

i plbl(A - B) Dkt g
@) ) =2+ <n(1 —B)+p(1—B—plp|(A— B))) (a)k:;

(k=p,p+1,p+2,--- ,neN).

Proof. Assuming that the inequality (8) holds true then, from (8), we find
that

’ 2(Lp(a, ) f(2)) + pLyp(a, o) f(2)
Bz(Lp(a,¢)f(2))" + [Bp(1l — pb) + ApublLp(a, ¢) f(2)

3 S0, (n + p) (9 fa|
" pulbl(A = B) + 0 (B + p) + pulbl (A — B)| (52 fan|
(zeU,zeC,|z| =1).

Hence, by the Maximum Modulus Theorem we have f(z) € H:c(p; A, B,b, ).

<1
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Conversely, suppose that f(z) is in the class H,j:c(p; A, B,b, ) with f(z) of
the form (6), then we find, from (7), that

2(Lp(a,c)f(2)) +pLy(a,c)f(z) _
Bz(Ly(a,c)f(2)) + [Bp(1 — ub) + Apub|Ly(a,c) f(z)

$oe (@)ntp n +p”an’2”+p

n=p (c)ntp

Publ(A = B) + 502 [B(n + p) + pub(A — B)] {42 |a,|2n+7

n

<1

If we choose z to be real and z — 17, we get

3 ECCL))nJr;D (n+p)lan| < pulb|(A—B)+> [B(n+p)+pulb|(A-B)] Eg’”p |an|
n=p n+p n=p "

which is precisely the assertion (8) of Theorem 1.
Finally, we note that the assertion (8) of Theorem 1 is sharp, the extremal
function being given by (9). This completes the proof of Theorem 1. 0

Next, we derive the sufficient condition of function in the class
Hgc(p; A, B, b, 1)

in the next theorem also we omit the proof as in same line of proof of Theo-
rem 1.

THEOREM 2. Let f € 3, be given by (1). Then the sufficient condition for
f(2) be in the class Hy(p; A, B,b, 1), that satisfies the condition

o)

S [n(1 - B) — pulpl(a - By Y

n=1 (C)

THEOREM 3. If f(2) € H .(p; A, B, b, 1), then

—

< pulb|(A - B)

3

(m) (p+m—1)!
e < { B
_<c>2p< ulbl(A — B) ) P }m
(@)2p \2(0— B) — u(b(A—B) ) o —m)! /
(10)
(m)(, (p+m—1)!
me) = { B
(C)Qp /”L‘b’(A_B) p! r2p L —p—m
@ (2(1 ~B) —u(!bl(A—B)) o —m)] }
(11)

O<|zl=r<lija>c>0meNyp>m0<pu<1,-1<B<ALILD
complex number.)
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The result is sharp for the function f(z) given by

- 1|b|(A — B) (©)2p
(12)  flx) =27+ <2<1 " B) — ulb|(A— B)> (a)zpz

Proof. Suppose that f(z) € H(;fc(p; A, B, b, 1), then we find, from (8), that
(@2 pR20-B) (A= BI S

(¢)2p p!

P (peN).

n=p

<§j B)+ pl1 = B = (4 = B 20, < pybl(4A = B).

We conclude that

o ulb|(A — B) (c)2p
(13) HZ;””““' = (2(1—3) —u!bl(A—B)> (a);p!.

If we differentiate both sides of (6 ) m times with respect to z, we get

m _ m(p+m —p—m n—m
F(z) = (-1 W - +Z |an|z
(mENO,pENp>m)
_ m(p+m ,P—m n—m
(14) = (-1 W +Zn' n)|an|z"™,

where, for convenience,

Clearly, the function ¢(n) is decreasing in n, and we have
1
15 0<opn) <oplp) =——
(15) o) < 9) = o

Making use of (13), (14) and (15), we get (10) and (11).
In order to complete the proof of Theorem 3, it is easily observed the equal-
ities in (10) and (11) are satisfied by the function f(z) given by (12). O

THEOREM 4. Let the function f(z) defined by (6) be in the class
H/.(p; A, B,b, ).

Then
(i) f is meromorphically p-valent starlike of order 6(0 < & < p) in the disk
|z| < ri, where

r1 = ri(p; A, B,b, u;0)
(16) = inf<(“)”+p.”(1—B>+(1—B—u|b|<A_B))_(p—5)>n+p

G W[bl(A — B) o

n>p
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(ii) f is meromorphically p-valent convex of order §(0 < & < p) in the disk
|z| < re, where

ro = 742(173 A7B7b7/’b75)

o (10 o OB (LB (A~ B))>nl+p
(©)ntp n(n + 6)u|b|(A — B) )

Proof. (i) Making use of the definition (6), it is not difficult to observe that
SIORIE Sk planlle™
2f'(2) + (20 = p)f(2)| ~ 2(p — 6) — o0z, (n+ p + 20)|an||z|" TP —

(lz] <r;0<d<1).
This last inequality (17) holds true if

> (n+0 nt
> (555 ) lanllelr < 1.

n=p

n>p

(17)

In view of (8), the last inequality is true if

<n+6) e < <n<1 — B)+p(1— B — plbl(A— B>>> (@nsy
p—0o B ulb|(A — B) (©)ntp

(n=p,p€EN)

which, when solved for |z|, yields (16).

(ii) Making use of the definition (6), it is easy to observe that
(18)

2f"(z) + (1 +p)f'(2)
2f"(z) + (1 —p+20)f'(2)
(z<re,0<d<1).

The last inequality (18) holds true if

2 onep 0+ p)lan2]" TP <1
= 2p(p = 0) = 25, n(n —p+ 20)|anl[z[" P T

[e.e]

(19) > (2 ol o <1

According to Theorem 3, the inequality (19) is true if

p(p—0) (A= B)) Dty
(n>p,peN)
or if
(@nsp 71— B)+p(1— B — ulb|(A~ B)) p(p — 8) \ 7
(20) lel < <<c>n+ff ulbj(A - B) n(n+ 5)) |

The theorem follows easily from (20). O
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3. INCLUSION PROPERTIES OF THE CLASS H 4 c(P; A, B, B, 1)

In this section we make use of the Jack’s Lemma to prove the theorems in
this section.

THEOREM 5. Let a > %, then we have

Hat1,(p; A, B,b,ji) C Hao(p; A, B, b, 1),
where =1 < B<A<1,0<u<1l,a€eR,ceR\{0,-1,-2,...},peN,ba
(non-zero) complex number.
Proof. Suppose f € Hqy1,.0(p; A, B,b, 1), and
z(Lp(a, ) f(2)) 1+ Aw(z)
Ly(a,c)f(z) 1+ Bw(z))

for some either analytic or meromorphic function w(z) in U, with w(0) = 0.
From (21) and (4) we get
alpla+1,0)f(2) _ a+[aB —pulb|(A - B)w(z)
L@ df() T+ Bu(?)
differentiating logarithmically both sides of (22) we get
ALplat LR  2(Lpa, () | (aB - pulbl(A— B)a/(2)

(21) = —p (1 — alb] + bl

(22)

Lplat1,0)f(z) — Lyla,c)f(z)  a+[aB —pulbl(A - B)lw(z)
_ BZ'w(?) - 14+ (B + ulb|(A - B))w(z)
1+ Bw(z) 1+ Bw(z)

pulbl(A - B)zw'(2)
(1+ Buw(2))[a+ (aB — pu|b|(A — B))w(2)]
Suppose that there exists a point zy € U such that

max |w(z)] = [w(zo)] =1, (w(zo0) # —1),

|21<]|20

(23) -

then Jack’s Lemma gives us that
2ow'(20) = kw(20), (k>1).

Now setting w(zp) = e(6 # 7) in (23) we get
‘ z20(Lp(a; ¢) f(20)) + PLp(a, ) f (20) ?
Bz(Lp(a, ) f(20)) + [Bp(1 — ub) + ApublLp(a, ¢) f(20)
_ ’ —p(a+k) + [aB —pub(A - B)le¥ *
| a+[aB— kB — pub(A — B)]e?

2

-1

-1

(a+ k) + [aB — pub(A — B)]e"
a+[aB —k — pub(A — B)|el?

V

But we have contradiction with the condition of the theorem.
Therefore we have |w(z)| < 1, and by (21) we get f € H,(p; A, B,b, ).
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This completes the proof. O
THEOREM 6. Let the function f(z) defined by (1) be in the class
Hac(p; A, B,b, ).
Then the function g(z) defined by

@) gleas) = (A5) [P e oswrane

0

(where o > 0, A > pa - (W) > 0,p € N) is also in same class

Hoc(pi A, B,b, ).
Proof. Let f € H, c(p; A, B,b, 1), and

z(Lp(a,c)g(2))’
‘Cp(aa C)g(Z)

for some either analytic or meromorphic function w(z) in U, with w(0) = 0.
From (6), we have

(25)

1+ Aw(z) )

= —p(1—pp| +plp| - =2
p (1=l + - 15

(26) Lyl = [P @ op@ear

0

Differentiating logarithmically both sides of (26), and after some computation,
we get

2(Lpla,c)g(2)) A A—pa [Lp(a,0)f(2)]"
0 S At |
then from (25) and (27), we have

AMLp(a, ) f(2))* + (ap — A)(Lp(a, ) f(2))*
(Lp(a,c)g(z))™
—ap [1 + (B + ulb|(A — B))w(z)] '

1+ Bw(z)
Differentiating both sides of last equality, and from (25) and (27), we get
2(Lp(a, ) f(2))" _ p(1+ [B + pfb[(A — B)] (2))
Lol 0f(z)  ap(l+ B+ ulbl(A— B)lw(z) — A1+ Bu(z)
(1+ [B+ p|b|(A — B)lw(z) + Bzw'(2
r-or I+ Bu(?) =}
(28) LB+ plbl(A = B)law'(z)

1+ [B+ p|b|(A — B)w(z)
Suppose that there exists a point zy € U such that

mae ()] = ()| = 1, (w(z0) # 1)
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then by Jack’s Lemma zow'(z0) = kw(z0), (k > 1). Now letting w(z0) =
(0 # ), in (28), we get
‘ 20(Lp(a, ¢) f(20))" + PLy(a; ) f(20)
Bzo(Lp(a,c)f(z0)) + [Bp(1 — ub) + pAublLy(a, c) f ( 0)
_‘A—i—k—ap%—[B)\—ap(B—i-,ub( — B))]e?
~|A—ap+[B\— Bk — ap[B + ub(A — B)|e?

2
-1

(20) _ q(9) .
A —ap+ (BXA — Bk — ap(B + u|b|(A — B)ei?|?’
where
q(0) = E*(1—B?%) +2k[(1+ B*X —ap(1+ B(B + u|b|(A — B)))]
+2k[2BX — ap(2B + p|b|(A — B)) cos 0,
where 0 <0 <27, - 1< B<A<1,k>1,0<pu<1,bacomplex number,
by hypothesis we have A > pa 1+[B+{‘J|fg’4_3” > pal_[BJrﬂbJéA_B)]. Therefore
(30) q(#) > 0 and ¢(7) > 0.
Hence, from (30), we obtain
(31) q(6) >0 (0<6<2m).

In view of (31) and (29), we get contradiction with the condition of the
theorem that f € Hg(p, A, B,b, ). Therefore we have |w(z)| < 1, and by
(21) we get g(z) € Hqc(p; A, B, b, ). This completes the proof. O

4. NEIGHBORHOOD OF THE CLASSES H4 ¢(P; A, B, B, )
AND H} (P; A, B, B, j1)

We start to prove the neighborhood of the class H, (p; A, B, b, i1).

THEOREM 7. Let the function f(z) defined by (1) be in H,(p; A, B,b, ).
For all € in C with |e| < 0, let

f(z) +ex7P

H 1A, B,b
1+€ € a,C(p7 ) 9 7:u)a

then
N5(f) C Hae(p; A, B, b, ) (6 > 0).

Proof. Let g € Hg(p; A, B,b, 1), then from (1.7), we can write, for (v €
C.J7l = 1), that

2(£Lp(a, c)g(2)) + pLy(a, c)g(2)
Bz(Lp(a,c)g(2))" + [Bp(1 — plb]) + App|bl] L£y(a, ¢)g(2)

o0
z)=zP+ E ez P
n=1

(32) # .

Let
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In view of (32), we can write

— P n(l —yB) — pyulb|(A — B)\ (a)nz""?
) B Z ( Ypp|bl(A — B) ) ‘

From (33), we obtain

len| = ’ (”(1 — B) — pyp|b|(A — B)) (a)n

< Mblp(A — B) +n(1+ |B])

Ypulbl(A — B) (©)n pu|bl(A — B)
where n > p, p € N.
Now we can write (32) as
h
(34) (92)() £0 (2 € U).
By the condition of the theorem, (34) reduced to
LR e Ly o U0
z7Pp 1+e 2P
Let
g(z) = 2P+ ba2"P € Ns(f),
n=1
then
(gxh)| _[fxh (g—f)*h| S5 ‘(g—f)*h‘
z7P z7P z7P z7P
But we have
‘zp = Z:l(an —bp)enz
pu[b[(A — B) +n(1 + |B|)> (a)n
< an —by| <6 (z€U,0 >0).
. Z (s (@, el <0 )
From (34) and (32), we get g € Hq(p; A, B,b, 1), so Ns C Hy o(p; A, B, b, ).
This completes the proof. O

THEOREM 8. Let f(z) be defined by (1), and let the partial sums Si(z) and
Si(2) are defined by Si(z) = z7P and

—zp—l-Zanz (ke N,kE>1).

Also suppose that

. (pulbl(A— B) 4 n(1+ [B) (a)
Z( pulbl(A— B) ) =t

(35)

n=1
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Ifa>0 and ¢ > 0, then f(z) € Hyc(p; A, B,b, 1), and if a > ¢ > 0, then

(36) R(i&%) >1—d1k(z€U, ke N),
and
(37) R<i’“((;))> > ljl_’“dk (z € U,k € N).

Each of (36) and (37) is the best possible for kn € N.
Proof. By applying Theorem 7 and from (35), we get
Ni(277) € Hae(p; A, B, b, i) (a>0, ¢>0, peN),

where 277 € H, o(p; A, B,b, ) (from (7)). Thus f € H,o(p; A, B, b, ).
Now, from (35), we find that

k—1 ) 00

38) D anl+dr Y lan] < dnlan| <1 (as dpy1 > dn > 1).
n=1 n==k n=1

Setting

oo =l (1)

{z p+2n ka”zn

27P + anl Ap 2" P dp,

from (38), we get

‘hl(z)—l‘ B di Yool 2"
hi(z) +1 24230 an2” +dp Y02y anz"
d e |an] < den 1\%!
2= 258 aul — do Sy fan] -3 faa]

This proves (36).
To prove that the bound in (36) is the best possible for each k € N, set

f(z) =

flz) _ - Zj
Sk(2) di,’

When z — 1, (39) reduces to (1 — 1/dy), which proves the assertion of the
theorem.
Now, in the same way we can prove (37), by setting

Sk (2) di; )
=(1+d — :
This completes the proof. O

(39)
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THEOREM 9. Let the function f(z) defined by (6) be in the class
Hi.(p; A, B,b, ),
and A+ B <0, then
Ny (f) € Haelp: A, B, b, p),

. _2p
where § := atop

The result is sharp.

Proof. We can prove this theorem in the same way as Theorem 7, with

h(z) = 2P+ chz”
n=p

_ ,-p 2 [(n+p)(1 —~vB) — ypulb|(A — B)) (a)n+pzn
- ! nz:;, [ plblpy(B — A) Ontp |’

and for A+ B <0and f € Hf .(p; A, B,b, ), we have
(f = h)(2)

i

2
> _5
a+2p

Next, to prove the sharpness, let f(z) and g(z) given by

f(Z) =Py ( ,U'|b‘(A— B) ) ( (C)2p P c H;:c(]% A,B,b,u)

2—2B—pub|(A—B)) (a+ 1)
and g(z) =
- [ A-B) (@ aA-B) (0],
2= 2B ubl(A—B) (at )y  2-2B—ubl(A—B) (a)sp]

where (5’ >0 = ai’;p), we get g(z) € N (f) but g(z) ¢ Hy.(p; A, B,b, ).
]
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