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QUASICONFORMAL EXTENSIONS
OF HOLOMORPHIC MAPS IN C"

PAULA CURT

Abstract. Let B be the unit ball in C™ with respect to the euclidian norm. In
this paper we will give a sufficient condition such that a holomorphic mapping
defined on B can be extended to a quasiconformal homeomorphism of R?*" onto
itself.
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1. INTRODUCTION AND PRELIMINARIES

J. Becker [1] showed that if f is a holomorphic function on the unit disc U
which satisfies
SLOIPEE

filz) |7 1=z
then f is univalent on U and extends to a quasiconformal homeomorphism of
R? onto itself.

This result was generalized by J.A. Pfaltzgraff [9] to several complex vari-
ables. He showed that if f is a quasiregular holomorphic mapping defined on
B and satisfies the following condition

(1= =PI D f(2)(z ) < g (0<g<1)

(|| - || denotes the euclidian norm on C"), then f is biholomorphic on B and
extends to a quasiconformal homeomorphism of R?” onto itself.

Recently, the problem of quasiconformal extensions for holomorphic map-
pings was also studied by M. Chuaqui [3], H. Hamada and G. Kohr [7], [8],
P. Curt [5].

In this paper we shall generalize the result due to J.A. Pfatzgraff [9] (men-
tioned in the previous paragraph).

Let C™ denote the space of n complex variables z = (z1, ..., 2,)" with the
n

usual inner product (z,w) = Z ziw; and euclidian norm ||z|| = y/(z, z). The
i=1

symbol / means the transpose of vectors. Let B denote the open unit ball in

C™. We denote by L£(C™) the space of linear operators from C" into C", i.e.

the n x n complex matrices A = (Aj;), with the standard operator norm.
The class of holomorphic mappings f(z) = (f1(2),-.., fn(2)), z € B, from

B into C™ is denoted by H(B). We say that f € H(B) is locally biholomorphic

(locally univalent) in B if f has a local holomorphic inverse at each point in

(0<g<1),
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B, or equivalently, if the derivative

is nonsingular at each point z € B. If f € H(B), we say that f is biholo-
morphic on B if the inverse f~! exists and is holomorphic on the domain
1(B).

If f,g € H(B), we say that f is subordinate to g if there exists a Schwarz
function v such that f(z) = g(v(z)), 2 € B. We shall write f < g to mean
that f is subordinate to g.

We say that f € H(B) is quasiregular in B if there exists a constant K > 0
such that

(1.1) |IDf(2)|™ < K|det Df(2)|, =z € B.

It is known that a holomorphic and quasiregular mapping is locally biholo-
morphic [2].

Let G and G’ be domain in R™. Let |-| be an arbitrary norm on R™. We say
that a homeomorphism f : G — G’ is k-quasiconformal if it is differentiable
a.e., A C L (absolutely continuous on lines) and

|IDf(z)|™ < K|det Df(z)| a.e. in G

where D f(x) denotes the (real) Jacobian matrix of f at x. The definition of
quasiconformality is independent of the choice of a norm on R™.

DEFINITION 1.1. The mapping L : B x [0,00) — C" is called a normalized
Loewner chain (normalized subordination chain) if

(i) L(-,t) is biholomorphic on B, t > 0

(ii) L(0,t) = 0, DL(0,t) =¢€'I, t > 0

(iii) L(-,s) < L(-,t) for 0 < s <t < o0

(iv) L(z,-) is a locally absolutely continuous function of ¢ € [0, 00) locally
uniformly with respect to z € B.

Note that in the case of one variable, the assumption (iv) is always satisfied
as a consequence of the distorsion result for the class of normalized univalent
functions defined on the disc U.

An important role in our discussion is played by the n-dimensional version
of the Caratheodory set:

M = {h e H(B): h(0) =0, Dh(0) = I, Re (h(2),2) >0, z € B).

Recently, in [6] P. Curt and G. Kohr proved that normalized subordination
chains satisfy the generalized Loewner differential equation.

THEOREM 1.1. Let L : B x [0,00) — C™ be a normalized subordination
chain. Then there exists E C (0,00) a set of Lebesque measure zero such that
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for every t € (0,00) \ E there exists h(z,t) such that h(-,t) € M, h(z,-) is

measurable on [0,00) for each z € B and
L
(1.2) 6é—t(z,t) = DL(z,t)h(z,t), te€(0,00)\E, z€ B.

DEFINITION 1.2. [5] Let L : Bx[0,00) — C™ be a normalized subordination
chain and let ¢ € [0, 1).

We say that L is a ¢-normalized subordination chain if the mapping h
defined by Theorem 1.1 satisfies the following conditions:

(i)
(13 1271 < e gnz,),2) < o 1A
1+q| =] —ql=l’
2 € B, ae. t €[0,00)
(ii) there is a constant ¢; > 0 such that
(1.4) |h(z,t)]| <q1, z€ B, ae. te]0,00).

In the next remark, we will present a class of holomorphic mappings which
satisfy the conditions (1.3) and (1.4).

REMARK 1.1. [5] Let ¢ € [0,1) and h : B x [0,00) — C™ defined by
h(z,t) = [I = E(z,t)] "I + B(2,1)](2),

where F satisfies the following conditions:
(i) E(z,t) € L(C™), z€ B, t €[0,00)
(ii) E(-,t) : B — L(C™) is a holomorphic mapping
(i) E(0,2) = 0, | E(= )| < q.
Then h satisfies the conditions (1.3) and (1.4).

We shall need the following theorem to prove our results.

THEOREM 1.2. [5] Let g € [0,1) and L : Bx [0,00) — C" be a g-normalized
subordination chain. Assume that the following conditions are satisfied:
(i) L(-,t) is quasiregular for each t € [0, 00)

(i)

(1.5) IDL(z, 1) <

et M

(1= =l)*’

z € B, te€l0,00),
where M >0 and 0 <a <1
(iii) there is a sequence {tm}m, tm > 0, increasing to oo and a mapping
F € H(B) such that
(1.6) lim ———= = F(z), locally uniformly in B.

Then f(z) = L(z,0) admits a quasiconformal extension to R?".
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2. MAIN RESULTS
THEOREM 2.1. Let f,g € H(B) such that f(0) = ¢g(0) = 0, Df(0) =

Dg(0) = I and g is quasireqular in B. If there is q € [0,1) such that
(2.1) IDg()) "' Df(z) ~ Il <q, z€B

and

(2.2)

|11 Dg () D (2) = 1} + (1 = 2P)[Dg(2)] " D2g(2)(z, )| < a2 € B,
then f extends to a quasiconformal homeomorphism of R?™ onto itself.

Proof. We shall show that the conditions (2.1) and (2.2) enable us to imbed
f as the initial element f(z) = L(z,0) of a suitable normalized chain.
We define

(2.3) L(z,t) = f(e7'2) + (e' —e ) Dg(ze ") (2), (z,t) € B x [0,00).

In [4] the authors proved that the mapping L defined by (2.3) is a nor-
malized subordination chain. In the same paper the authors showed that the
subordination chain defined by (2.3) satisfies the generalized Loewner equation
(1.2) where the mapping h is defined by

(2.4) h(z,t) = [I — E(z,t)] I + E(2,1)](2), (2,t) €[0,00)
and the mapping F : B x [0,00) — L(C") is defined by
(25)  B(at) = e 2{[Dgle )] Df(e i) — T} -

— (L= ) [Dg(e™'2)] ' D?g(e™'2) (e 2, ).

Further, we shall show that ||E(z,t)|| < ¢ for all (z,t) € B x [0,00). We
consider:

A(e™'z) = [Dg(e2)| ' Df(e7'2) — I,
B(e7'z) = [Dg(e™t2)| 7' D?g(e7t2) (e M2, -)
and
F(z,t,\) = M(e7'2) + (1 = A\)B(e7'2), X e€]0,1].

From (2.1) and (2.2) it results |[A(e™!2)| < q and ||F(2,t,\,)|| < g where
A =e 2z||?, 2€ B, t>0. Since 1 >e 2 > \,, forall z€ B and t > 0 we
can write e 2 = u + (1 — u)\,, where u € [0,1). Then

—E(z,t) =uA(e '2) + (1 —u)F(z,t,).), wu€l0,1).
We obtain
1Bz )] < ulAle™ )| + (1 —w)[|F(z ) <q, (2,t) € B x[0,00)

and hence I — F(z,t) is an invertible operator.
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Further calculation shows that
(2.6) 8L§?t) = e'Dg(e "2)[I + E(z,1)](2)
(2.7) = DL(z,t)[I — E(z,t)] "I + B(2,t)](2).

It results that L(z,t) satisfies the differential equation (1.2) for all t > 0
and z € B, where

h(z,t) = [I — E(z,t)] I + E(z,1)](2).

Hence L is a ¢g-normalized subordination chain which satisfies (1.6) [4].

Next, we will prove (1.5). By using the fact that g is a quasiregular mapping
which satisfies (2.1) and (2.2) we will show that the mapping ¢ satisfies the
condition (1.5). By using (2.1) and (2.2) we obtain first

(2.8) (1= [=IM)[Dg(2))' D?g(2) (2, )| < 2¢, =z € B.
From (2.6), by using a similar argument with that used in the proof of
Theorem 2.1 [9] we obtain that there exists M > 0 such that
M
(2.9) Dy < —M e
(L —1[zlh)e
The equality
e 'DL(z,t) = Dg(ze Y)[I — E(z,1)]
implies that
(2.10) [l DL(z, )| < [[Dg(ze )| - |1 = E(z,1)]|
M(1+q _ MO1+q)
(1= lze=t[)e = (1 —l=])e’
It remains to prove that the mappings L(-,t), t > 0, are quasiregular. For
the subordination chain defined by (2.3) we have
DL(z,t) = e'Dg(e '2)[I — E(2,t)], z€ B, t>0.

Since g is a quasiregular holomorphic mapping and the following inequality
holds

(2.11)

IN

ze B, t>0.

1—g¢g<|I-E(zt)||<14¢q, z€B, t>0
we easily obtain
(2.12)  [DL(z,t)[]" ™[ Dg(e"2)|"|I1 = E(z,t)||"
e" (14 q)"K|det Dg(e"2)|
(149K

= TdetlT = Bz, 4t PEE )

<
<

1+g¢ "

< T K|det DL(z,t)|, ze€ B, t>0.
—q

Since the conditions of Theorem 1.2 are satisfied we obtain that the function

f(2) = L(z,-) admits a quasiconformal extension defined on R?". O
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Observe that if f = g, we obtain Theorem 3.1 of [9].
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