TWO-DIMENSIONAL POTENTIALS GENERATING A GIVEN
ONE-PARAMETER FAMILY OF ORBITS ON A SURFACE

THOMAS KOTOULAS

Abstract. We say that a potential generates a curve on a surface if a unit mass traces the curve under the action of the potential. We consider the following problem: a one-parameter family of regular curves \(f(u, v) = c \) on a surface \(r(u, v) = \{ x(u, v), y(u, v), z(u, v) \} \) is given. We seek two-dimensional potentials of the form \(V(u, v) = u^m R(u) \), \(R \) being an arbitrary \(C^2 \)-function, which generate this family of regular curves as trajectories on the above surface. We show that if the given family of orbits satisfies exactly two differential conditions, then such a potential exists and it is determined uniquely. Special cases are also studied and pertinent examples are given for each case. At a second step, if we consider that the “slope function” \(\gamma(u, v) = f_y/f_x \) is homogeneous of zero degree and the components of the metric tensor are homogeneous functions of zero degree too, then a potential of the above form always exists and it is found as a solution of an ordinary second-order O.D.E. Several examples are offered and implications of this study are discussed.

MSC 2000. 70F17, 70M20, 53A05, 35F05, 35G05, 35G20

Key words. Inverse problems, one-parameter family of orbits, 2D Potentials, O.D.Es and P.D.Es.

REFERENCES

Received May 22, 2007

Aristotle University of Thessaloniki
Department of Physics
Section of Astrophysics, Astronomy and Mechanics
P.O.Box: 102, Post Code: 54124, Greece
E-mail: tkoto@skiathos.physics.auth.gr