Relatively lifting modules

Septimiu Crivei *

Faculty of Mathematics and Computer Science "Babeş-Bolyai" University 400084 Cluj-Napoca, Romania E-mail: crivei@math.ubbcluj.ro

Abstract. We consider a generalization of lifting modules relative to a class \mathcal{A} of modules and a proper class \mathbb{E} of short exact sequences of modules. These modules will be called \mathbb{E} - \mathcal{A} -lifting. We establish characterizations of modules with the property that every direct sum of copies of them is \mathbb{E} - \mathcal{A} -lifting.

2000 Mathematics Subject Classification: 16S90, 16D80.

Keywords: Proper class, torsion theory, lifting module.

Received 25 August 2007 Revised 29 June 2008 Communicated by Nanqing Ding

1 Introduction

Let \mathcal{A} be a class of modules closed under isomorphisms and containing the zero module. Al-Khazzi and Smith studied in [1] the class $d^*\mathcal{A}$ consisting of modules A with the property that every submodule B of A contains a direct summand C of A such that $B/C \in \mathcal{A}$. The main motivation for their study was to offer a general setting for decomposing certain modules into a direct sum of a module in \mathcal{A} and some other module. The modules in the class $d^*\mathcal{A}$ may also be seen as relative versions of the extensively investigated lifting modules (e.g., see [3]), that is, modules A such that B/C is superfluous in A/C. Lifting modules have been generalized in [4] to \mathbb{E} -lifting modules by using instead of direct summands (i.e. splitting short exact sequences) elements of a proper class \mathbb{E} of short exact sequences in the sense of Buchsbaum [2] or Mishina and Skornjakov [7].

In the present paper we put together the ideas from [1] and [4] in order to generalize the class $d^*\mathcal{A}$ by using such proper classes. The members of this new class of modules will be called \mathbb{E} - \mathcal{A} -lifting modules. They generalize lifting modules, but also \mathbb{E} -lifting modules, since every \mathbb{E} -lifting module is \mathbb{E} - \mathcal{S} -lifting, where \mathcal{S} is the class of small modules. We also consider a specialization of this notion, called strongly \mathbb{E} - \mathcal{A} -lifting module. We see the class \mathcal{A} as a cogenerating class for a torsion theory τ in the category $\sigma[M]$ and we establish characterizations of Σ -(strongly) \mathbb{E} - \mathcal{A} -lifting modules, that is, modules for which every direct sum of copies is (strongly) \mathbb{E} - \mathcal{A} -lifting. As a consequence, we deduce that

^{*}The author acknowledges the support of the grant CEEX-ET 19/2005.

if a module M is Σ - \mathcal{A} -lifting, then every submodule of a direct sum of copies of M is a direct sum of a module in \mathcal{A} and a module in the class $\operatorname{Add}(M)$ of direct summands of direct sums of copies of M. Finally, for a Σ - \mathbb{E} -lifting module M, we show that the property that a module belongs to a class generalizing the class $\operatorname{Add}(M)$ is lifted by certain epimorphisms.

Throughout R is an associative ring with non-zero identity and all modules are unital right R-modules. By a class of modules we mean a class of modules closed under isomorphisms and containing the zero module. Throughout Mwill be a module and \mathcal{A} a class of modules in the category Mod-R of right Rmodules. As usual, M is said to be Σ - \mathcal{P} (respectively \prod - \mathcal{P}) if every direct sum (respectively direct product) of copies of M has the property \mathcal{P} . Denote by $\sigma[M]$ the full subcategory of Mod-R whose objects are submodules of M-generated modules. By τ we denote a (not necessarily hereditary) torsion theory in $\sigma[M]$ and by t(A) we denote the torsion submodule of a module A. Let \mathcal{X} be any class of modules and A be a module. Then $f \in \text{Hom}(A, X)$, with $X \in \mathcal{X}$, is called an \mathcal{X} -preenvelope of A if the induced abelian group homomorphism $\text{Hom}(X, X') \to \text{Hom}(A, X')$ is surjective for every $X' \in \mathcal{X}$.

For further terminology concerning lifting modules and torsion theories the reader is referred to [3] and [10].

2 Relatively coclosed modules

Let us give the following definitions and some basic related properties.

Definition 2.1. (i) A submodule C of a module A is called \mathcal{A} -dense in A if $A/C \in \mathcal{A}$.

(ii) A module C is called \mathcal{A} -coclosed if $C/C' \notin \mathcal{A}$ for every C' < C.

Definition 2.2. Let A be a module. A submodule C of A is called an A-coclosure of A if C is an A-dense submodule of A and C is A-coclosed.

Lemma 2.3. Let \mathcal{A} be closed under submodules and C be a module. Then C is \mathcal{A} -coclosed if and only if $\operatorname{Hom}(C, Y) = 0$ for every $Y \in \mathcal{A}$.

Proof. Suppose that C is \mathcal{A} -coclosed. Let $Y \in \mathcal{A}$ and $f \in \text{Hom}(C, Y)$. Since $\text{Im } f \subseteq Y \in \mathcal{A}$ and $C/\text{Ker } f \cong \text{Im } f$, we must have Ker f = C, because otherwise C is not \mathcal{A} -coclosed. Hence f = 0, and so Hom(C, Y) = 0. Conversely, suppose that Hom(C, Y) = 0 for every $Y \in \mathcal{A}$ and let C' < C. Then $\text{Hom}(C, C/C') \neq 0$, hence $C/C' \notin \mathcal{A}$. Thus C is \mathcal{A} -coclosed. \Box

The following well known technical result on torsion theories will be useful.

Lemma 2.4. Let $\mathcal{A} \subseteq \sigma[M]$ be closed under submodules and $\tau = (\mathcal{T}, \mathcal{F})$ be cogenerated by \mathcal{A} . Then $\mathcal{F} = \{N \mid \forall 0 \neq L \leq N, \exists L' < L : L/L' \in \mathcal{A}\}.$

Now we see \mathcal{A} as a cogenerating class of τ .

Lemma 2.5. Let τ be cogenerated by $\mathcal{A} \subseteq \sigma[M]$ and let C be a module. (i) If C is τ -torsion, then C is \mathcal{A} -coclosed. (ii) If \mathcal{A} is closed under submodules and C is \mathcal{A} -coclosed, then C is τ -torsion. *Proof.* (i) Clear.

(ii) Let D = t(C). If $D \neq C$, then by Lemma 2.4 the τ -torsionfree module C/D has a proper submodule C'/D such that $C/C' \cong (C/D)/(C'/D) \in \mathcal{A}$, contradicting the fact that C is \mathcal{A} -coclosed. Hence D = C, so that C is τ -torsion.

Corollary 2.6. Let $\mathcal{A} \subseteq \sigma[M]$ be the torsionfree class of τ , C be a module and B be a submodules of C. Then:

(i) C is A-coclosed if and only if it is τ -torsion.

(ii) B is an A-coclosure of C if and only if C is τ -torsion and C/B is τ -torsionfree.

For the sake of brevity, let us say that a module M has the \mathcal{A} -coclosure property if every submodule of M has an \mathcal{A} -coclosure. In the following example we see that there are modules with the \mathcal{A} -coclosure property, but also without it.

Example 2.7. (i) Recall that a module $A \in \sigma[M]$ is called *M*-rational if $\operatorname{Hom}(C, M) = 0$ for every submodule *C* of *A* [3, p. 84]. Let $\operatorname{Cogen}(M)$ be the class of *M*-cogenerated modules, that is, the class of modules *K* for which there exists a monomorphism from *K* to some direct product M^{I} . Then by Lemma 2.3 it follows easily that a module $A \in \sigma[M]$ is *M*-rational if and only if every submodule of *A* is $\operatorname{Cogen}(M)$ -coclosed. Moreover, clearly every *M*-rational module has the $\operatorname{Cogen}(M)$ -coclosure property.

(ii) Let \mathcal{Z} be the class consisting of the zero modules and the simple modules. Also, let B be a module with the radical consisting of a simple module, say D, which is also a maximal submodule of B (and so B is a module of composition length 2). We claim that B does not have a \mathcal{Z} -coclosure. Suppose the contrary and denote by C a \mathcal{Z} -coclosure of B. Then $B/C \in \mathcal{Z}$, hence C could be either B or D. But neither B nor D is \mathcal{Z} -coclosed, because we have $B/D \in \mathcal{Z}$ and $D \in \mathcal{Z}$. This is a contradiction, so the claim follows.

3 Relatively lifting modules and proper classes

Recall the definition of a proper class of short exact sequences (e.g., see [3, 10.1]).

Definition 3.1. Let \mathbb{E} be a class of short exact sequences in Mod-*R*. If an exact sequence $0 \to K \xrightarrow{f} L \xrightarrow{g} N \to 0$ belongs to \mathbb{E} , then *f* is called an \mathbb{E} -monomorphism and *g* is called an \mathbb{E} -epimorphism. Also, Im *f* is called an \mathbb{E} -submodule of *L* and *N* is called an \mathbb{E} -homomorphic image of *L*.

The class \mathbb{E} is called a *proper class* if it has the following properties:

P1. \mathbb{E} is closed under isomorphisms;

P2. E contains all splitting short exact sequences;

P3. the class of E-monomorphisms is closed under composition;

if f, f' are monomorphisms and f'f is an \mathbb{E} -monomorphism, then f is an \mathbb{E} -monomorphism;

P4. the class of E-epimorphisms is closed under composition;

if g,g' are epimorphisms and gg' is an $\mathbb E\text{-epimorphism},$ then g is an $\mathbb E\text{-epimorphism}.$

Example 3.2. Some examples of proper classes are the following (e.g., see [3]): (i) The class \mathbb{E}_s of all splitting short exact sequences in Mod-*R*.

(ii) The class $\mathbb{E}^{\mathcal{X}}$ of all short exact sequences in Mod-R on which the functor $\operatorname{Hom}(X, -)$ is exact for every $X \in \mathcal{X}$, where \mathcal{X} is any class of modules in Mod-R. Its elements are called \mathcal{X} -pure exact sequences. For the class $\mathcal{X} = \mathcal{P}$ of finitely presented modules, one has the classical pure exact sequences.

Throughout, \mathbb{E} will be a proper class of short exact sequences in Mod-R. We introduce the following definition.

Definition 3.3. A module A is called \mathbb{E} - \mathcal{A} -lifting if every submodule B of A contains an \mathbb{E} -submodule C of A such that C is \mathcal{A} -dense in B.

For $\mathbb{E} = \mathbb{E}_s$, we call \mathbb{E}_s - \mathcal{A} -lifting modules simply \mathcal{A} -lifting. Note that the class of \mathcal{A} -lifting modules is exactly the class $d^*\mathcal{A}$ from the introduction.

Example 3.4. (i) Every semisimple module is \mathbb{E} - \mathcal{A} -lifting.

(ii) Let \mathcal{O} be the class of zero modules. Then a module is \mathcal{O} -lifting if and only if it is semisimple. Also, a module is $\mathbb{E}^{\mathcal{P}}$ - \mathcal{O} -lifting if and only if it is regular in the sense of [11, Chapter 37].

(iii) Recall that a module A is called τ -supplemented if every submodule B of A contains a direct summand C of A such that B/C is τ -torsion [6]. If \mathcal{A} is the torsion class of τ , then \mathcal{A} -lifting means τ -supplemented.

(iv) Recall that a module $A \in \sigma[M]$ is called *M*-small if *A* is superfluous in some module $A' \in \sigma[M]$. Also, recall that a module *A* is called \mathbb{E} -lifting if every submodule *B* of *A* contains an \mathbb{E} -submodule *C* of *A* such that B/C is superfluous in A/C [4]. If $A \in \sigma[M]$ is \mathbb{E} -lifting, then it is clearly \mathbb{E} -*S*-lifting, where *S* is the class of *M*-small modules. In particular, every lifting module is *S*-lifting.

(v) Let τ be cogenerated by $\mathcal{A} \subseteq \sigma[M]$ and suppose that τ is cohereditary. If A is τ -torsion \mathcal{A} -lifting, then it is lifting. Indeed, if B is a submodule of A, then it contains some direct summand C of A such that $B/C \in \mathcal{A}$, hence B/C is τ -torsionfree. We claim that X = B/C is superfluous in Y = A/C. If Z < Y, then we have $Z + X \neq Y$, because otherwise the non-zero module $X/(Z \cap X)$ would be both τ -torsion, being isomorphic to Y/Z, and τ -torsionfree, because τ is cohereditary. This shows that A is lifting.

Lemma 3.5. (i) Let A be an \mathbb{E} -A-lifting module. Then every A-coclosed submodule of A is an \mathbb{E} -submodule.

(ii) Let A be a module with the A-coclosure property such that every A-coclosed submodule of A is an \mathbb{E} -submodule. Then A is \mathbb{E} -A-lifting.

(iii) The class of \mathbb{E} - \mathcal{A} -lifting modules is closed under submodules.

Proof. (i) Let B be an \mathcal{A} -coclosed submodule of A. Then B contains an \mathbb{E} -submodule C of A such that $B/C \in \mathcal{A}$. Then B = C, because otherwise we would have $B/C \notin \mathcal{A}$ since B is \mathcal{A} -coclosed. Hence B is an \mathbb{E} -submodule of A.

(ii) Let B be a submodule of A and C be an A-coclosure of B. Then $B/C \in \mathcal{A}$ and C is A-coclosed, so that C is an \mathbb{E} -submodule. Hence A is \mathbb{E} -A-lifting.

(iii) Let A be an \mathbb{E} -A-lifting module and D be a submodule of A. Let B be a submodule of D. Then B contains an \mathbb{E} -submodule C of A such that $B/C \in \mathcal{A}$. Then C is an \mathbb{E} -submodule of D, showing that D is \mathbb{E} - \mathcal{A} -lifting.

4 Σ - \mathbb{E} - \mathcal{A} -lifting modules

Following [4], we denote by $\mathbb{E}\operatorname{Prod}(M)$ (respectively $\mathbb{E}\operatorname{Prod}'(M)$) the class of modules K for which there is an \mathbb{E} -monomorphism from K to some direct product M^{I} (respectively direct sum $M^{(I)}$) of copies of M and by $\operatorname{Cogen}(M)$ (respectively $\operatorname{Cogen}'(M)$) the class of modules K for which there exists a monomorphism from K to some M^{I} (respectively $M^{(I)}$). For instance, $\mathbb{E}_{s}\operatorname{Prod}(M)$ (respectively $\mathbb{E}_{s}\operatorname{Prod}'(M)$) is the class $\operatorname{Prod}(M)$ (respectively $\operatorname{Add}(M)$) of direct summands of direct products (respectively direct sums) of copies of M.

We need the following lemma, whose proof is straightforward taking into account that the composition of two E-monomorphisms is again an E-monomorphism.

Lemma 4.1. [4, Lemma 3.1] The classes $\mathbb{E}Prod(M)$ and $\mathbb{E}Prod'(M)$ are both closed under \mathbb{E} -submodules.

Recall that a module is called *direct injective* if for every direct summand X of M, every monomorphism $X \to M$ splits (for instance, see [5, 2.11]). In our context, we need a generalization of direct injectivity with respect to proper classes, which was considered in [4].

Definition 4.2. A module M is called \mathbb{E} -direct injective if, for every \mathbb{E} -submodule X of M, every monomorphism $X \to M$ is an \mathbb{E} -monomorphism.

 Σ - \mathbb{E} -direct injective modules may be characterized as follows. We sketch a proof for the reader's convenience.

Lemma 4.3. [4, Lemma 4.6] A module M is Σ - \mathbb{E} -direct injective if and only if for every $U \in \operatorname{Cogen}'(M)$ and every $V \in \operatorname{EProd}'(M)$, every monomorphism $V \to U$ is an \mathbb{E} -monomorphism.

Proof. Suppose first that M is Σ - \mathbb{E} -direct injective. Let $U \in \operatorname{Cogen}'(M)$ and $V \in \mathbb{E}\operatorname{Prod}'(M)$ and let $f: V \to U$ be a monomorphism. Then there exist a monomorphism $g: U \to M^{(I)}$ and an \mathbb{E} -monomorphism $h: V \to M^{(J)}$. Let us consider the monomorphism $igf: V \to M^{(I)} \oplus M^{(J)}$, where $i: M^{(I)} \to M^{(I)} \oplus M^{(J)}$ is the inclusion monomorphism. Since we may see V as an \mathbb{E} -submodule of $M^{(I)} \oplus M^{(J)}$ and M is Σ - \mathbb{E} -direct injective, igf is an \mathbb{E} -monomorphism, hence f has to be an \mathbb{E} -monomorphism. The converse is clear. □

Now we can establish our main result on Σ - \mathbb{E} - \mathcal{A} -lifting modules.

Theorem 4.4. Let τ be cogenerated by $\mathcal{A} \subseteq \sigma[M]$. Consider the following statements:

- (a) M is Σ - \mathbb{E} - \mathcal{A} -lifting;
- (b) Every module in Add(M) is \mathbb{E} - \mathcal{A} -lifting;
- (c) Every $K \in \text{Cogen}'(M)$ has an \mathbb{E} -homomorphic image $K/Y \in \mathcal{A}$ such that $Y \in \mathbb{E}\text{Prod}'(M)$;
- (d) Every τ -torsion module in Cogen'(M) is in \mathbb{E} Prod'(M);
- (e) Every τ -torsion module in Cogen'(M) is \mathbb{E} -A-lifting.

Then the following implications hold:

- 1. For every module M, $(a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d)$.
- 2. If M is Σ - \mathbb{E} -direct injective, then $(c) \Rightarrow (a)$.
- 3. If M is Σ - \mathbb{E} -direct injective, has the Σ -A-coclosure property, and A is closed under submodules, then $(d) \Rightarrow (e)$.
- 4. If M is τ -torsion, then $(e) \Rightarrow (a)$.

Proof. (1) (a) \Leftrightarrow (b) Suppose that M is Σ - \mathbb{E} - \mathcal{A} -lifting and let $N \in \text{Add}(M)$. Then there is a monomorphism $N \to M^{(I)}$. Now by Lemma 3.5 it follows that N is \mathbb{E} - \mathcal{A} -lifting. The converse is obvious.

(b) \Rightarrow (c) Let $K \in \text{Cogen}'(M)$ and take a monomorphism $f : K \to M^{(I)}$. Since $M^{(I)}$ is \mathbb{E} - \mathcal{A} -lifting, f(K) contains an \mathbb{E} -submodule L such that $f(K)/L \in \mathcal{A}$. If $Y = f^{-1}(L)$, then it follows that $K/Y \in \mathcal{A}$, $Y \in \mathbb{E}\text{Prod}'(M)$ and Y is an \mathbb{E} -submodule of K.

(c) \Rightarrow (d) Clear.

(2) Assume that M is Σ - \mathbb{E} -direct injective.

(c) \Rightarrow (a) Let *I* be a set and *K* be a submodule of $M^{(I)}$. Then by hypothesis *K* has an \mathbb{E} -homomorphic image $K/Y \in \mathcal{A}$ such that $Y \in \mathbb{E}\operatorname{Prod}'(M)$. Then by Lemma 4.3, the inclusion monomorphism $Y \to M^{(I)}$ is an \mathbb{E} -monomorphism, hence *Y* is an \mathbb{E} -submodule of $M^{(I)}$. Thus $M^{(I)}$ is \mathbb{E} - \mathcal{A} -lifting.

(3) Assume that M is Σ - \mathbb{E} -direct injective, has the Σ - \mathcal{A} -coclosure property, and \mathcal{A} is closed under submodules.

 $(d) \Rightarrow (e)$ Let K be a τ -torsion module in Cogen'(M) and consider a monomorphism $f: K \to M^{(I)}$. Let L be a proper submodule of K. Then f(L) has an \mathcal{A} -coclosure, say C. It follows that C is τ -torsion by Lemma 2.5. Since $C \in \operatorname{Cogen'}(M)$, we have $C \in \mathbb{E}\operatorname{Prod'}(M)$ by hypothesis. Now by Lemma 4.3 the inclusion $C \to f(K)$ is an \mathbb{E} -monomorphism. Then the inclusion $f^{-1}(C) \to K$ is an \mathbb{E} -monomorphism. Since $f^{-1}(C)$ is \mathcal{A} -coclosed, it follows that K is \mathbb{E} - \mathcal{A} -lifting.

(4) Assume that M is τ -torsion.

(e) \Rightarrow (a) If M is τ -torsion, then every $M^{(I)}$ is τ -torsion, hence \mathbb{E} - \mathcal{A} -lifting.

For the proper class $\mathbb{E} = \mathbb{E}_s$ we obtain the following consequence.

Corollary 4.5. Let τ be cogenerated by $\mathcal{A} \subseteq \sigma[M]$. Consider the following statements:

- (a) M is Σ -A-lifting;
- (b) Every module in Add(M) is A-lifting;
- (c) Every module in Cogen'(M) is a direct sum of a module in A and a module in Add(M);
- (d) Every τ -torsion module in Cogen'(M) is in Add(M);
- (e) Every τ -torsion module in Cogen'(M) is A-lifting.

Then the following implications hold:

1. For every module M, $(a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d)$.

- 2. If M is Σ -direct injective, then $(c) \Rightarrow (a)$.
- 3. If M is Σ -direct injective, has the Σ -A-coclosure property, and the class A is closed under submodules, then $(d) \Rightarrow (e)$.
- 4. If M is τ -torsion, then $(e) \Rightarrow (a)$.

Corollary 4.6. Let τ be the torsion theory in Mod-R cogenerated by A. Consider the following statements:

- (a) R is right Σ -A-lifting;
- (b) Every projective module is A-lifting;
- (c) Every submodule of a free module is a direct sum of a module in A and a projective module;
- (d) Every τ -torsion submodule of a free module is projective;
- (e) Every τ -torsion submodule of a free module is A-lifting.

Then the following implications hold:

- 1. For any R, $(a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d)$.
- 2. If R is Σ -direct injective, then $(c) \Rightarrow (a)$.
- If R is Σ-direct injective, has the Σ-A-coclosure property, and the class A is closed under submodules, then (d)⇒(e).
- 4. If R is τ -torsion, then $(e) \Rightarrow (a)$.

One may further particularize Theorem 4.4 to some classes \mathcal{A} , of which the classes of τ -supplemented or M-small modules (see Example 3.4) are of interest.

5 Σ -strongly \mathbb{E} - \mathcal{A} -lifting modules

Now let us consider a natural intermediate notion between those of \mathcal{A} -lifting module and \mathbb{E} - \mathcal{A} -lifting module.

Definition 5.1. A module M is called *strongly* \mathbb{E} - \mathcal{A} -*lifting* if M has the \mathcal{A} -coclosure property and the \mathcal{A} -coclosed submodules of M coincide with its \mathbb{E} -submodules.

Lemma 5.2. Let A be a strongly \mathbb{E} -A-lifting module and D be an A-coclosed submodule (\mathbb{E} -submodule) of A. Then D is strongly \mathbb{E} -A-lifting.

Proof. By Lemma 3.5, D is \mathbb{E} - \mathcal{A} -lifting. Since A has the \mathcal{A} -coclosure property, then clearly so does any submodule of A. Finally, let B be an \mathbb{E} -submodule of D. Since D is an \mathbb{E} -submodule of A, B is an \mathbb{E} -submodule of A, and so an \mathcal{A} -closed submodule of A. Therefore, D is strongly \mathbb{E} - \mathcal{A} -lifting.

In the following result we characterize Σ -strongly \mathbb{E} - \mathcal{A} -lifting modules.

Theorem 5.3. Let τ be cogenerated by $\mathcal{A} \subseteq \sigma[M]$. Consider the following statements:

- (a) M is Σ -strongly \mathbb{E} - \mathcal{A} -lifting;
- (b) Every module in Add(M) is strongly \mathbb{E} - \mathcal{A} -lifting;
- (c) Every module in $\mathbb{E}Prod'(M)$ is strongly \mathbb{E} - \mathcal{A} -lifting;
- (d) Every τ -torsion module in Cogen'(M) is strongly \mathbb{E} - \mathcal{A} -lifting;
- (e) \mathbb{E} Prod'(M) consists of the τ -torsion modules in Cogen'(M).

Then the following implications hold:

- 1. For every module M, $(a) \Leftrightarrow (b) \Leftrightarrow (c)$.
- 2. If \mathcal{A} is closed under submodules, then $(a) \Rightarrow (e)$ and $(a) \Rightarrow (d)$.
- 3. If M is τ -torsion, then $(d) \Rightarrow (a)$.

Proof. (1) (a) \Rightarrow (c) Let $K \in \mathbb{E}$ Prod'(M). Then there is an \mathbb{E} -monomorphism $K \to M^{(I)}$. Now by Lemma 5.2, K is strongly \mathbb{E} - \mathcal{A} -lifting.

 $(c) \Rightarrow (b) \Rightarrow (a)$ Clear.

(2) Assume that \mathcal{A} is closed under submodules.

(a) \Rightarrow (e) By Theorem 4.4, every τ -torsion module in Cogen'(M) is in \mathbb{E} Prod'(M). Conversely, let $K \in \mathbb{E}$ Prod'(M) and take some \mathbb{E} -monomorphism $g: K \to M^{(I)}$. Then K is an \mathbb{E} -submodule of $M^{(I)}$, hence \mathcal{A} -coclosed in $M^{(I)}$. Now by Lemma 2.5 it follows that K is τ -torsion.

(a)⇒(d) By (c), every module in EProd'(M) is strongly E-A-lifting. Then by
(e) it follows that every τ-torsion module in Cogen'(M) is strongly E-A-lifting.
(3) Assume that M is τ-torsion.

(d) \Rightarrow (a) If M is τ -torsion, then every $M^{(I)}$ is τ -torsion, hence strongly \mathbb{E} - \mathcal{A} -lifting. \Box

Corollary 5.4. Let τ be cogenerated by $\mathcal{A} \subseteq \sigma[M]$. Consider the following statements:

- (a) M is Σ -strongly A-lifting;
- (b) Every module in Add(M) is strongly A-lifting;
- (c) Every τ -torsion module in Cogen'(M) is strongly A-lifting;

(d) $\operatorname{Add}(M)$ consists of the τ -torsion modules in $\operatorname{Cogen}'(M)$.

Then the following implications hold:

- 1. For every module M, $(a) \Leftrightarrow (b)$.
- 2. If A is closed under submodules, then $(a) \Rightarrow (d)$ and $(a) \Rightarrow (c)$.
- 3. If M is τ -torsion, then $(c) \Rightarrow (a)$.

Corollary 5.5. Let τ be the torsion theory in Mod-R cogenerated by a class \mathcal{A} closed under submodules and suppose that R is τ -torsion. Then the following are equivalent:

(a) R is right Σ -strongly A-lifting;

- (b) Every projective module is strongly A-lifting;
- (c) Every submodule of a free module is strongly A-lifting;
- In this case, we also have:
- (d) A module is projective if and only if it is a submodule of a free module.

6 Σ - \mathbb{E} - \mathcal{A} -lifting modules and relative preenvelopes

An important result of Oshiro [8, Theorem II] says that if R is right Σ -extending, then the class of projective modules is closed under essential extensions. Motivated by this, we establish in our case a result with dual flavor. Thus, for a Σ - \mathbb{E} - \mathcal{A} -lifting module M and an epimorphism $Y \to Z$ we study when $Z \in \mathbb{E}Prod'(M)$ implies $Y \in \mathbb{E}Prod'(M)$.

The following condition on a module M will be useful:

(*) For every proper submodules B, C, D of M with D + B = M and CA-dense in B we have D + C = M.

For instance, any hollow module clearly satisfies (*). We need the following technical lemma.

Lemma 6.1. Let $p: K \to M$ be a monomorphism such that M is \mathbb{E} - \mathcal{A} -lifting and K satisfies (*). If there exists a proper submodule D of M such that D +Im p = M and $p^{-1}(D) \in \mathcal{A}$, then Im p is an \mathbb{E} -submodule of M.

Proof. We may assume that $N = \operatorname{Im} p$ is a proper submodule of M. Since M is \mathbb{E} - \mathcal{A} -lifting, N contains an \mathbb{E} -submodule L of M such that $N/L \in \mathcal{A}$. Since D + N = M, we have D + L = M, whence it follows easily that $p^{-1}(D) + p^{-1}(L) = K$. This and the fact that $p^{-1}(D) \in \mathcal{A}$ implies by hypothesis that $p^{-1}(L) = p^{-1}(L) + 0 = K$, whence $N \subseteq L$. Thus N = L is an \mathbb{E} -submodule of M.

Theorem 6.2. Let M be Σ - \mathbb{E} - \mathcal{A} -lifting. If $j : Y \to Z$ is a non-zero epimorphism such that Ker $j \in \mathcal{A}, Z \in \mathbb{E}$ Prod' $(M), Y \in$ Cogen'(M) and Y satisfies (*) and has an \mathbb{E} Prod'(M)-preenvelope, then $Y \in \mathbb{E}$ Prod'(M).

Proof. Let $p: Y \to E$ be an $\mathbb{E}\operatorname{Prod}'(M)$ -preenvelope of Y. Then j factors through p, hence there is a homomorphism $q: E \to Z$ such that qp = j. Since there exists some \mathbb{E} -monomorphism $E \to M^{(I)}$, E is \mathbb{E} - \mathcal{A} -lifting by Lemma 3.5. Since $Y \in \operatorname{Cogen}'(M)$, it follows that p is a monomorphism. Then we have $\operatorname{Ker} q \neq E$ and $p^{-1}(\operatorname{Ker} q) = \operatorname{Ker} j \in \mathcal{A}$. It is easy to check that $\operatorname{Ker} q + \operatorname{Im} p = E$, whence $\operatorname{Im} p$ is an \mathbb{E} -submodule of E by Lemma 6.1. Since $E \in \mathbb{E}\operatorname{Prod}'(M)$, it follows by Lemma 4.1 that $Y \in \mathbb{E}\operatorname{Prod}'(M)$.

Corollary 6.3. Let M be Σ - \mathbb{E} - \mathcal{A} -lifting. If $j : Y \to Z$ is a non-zero epimorphism such that Ker $j \in \mathcal{A}$, $Z \in Add(M)$, $Y \in Cogen'(M)$ and Y satisfies (*) and has an Add(M)-preenvelope, then $Y \in Add(M)$.

Note that one may replace direct sums with direct products in Theorem 6.2 and obtain a similar result. Every module has an Add(M)-preenvelope if and only if Add(M) is closed under products, and in this case M is called *productcomplete* [9]. Also, every module has a Prod(M)-preenvelope [9]. Then we have the following corollary.

Corollary 6.4. (i) Let M be product-complete Σ - \mathbb{E} - \mathcal{A} -lifting. If $j : Y \to Z$ is a non-zero epimorphism such that Ker $j \in \mathcal{A}, Z \in \text{Add}(M), Y \in \text{Cogen}'(M)$ and Y satisfies (*), then $Y \in \text{Add}(M)$.

(ii) Let M be \prod - \mathbb{E} - \mathcal{A} -lifting. If $j : Y \to Z$ is a non-zero epimorphism such that Ker $j \in \mathcal{A}, Z \in \operatorname{Prod}(M), Y \in \operatorname{Cogen}(M)$ and Y satisfies (*), then $Y \in \operatorname{Prod}(M)$.

Acknowledgements. The author would like to thank the referee for the useful comments and suggestions.

References

- I. Al-Khazzi, P.F. Smith, Classes of modules with many direct summands, J. Austral. Math. Soc. Ser. A 59 (1995), 8–19.
- [2] D.A. Buchsbaum, A note on homology in categories, Ann. Math. 69 (1959), 66-74.
- [3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, *Lifting modules. Supplements and projectivity in module theory*, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
- [4] S. Crivei, Σ -extending modules, Σ -lifting modules, and proper classes, Comm. Algebra **36** (2008), 529–545.
- [5] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, *Extending modules*, Pitman Research Notes in Mathematics Series, **313**, Longman Scientific & Technical, 1994.
- [6] T. Koşan, A. Harmancı, Modules supplemented relative to a torsion theory, *Turk. J. Math.* 28 (2004), 177–184.
- [7] A.P. Mishina, L.A. Skornjakov, Abelian groups and modules, Amer. Math. Soc. Transl., Ser. 2, 107, 1976.
- [8] K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310–338.
- [9] J. Rada, M. Saorín, Rings characterized by (pre)envelopes and (pre)covers of their modules, *Comm. Algebra* 26 (1998), 899–912.
- [10] B. Stenström, Rings of quotients, Springer-Verlag, Berlin, 1975.
- [11] R. Wisbauer, Foundations of module and ring theory, Gordon & Breach, Reading, 1991.