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1 Introduction

Let A be a class of modules closed under isomorphisms and containing the
zero module. Al-Khazzi and Smith studied in [1] the class d∗A consisting of
modules A with the property that every submodule B of A contains a direct
summand C of A such that B/C ∈ A. The main motivation for their study was
to offer a general setting for decomposing certain modules into a direct sum of
a module in A and some other module. The modules in the class d∗A may also
be seen as relative versions of the extensively investigated lifting modules (e.g.,
see [3]), that is, modules A such that every submodule B of A contains a direct
summand C of A such that B/C is superfluous in A/C. Lifting modules have
been generalized in [4] to E-lifting modules by using instead of direct summands
(i.e. splitting short exact sequences) elements of a proper class E of short exact
sequences in the sense of Buchsbaum [2] or Mishina and Skornjakov [7].

In the present paper we put together the ideas from [1] and [4] in order to
generalize the class d∗A by using such proper classes. The members of this
new class of modules will be called E-A-lifting modules. They generalize lifting
modules, but also E-lifting modules, since every E-lifting module is E-S-lifting,
where S is the class of small modules. We also consider a specialization of this
notion, called strongly E-A-lifting module. We see the class A as a cogenerating
class for a torsion theory τ in the category σ[M ] and we establish character-
izations of Σ-(strongly) E-A-lifting modules, that is, modules for which every
direct sum of copies is (strongly) E-A-lifting. As a consequence, we deduce that
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if a module M is Σ-A-lifting, then every submodule of a direct sum of copies of
M is a direct sum of a module in A and a module in the class Add(M) of direct
summands of direct sums of copies of M . Finally, for a Σ-E-lifting module M ,
we show that the property that a module belongs to a class generalizing the
class Add(M) is lifted by certain epimorphisms.

Throughout R is an associative ring with non-zero identity and all modules
are unital right R-modules. By a class of modules we mean a class of modules
closed under isomorphisms and containing the zero module. Throughout M
will be a module and A a class of modules in the category Mod-R of right R-
modules. As usual, M is said to be Σ-P (respectively

∏
-P) if every direct sum

(respectively direct product) of copies of M has the property P. Denote by σ[M ]
the full subcategory of Mod-R whose objects are submodules of M -generated
modules. By τ we denote a (not necessarily hereditary) torsion theory in σ[M ]
and by t(A) we denote the torsion submodule of a module A. Let X be any
class of modules and A be a module. Then f ∈ Hom(A,X), with X ∈ X ,
is called an X -preenvelope of A if the induced abelian group homomorphism
Hom(X, X ′) → Hom(A,X ′) is surjective for every X ′ ∈ X .

For further terminology concerning lifting modules and torsion theories the
reader is referred to [3] and [10].

2 Relatively coclosed modules

Let us give the following definitions and some basic related properties.

Definition 2.1. (i) A submodule C of a module A is called A-dense in A if
A/C ∈ A.

(ii) A module C is called A-coclosed if C/C ′ /∈ A for every C ′ < C.

Definition 2.2. Let A be a module. A submodule C of A is called an A-
coclosure of A if C is an A-dense submodule of A and C is A-coclosed.

Lemma 2.3. Let A be closed under submodules and C be a module. Then C is
A-coclosed if and only if Hom(C, Y ) = 0 for every Y ∈ A.

Proof. Suppose that C is A-coclosed. Let Y ∈ A and f ∈ Hom(C, Y ). Since
Im f ⊆ Y ∈ A and C/Ker f ∼= Im f , we must have Ker f = C, because otherwise
C is not A-coclosed. Hence f = 0, and so Hom(C, Y ) = 0. Conversely, suppose
that Hom(C, Y ) = 0 for every Y ∈ A and let C ′ < C. Then Hom(C,C/C ′) 6= 0,
hence C/C ′ /∈ A. Thus C is A-coclosed.

The following well known technical result on torsion theories will be useful.

Lemma 2.4. Let A ⊆ σ[M ] be closed under submodules and τ = (T ,F) be
cogenerated by A. Then F = {N | ∀0 6= L ≤ N,∃L′ < L : L/L′ ∈ A}.

Now we see A as a cogenerating class of τ .

Lemma 2.5. Let τ be cogenerated by A ⊆ σ[M ] and let C be a module.
(i) If C is τ -torsion, then C is A-coclosed.
(ii) If A is closed under submodules and C is A-coclosed, then C is τ -torsion.

2



Proof. (i) Clear.
(ii) Let D = t(C). If D 6= C, then by Lemma 2.4 the τ -torsionfree module

C/D has a proper submodule C ′/D such that C/C ′ ∼= (C/D)/(C ′/D) ∈ A,
contradicting the fact that C is A-coclosed. Hence D = C, so that C is τ -
torsion.

Corollary 2.6. Let A ⊆ σ[M ] be the torsionfree class of τ , C be a module and
B be a submodules of C. Then:

(i) C is A-coclosed if and only if it is τ -torsion.
(ii) B is an A-coclosure of C if and only if C is τ -torsion and C/B is

τ -torsionfree.

For the sake of brevity, let us say that a module M has the A-coclosure
property if every submodule of M has an A-coclosure. In the following example
we see that there are modules with the A-coclosure property, but also without
it.

Example 2.7. (i) Recall that a module A ∈ σ[M ] is called M -rational if
Hom(C,M) = 0 for every submodule C of A [3, p. 84]. Let Cogen(M) be the
class of M -cogenerated modules, that is, the class of modules K for which there
exists a monomorphism from K to some direct product M I . Then by Lemma
2.3 it follows easily that a module A ∈ σ[M ] is M -rational if and only if every
submodule of A is Cogen(M)-coclosed. Moreover, clearly every M -rational
module has the Cogen(M)-coclosure property.

(ii) Let Z be the class consisting of the zero modules and the simple modules.
Also, let B be a module with the radical consisting of a simple module, say D,
which is also a maximal submodule of B (and so B is a module of composition
length 2). We claim that B does not have a Z-coclosure. Suppose the contrary
and denote by C a Z-coclosure of B. Then B/C ∈ Z, hence C could be either
B or D. But neither B nor D is Z-coclosed, because we have B/D ∈ Z and
D ∈ Z. This is a contradiction, so the claim follows.

3 Relatively lifting modules and proper classes

Recall the definition of a proper class of short exact sequences (e.g., see [3,
10.1]).

Definition 3.1. Let E be a class of short exact sequences in Mod-R. If an
exact sequence 0 → K

f→ L
g→ N → 0 belongs to E, then f is called an

E-monomorphism and g is called an E-epimorphism. Also, Im f is called an
E-submodule of L and N is called an E-homomorphic image of L.

The class E is called a proper class if it has the following properties:
P1. E is closed under isomorphisms;
P2. E contains all splitting short exact sequences;
P3. the class of E-monomorphisms is closed under composition;
if f, f ′ are monomorphisms and f ′f is an E-monomorphism, then f is an

E-monomorphism;
P4. the class of E-epimorphisms is closed under composition;
if g, g′ are epimorphisms and gg′ is an E-epimorphism, then g is an E-

epimorphism.
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Example 3.2. Some examples of proper classes are the following (e.g., see [3]):
(i) The class Es of all splitting short exact sequences in Mod-R.
(ii) The class EX of all short exact sequences in Mod-R on which the functor

Hom(X,−) is exact for every X ∈ X , where X is any class of modules in Mod-R.
Its elements are called X -pure exact sequences. For the class X = P of finitely
presented modules, one has the classical pure exact sequences.

Throughout, E will be a proper class of short exact sequences in Mod-R. We
introduce the following definition.

Definition 3.3. A module A is called E-A-lifting if every submodule B of A
contains an E-submodule C of A such that C is A-dense in B.

For E = Es, we call Es-A-lifting modules simply A-lifting. Note that the
class of A-lifting modules is exactly the class d∗A from the introduction.

Example 3.4. (i) Every semisimple module is E-A-lifting.
(ii) Let O be the class of zero modules. Then a module is O-lifting if and

only if it is semisimple. Also, a module is EP -O-lifting if and only if it is regular
in the sense of [11, Chapter 37].

(iii) Recall that a module A is called τ -supplemented if every submodule B
of A contains a direct summand C of A such that B/C is τ -torsion [6]. If A is
the torsion class of τ , then A-lifting means τ -supplemented.

(iv) Recall that a module A ∈ σ[M ] is called M -small if A is superfluous
in some module A′ ∈ σ[M ]. Also, recall that a module A is called E-lifting if
every submodule B of A contains an E-submodule C of A such that B/C is
superfluous in A/C [4]. If A ∈ σ[M ] is E-lifting, then it is clearly E-S-lifting,
where S is the class of M -small modules. In particular, every lifting module is
S-lifting.

(v) Let τ be cogenerated by A ⊆ σ[M ] and suppose that τ is cohereditary.
If A is τ -torsion A-lifting, then it is lifting. Indeed, if B is a submodule of A,
then it contains some direct summand C of A such that B/C ∈ A, hence B/C
is τ -torsionfree. We claim that X = B/C is superfluous in Y = A/C. If Z < Y ,
then we have Z + X 6= Y , because otherwise the non-zero module X/(Z ∩X)
would be both τ -torsion, being isomorphic to Y/Z, and τ -torsionfree, because
τ is cohereditary. This shows that A is lifting.

Lemma 3.5. (i) Let A be an E-A-lifting module. Then every A-coclosed sub-
module of A is an E-submodule.

(ii) Let A be a module with the A-coclosure property such that every A-
coclosed submodule of A is an E-submodule. Then A is E-A-lifting.

(iii) The class of E-A-lifting modules is closed under submodules.

Proof. (i) Let B be an A-coclosed submodule of A. Then B contains an E-
submodule C of A such that B/C ∈ A. Then B = C, because otherwise we
would have B/C /∈ A since B is A-coclosed. Hence B is an E-submodule of A.

(ii) Let B be a submodule of A and C be an A-coclosure of B. Then
B/C ∈ A and C is A-coclosed, so that C is an E-submodule. Hence A is
E-A-lifting.

(iii) Let A be an E-A-lifting module and D be a submodule of A. Let B be a
submodule of D. Then B contains an E-submodule C of A such that B/C ∈ A.
Then C is an E-submodule of D, showing that D is E-A-lifting.
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4 Σ-E-A-lifting modules

Following [4], we denote by EProd(M) (respectively EProd′(M)) the class of
modules K for which there is an E-monomorphism from K to some direct prod-
uct M I(respectively direct sum M (I)) of copies of M and by Cogen(M) (respec-
tively Cogen′(M)) the class of modules K for which there exists a monomor-
phism from K to some M I (respectively M (I)). For instance, EsProd(M) (re-
spectively EsProd′(M)) is the class Prod(M) (respectively Add(M)) of direct
summands of direct products (respectively direct sums) of copies of M .

We need the following lemma, whose proof is straightforward taking into ac-
count that the composition of two E-monomorphisms is again an E-monomorphism.

Lemma 4.1. [4, Lemma 3.1] The classes EProd(M) and EProd′(M) are both
closed under E-submodules.

Recall that a module is called direct injective if for every direct summand
X of M , every monomorphism X → M splits (for instance, see [5, 2.11]). In
our context, we need a generalization of direct injectivity with respect to proper
classes, which was considered in [4].

Definition 4.2. A module M is called E-direct injective if, for every E-submodule
X of M , every monomorphism X → M is an E-monomorphism.

Σ-E-direct injective modules may be characterized as follows. We sketch a
proof for the reader’s convenience.

Lemma 4.3. [4, Lemma 4.6] A module M is Σ-E-direct injective if and only
if for every U ∈ Cogen′(M) and every V ∈ EProd′(M), every monomorphism
V → U is an E-monomorphism.

Proof. Suppose first that M is Σ-E-direct injective. Let U ∈ Cogen′(M) and
V ∈ EProd′(M) and let f : V → U be a monomorphism. Then there exist a
monomorphism g : U → M (I) and an E-monomorphism h : V → M (J). Let us
consider the monomorphism igf : V → M (I) ⊕M (J), where i : M (I) → M (I) ⊕
M (J) is the inclusion monomorphism. Since we may see V as an E-submodule of
M (I) ⊕M (J) and M is Σ-E-direct injective, igf is an E-monomorphism, hence
f has to be an E-monomorphism. The converse is clear.

Now we can establish our main result on Σ-E-A-lifting modules.

Theorem 4.4. Let τ be cogenerated by A ⊆ σ[M ]. Consider the following
statements:

(a) M is Σ-E-A-lifting;

(b) Every module in Add(M) is E-A-lifting;

(c) Every K ∈ Cogen′(M) has an E-homomorphic image K/Y ∈ A such that
Y ∈ EProd′(M);

(d) Every τ -torsion module in Cogen′(M) is in EProd′(M);

(e) Every τ -torsion module in Cogen′(M) is E-A-lifting.

Then the following implications hold:
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1. For every module M , (a)⇔(b)⇒(c)⇒(d).

2. If M is Σ-E-direct injective, then (c)⇒(a).

3. If M is Σ-E-direct injective, has the Σ-A-coclosure property, and A is
closed under submodules, then (d)⇒(e).

4. If M is τ -torsion, then (e)⇒(a).

Proof. (1) (a)⇔(b) Suppose that M is Σ-E-A-lifting and let N ∈ Add(M).
Then there is a monomorphism N → M (I). Now by Lemma 3.5 it follows that
N is E-A-lifting. The converse is obvious.

(b)⇒(c) Let K ∈ Cogen′(M) and take a monomorphism f : K → M (I).
Since M (I) is E-A-lifting, f(K) contains an E-submodule L such that f(K)/L ∈
A. If Y = f−1(L), then it follows that K/Y ∈ A, Y ∈ EProd′(M) and Y is an
E-submodule of K.

(c)⇒(d) Clear.
(2) Assume that M is Σ-E-direct injective.
(c)⇒(a) Let I be a set and K be a submodule of M (I). Then by hypothesis

K has an E-homomorphic image K/Y ∈ A such that Y ∈ EProd′(M). Then by
Lemma 4.3, the inclusion monomorphism Y → M (I) is an E-monomorphism,
hence Y is an E-submodule of M (I). Thus M (I) is E-A-lifting.

(3) Assume that M is Σ-E-direct injective, has the Σ-A-coclosure property,
and A is closed under submodules.

(d)⇒(e) Let K be a τ -torsion module in Cogen′(M) and consider a monomor-
phism f : K → M (I). Let L be a proper submodule of K. Then f(L) has
an A-coclosure, say C. It follows that C is τ -torsion by Lemma 2.5. Since
C ∈ Cogen′(M), we have C ∈ EProd′(M) by hypothesis. Now by Lemma 4.3 the
inclusion C → f(K) is an E-monomorphism. Then the inclusion f−1(C) → K
is an E-monomorphism. Since f−1(C) is A-coclosed, it follows that K is E-A-
lifting.

(4) Assume that M is τ -torsion.
(e)⇒(a) If M is τ -torsion, then every M (I) is τ -torsion, hence E-A-lifting.

For the proper class E = Es we obtain the following consequence.

Corollary 4.5. Let τ be cogenerated by A ⊆ σ[M ]. Consider the following
statements:

(a) M is Σ-A-lifting;

(b) Every module in Add(M) is A-lifting;

(c) Every module in Cogen′(M) is a direct sum of a module in A and a module
in Add(M);

(d) Every τ -torsion module in Cogen′(M) is in Add(M);

(e) Every τ -torsion module in Cogen′(M) is A-lifting.

Then the following implications hold:

1. For every module M , (a)⇔(b)⇒(c)⇒(d).
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2. If M is Σ-direct injective, then (c)⇒(a).

3. If M is Σ-direct injective, has the Σ-A-coclosure property, and the class
A is closed under submodules, then (d)⇒(e).

4. If M is τ -torsion, then (e)⇒(a).

Corollary 4.6. Let τ be the torsion theory in Mod-R cogenerated by A. Con-
sider the following statements:

(a) R is right Σ-A-lifting;

(b) Every projective module is A-lifting;

(c) Every submodule of a free module is a direct sum of a module in A and a
projective module;

(d) Every τ -torsion submodule of a free module is projective;

(e) Every τ -torsion submodule of a free module is A-lifting.

Then the following implications hold:

1. For any R, (a)⇔(b)⇒(c)⇒(d).

2. If R is Σ-direct injective, then (c)⇒(a).

3. If R is Σ-direct injective, has the Σ-A-coclosure property, and the class A
is closed under submodules, then (d)⇒(e).

4. If R is τ -torsion, then (e)⇒(a).

One may further particularize Theorem 4.4 to some classes A, of which the
classes of τ -supplemented or M -small modules (see Example 3.4) are of interest.

5 Σ-strongly E-A-lifting modules

Now let us consider a natural intermediate notion between those of A-lifting
module and E-A-lifting module.

Definition 5.1. A module M is called strongly E-A-lifting if M has the A-
coclosure property and the A-coclosed submodules of M coincide with its E-
submodules.

Lemma 5.2. Let A be a strongly E-A-lifting module and D be an A-coclosed
submodule (E-submodule) of A. Then D is strongly E-A-lifting.

Proof. By Lemma 3.5, D is E-A-lifting. Since A has the A-coclosure property,
then clearly so does any submodule of A. Finally, let B be an E-submodule
of D. Since D is an E-submodule of A, B is an E-submodule of A, and so an
A-closed submodule of A. Therefore, D is strongly E-A-lifting.

In the following result we characterize Σ-strongly E-A-lifting modules.

Theorem 5.3. Let τ be cogenerated by A ⊆ σ[M ]. Consider the following
statements:
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(a) M is Σ-strongly E-A-lifting;

(b) Every module in Add(M) is strongly E-A-lifting;

(c) Every module in EProd′(M) is strongly E-A-lifting;

(d) Every τ -torsion module in Cogen′(M) is strongly E-A-lifting;

(e) EProd′(M) consists of the τ -torsion modules in Cogen′(M).

Then the following implications hold:

1. For every module M , (a)⇔(b)⇔(c).

2. If A is closed under submodules, then (a)⇒(e) and (a)⇒(d).

3. If M is τ -torsion, then (d)⇒(a).

Proof. (1) (a)⇒(c) Let K ∈ EProd′(M). Then there is an E-monomorphism
K → M (I). Now by Lemma 5.2, K is strongly E-A-lifting.

(c)⇒(b)⇒(a) Clear.
(2) Assume that A is closed under submodules.
(a)⇒(e) By Theorem 4.4, every τ -torsion module in Cogen′(M) is in EProd′(M).

Conversely, let K ∈ EProd′(M) and take some E-monomorphism g : K → M (I).
Then K is an E-submodule of M (I), hence A-coclosed in M (I). Now by Lemma
2.5 it follows that K is τ -torsion.

(a)⇒(d) By (c), every module in EProd′(M) is strongly E-A-lifting. Then by
(e) it follows that every τ -torsion module in Cogen′(M) is strongly E-A-lifting.

(3) Assume that M is τ -torsion.
(d)⇒(a) If M is τ -torsion, then every M (I) is τ -torsion, hence strongly E-

A-lifting.

Corollary 5.4. Let τ be cogenerated by A ⊆ σ[M ]. Consider the following
statements:

(a) M is Σ-strongly A-lifting;

(b) Every module in Add(M) is strongly A-lifting;

(c) Every τ -torsion module in Cogen′(M) is strongly A-lifting;

(d) Add(M) consists of the τ -torsion modules in Cogen′(M).

Then the following implications hold:

1. For every module M , (a)⇔(b).

2. If A is closed under submodules, then (a)⇒(d) and (a)⇒(c).

3. If M is τ -torsion, then (c)⇒(a).

Corollary 5.5. Let τ be the torsion theory in Mod-R cogenerated by a class A
closed under submodules and suppose that R is τ -torsion. Then the following
are equivalent:

(a) R is right Σ-strongly A-lifting;
(b) Every projective module is strongly A-lifting;
(c) Every submodule of a free module is strongly A-lifting;
In this case, we also have:
(d) A module is projective if and only if it is a submodule of a free module.
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6 Σ-E-A-lifting modules and relative preenvelopes

An important result of Oshiro [8, Theorem II] says that if R is right Σ-extending,
then the class of projective modules is closed under essential extensions. Moti-
vated by this, we establish in our case a result with dual flavor. Thus, for a Σ-E-
A-lifting module M and an epimorphism Y → Z we study when Z ∈ EProd′(M)
implies Y ∈ EProd′(M).

The following condition on a module M will be useful:
(∗) For every proper submodules B,C,D of M with D + B = M and C

A-dense in B we have D + C = M .
For instance, any hollow module clearly satisfies (∗).
We need the following technical lemma.

Lemma 6.1. Let p : K → M be a monomorphism such that M is E-A-lifting
and K satisfies (∗). If there exists a proper submodule D of M such that D +
Im p = M and p−1(D) ∈ A, then Im p is an E-submodule of M .

Proof. We may assume that N = Im p is a proper submodule of M . Since M
is E-A-lifting, N contains an E-submodule L of M such that N/L ∈ A. Since
D + N = M , we have D + L = M , whence it follows easily that p−1(D) +
p−1(L) = K. This and the fact that p−1(D) ∈ A implies by hypothesis that
p−1(L) = p−1(L) + 0 = K, whence N ⊆ L. Thus N = L is an E-submodule of
M .

Theorem 6.2. Let M be Σ-E-A-lifting. If j : Y → Z is a non-zero epimorphism
such that Ker j ∈ A, Z ∈ EProd′(M), Y ∈ Cogen′(M) and Y satisfies (∗) and
has an EProd′(M)-preenvelope, then Y ∈ EProd′(M).

Proof. Let p : Y → E be an EProd′(M)-preenvelope of Y . Then j factors
through p, hence there is a homomorphism q : E → Z such that qp = j. Since
there exists some E-monomorphism E → M (I), E is E-A-lifting by Lemma
3.5. Since Y ∈ Cogen′(M), it follows that p is a monomorphism. Then we have
Ker q 6= E and p−1(Ker q) = Ker j ∈ A. It is easy to check that Ker q+Im p = E,
whence Im p is an E-submodule of E by Lemma 6.1. Since E ∈ EProd′(M), it
follows by Lemma 4.1 that Y ∈ EProd′(M).

Corollary 6.3. Let M be Σ-E-A-lifting. If j : Y → Z is a non-zero epimor-
phism such that Ker j ∈ A, Z ∈ Add(M), Y ∈ Cogen′(M) and Y satisfies (∗)
and has an Add(M)-preenvelope, then Y ∈ Add(M).

Note that one may replace direct sums with direct products in Theorem 6.2
and obtain a similar result. Every module has an Add(M)-preenvelope if and
only if Add(M) is closed under products, and in this case M is called product-
complete [9]. Also, every module has a Prod(M)-preenvelope [9]. Then we have
the following corollary.

Corollary 6.4. (i) Let M be product-complete Σ-E-A-lifting. If j : Y → Z is a
non-zero epimorphism such that Ker j ∈ A, Z ∈ Add(M), Y ∈ Cogen′(M) and
Y satisfies (∗), then Y ∈ Add(M).

(ii) Let M be
∏

-E-A-lifting. If j : Y → Z is a non-zero epimorphism
such that Ker j ∈ A, Z ∈ Prod(M), Y ∈ Cogen(M) and Y satisfies (∗), then
Y ∈ Prod(M).
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