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Preface

Torsion theories for abelian categories have been introduced in the 1960’s
with the motivation and purpose of unifying a common behavior observed
for abelian groups, modules over certain domains or even modules in general.
Thus the work of P. Gabriel [45], J.-M. Maranda [73] or S.E. Dickson [39]
set the base for an extensive study of torsion theories for the years to come,
with significant contributions by many authors. Of special interest are the
hereditary torsion theories on the category R-Mod of left R-modules, in the
view of the bijective correspondence between them and the localized subcat-
egories of R-Mod, fact that shows the importance of the former in the study
of the category R-Mod. The concept of non-commutative localization and
Gabriel-Popescu Theorem have become important tools and a lot of results

have gained a more natural interpretation in this torsion-theoretic language.

Injectivity and its various generalizations have been intensively studied
throughout the years, especially in the attempt to characterize rings by their
modules. Many types of injectivity may be characterized by a Baer-type
criterion by restricting to a subset of left ideals of the ring, but valuable
information may be obtained if that subset of left ideals is a Gabriel filter.
The bijection between the Gabriel filters on R-Mod and the hereditary torsion
theories on R-Mod suggests that the latter ones are a good framework for
studying injectivity, not only as an instrument for localization, but also for its
intrinsic properties. Thus results on torsion-theoretic injectivity have been

present in the general study of torsion theories right from the beginning.

Vil



viii PREFACE

The purpose of the present work is to offer a presentation of injectivity
relative to a hereditary torsion theory 7, with emphasis on the concepts of
minimal 7-injective module and 7-completely decomposable module. The
core of the book is the author’s Ph.D. thesis on this topic.

Since the intention was to make it self-contained from the torsion-
theoretic point of view, the book begins with a general chapter on torsion
theories. This gathers in the first part some of the most important properties
of arbitrary torsion theories and afterwards continues with results in the set-
ting of hereditary torsion theories, insisting on the topics needed in the next
stages. Chapter 2 introduces injectivity relative to a hereditary torsion the-
ory 7 and the notion of relative injective hull of a module and studies the class
of 7-injective modules as well as connections between this relative injectivity
and the usual injectivity. The next two chapters contain the main results of
the book. Thus Chapter 3 deals with minimal 7-injective modules, that are
the torsion-theoretic analogues of indecomposable injective modules. They
are used to get information on (the structure of) 7-injective hulls of mod-
ules. Throughout Chapter 4 we study some direct sum decompositions and
especially 7-completely decomposable modules, that is, direct sums of mini-
mal 7-injective modules. Thus we obtain some (7-complete) decompositions
for 7-injective hulls of modules and we deal with a few important problems
on direct summands or essential extensions of 7-completely decomposable
modules. The final chapter presents results on T-quasi-injective modules and
generalizes connections between conditions involving 7(-quasi)-injectivity to

the setting of a 7-natural class.

The prerequisites of the reader should be some general Ring and Module
Theory and basic Homological Algebra, completed with just few notions from
Theory of Categories, since I have tried to avoid a categorical language. The
book have been thought as an introduction to the concept of torsion-theoretic
injectivity, but hopefully some parts may also be useful for the interested

researcher.



PREFACE ix

[ would like to thank Professors loan Purdea and Andrei Marcus for their
valuable comments and suggestions.
[ am grateful to my father, Professor Iuliu Crivei, for numerous illumi-

nating discussions on the topic and constant encouragement and support.

Septimiu Crivei

Cluj—Napoca, April 2004






Notations

Throughout the text we denote by R an associative ring with non-zero iden-
tity and by 7 a hereditary torsion theory on the category R-Mod of left
R-modules, except for the first chapter, where 7 may be an arbitrary tor-
sion theory on R-Mod. All modules are left unital R-modules, unless stated
otherwise. By a homomorphism we understand an R-homomorphism. By a

class of modules we mean a non-empty class of modules.

ACC the ascending chain condition

AnngB  the left annihilator in R of a subset B # () of a module A,
that is, AnngB = {r € R|rb=0,¥b € B}

Annyl the left annihilator in a module A of a subset I # ) of R,
that is, Anng/ ={a € A|ra=0,Vr € I}

(A:a) the set {r € R | ra € A} for some element a of a module A

Spec(R)  the set of all prime ideals of a commutative ring R

dim R the (Krull) dimension of a commutative ring R

dim p the dimension of p € Spec(R), that is, dim R/p

B<A B is a submodule of a module A

B<A B is an essential submodule of a module A

Soc(A)  the socle of a module A

Rad(A)  the (Jacobson) radical of a module A

Endg(A) the set of endomorphisms of a module A

Homp the Hom functor

x1



xii

Extl,
Tor?
E(A)

t(A)
E-(A)

Q- (A)

N, Z, Q
N*, Z* Q*

NOTATIONS

the ¢-th Ext functor

the ¢-th Tor functor

the injective hull of a module A

the (unique) maximal 7-torsion submodule of a module A
the 7-injective hull of a module A

the T-quasi-injective hull of a module A

the sets of natural numbers, integers, rational numbers

the sets N\ {0}, Z\ {0}, Q\ {0}



Chapter 1
Introduction to torsion theories

This introductory chapter briefly presents the context of torsion theories,
with emphasis on the definitions and properties that will be used later on.
For additional information on torsion theories the reader is referred to

[49] and [107].

1.1 Radicals and Gabriel filters

In this first section we introduce some important notions that are closely

connected to torsion theories.

Definition 1.1.1 A functor r : R-Mod — R-Mod is called a preradical on
R-Mod if:

(i) For every module A, r(A) < A.

(ii) For every homomorphism f : A — B, r(f) : r(A) — r(B) is the
restriction of f to r(A).

Throughout the text all the preradicals will be on R-Mod.

Definition 1.1.2 Let r; and 7y be preradicals. Define two functors r; o ro,
(r1:rg) : R-Mod — R-Mod, on objects by

(r1 o) (A) = ri(r2(A)),

1



2 CHAPTER 1. INTRODUCTION TO TORSION THEORIES

(r1:m2)(A)/ri(A) = ra(A/r1(A)),

for every module A, and on morphisms by taking the corresponding restric-

tions.

Definition 1.1.3 A preradical r is called:
(i) idempotent if ror =r.

(ii) radical if (r:r) =r.
The following two results are immediate.

Lemma 1.1.4 Let ry and o be preradicals. Then ri o1y and (ry : 79) are

preradicals.

Lemma 1.1.5 Let r be a preradical. Then:
(i) r is idempotent if and only if r(r(A)) = r(A) for every module A.
(i) v is a radical if and only if r(A/r(A)) =
(i11) r is left exact if and only if r(A) = ANr(B) for every module A and
every submodule B of A.

0 for every module A.

(iv) If v is a left exact functor, then r is idempotent.

Proposition 1.1.6 Let r be a radical, A be a module and B < r(A). Then
r(A/B)=r(A)/B.

Proof. Denote by p: A — A/B and ¢ : A/B — A/r(A) the natural ho-
momorphisms. Then we have p(r(A4)) C r(A/B) and since B C r(A), we
deduce that r(A)/B C r(A/B). We also have ¢(r(A/B)) C r(A/r(A)) =0,
whence r(A/B) C r(A)/B. Therefore r(A/B) =r(A)/B. 0

Corollary 1.1.7 Let r1 and ro be radicals. Then r1 o1y is a radical.

Proof. Let A be a module. We have (11 o 75)(A) C ry(A), whence we get
ro(A/(r10rg)(A)) = r2(A)/(r1 0 r9)(A) by Proposition 1.1.6. Then

(r1omg)(A/(r1om2)(A)) = 11(r2(A)/(11(12(A4))) = 0.

Thus rq o ry is a radical. ]
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Example 1.1.8 (1) For every abelian group G, let ¢(G) be the set of el-
ements of G having finite order (torsion elements). Then ¢ is a left exact
radical on Z-Mod.

(2) For every abelian group G, let d(G) be the sum of its divisible sub-
groups. Then d is an idempotent radical on Z-Mod, that in general is not
left exact.

(3) For every module A, let Soc(A) be its socle, that is, the sum of its
simple submodules. Then Soc is a left exact preradical, that in general is not
a radical.

(4) For every module A, let Rad(A) be its Jacobson radical, that is, the
intersection of its maximal submodules. Then Rad is a preradical, that in
general is not idempotent or a radical.

(5) For every module A, let Z(A) be the singular submodule of A, that
is,

Z(A)={r € A| Anngx < R},
and let Z5(A) be such that

Zy(A)[Z(A) = Z(A)Z(A)),

that is,
Zy(A)={z e Alx+Z(A) e Z(AJZ(A))}.

Then Z is a left exact preradical, that in general is not a radical. But Z is
a left exact radical, called the singular radical of A.
(6) A left ideal I of R is called dense if the right annihilator of (I : r) in

R is zero for every r € R. For every module A, let
D(A) = {z € A| Anngz dense in R} .
Then D is a left exact radical.

Definition 1.1.9 A non-empty set F'(R) of left ideals of R is called a Gabriel
filter if:
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(i) For every I € F(R) and every a € R, we have (I : a) € F(R).
(ii) For every J € F(R) and every left ideal I of R with (I : a) € F(R)
for each a € J, we have I € F(R).

Remark. If F(R) is a Gabriel filter, then R € F(R). Indeed, if I € F(R)
and a € I, then R = (I : a) € F(R).

Proposition 1.1.10 Let F(R) be a Gabriel filter. Then:

(1) For every J € F(R) and every left ideal I of R with J C I, we have
I € F(R).

(ii) For every I,J € F(R), we have INJ € F(R).

(111) For every I,J € F(R), we have I.J € F(R).

Proof. (i) Let J € F(R) and let I be a left ideal of R such that J C I. Then
for every a € J, we have (I : a) = R € F(R). Thus I € F(R) by Definition
1.1.9 (ii).

(17) Let I, J € F(R). Then for everya € J, (INJ) :a) = (J : a) € F(R).
Thus I NJ € F(R) by Definition 1.1.9 (ii).

(7i1) Let I,J € F(R). Then for every a € J, we have J C (IJ : a).
Hence by (i) we have (I.J : a) € F(R) for every a € J. Then IJ € F(R) by
Definition 1.1.9 (ii). O

Remark. A non-empty set of left ideals of R satisfying the first two conditions
of Proposition 1.1.10 is called a filter.

1.2 Torsion theories. Basic facts

Definition 1.2.1 A pair 7 = (7, F) of classes of modules is called a torsion
theory if the following conditions hold:

(i) Hompg(A, B) =0 for every A € 7 and every B € F.

(ii) If Homg(A, B) =0 for every B € F, then A € 7.

(iii) If Homg(A, B) = 0 for every A € 7, then B € F.
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The class 7 is called the torsion class of 7 and its members are called
T-torsion modules, whereas the class F is called the torsionfree class of T

and its members are called 7-torsionfree modules.

Every class of modules A generates and cogenerates a torsion theory in

the following sense.

Definition 1.2.2 Let A be a class of modules.

Consider the classes of modules
Fi ={Y |Homg(A,Y)=0,VA € A},

’]1:{X|H0mR(X,F):0,VFE.7:1}

Then (77, Fy) is a torsion theory called the torsion theory generated by A.

Consider the classes of modules
7, ={X | Homg(X,A)=0,VA € A},

Fo={Y |Homg(T,Y)=0,VT € T} .

Then (73, F») is a torsion theory called the torsion theory cogenerated by A.

Remark. 7, is the least torsion class containing A, whereas J> is the least

torsionfree class containing A.

Let us set now some terminology on a class of modules.

Definition 1.2.3 A class A of modules is called:

(i) closed under submodules if for every A € A and every submodule B
of A, we have B € A.

(ii) closed under homomorphic images (respectively isomorphic copies) if
for every A € A and every epimorphism (respectively isomorphism) f: A —
B, we have B € A.

(iii) closed under direct sums (respectively direct products) if @
(respectively [],.; A; € A) for every A; € A (i € I).

AiGA

il
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(iv) closed under extensions if for every exact sequence 0 — A" — A —
A" — 0 with A", A” € A, we have A € A.
(v) closed under injective hulls if for every A € A, we have E(A) € A.

Remark. We have mentioned only the most used closedness conditions, the

others being defined in a similar way.

Lemma 1.2.4 Let 7 = (7,F) be a torsion theory. Then T is closed under

direct sums and F is closed under direct products.

Proof. Clear by the properties Homg (€D
HOHIR(A, H

ier Ai, B) 2 [[,c; Homp(A;, B) and
Bz) = Hie[ HOIIIR(A, Bz) O

iel

Theorem 1.2.5 Let 7 and F be classes of modules. Then T = (T,F) is a
torsion theory if and only if

(i) TNF ={0}.

(i1) T is closed under homomorphic images.

(111) F is closed under submodules.

(iv) Every module A has a submodule t(A) such that t(A) € T and
AJt(A) e F.

Proof. Assume first that 7 = (7,F) is a torsion theory. Then clearly (7)
holds. Let 0 — A" — A — A” — 0 be an exact sequence. Then it induces for
every F' € F the exact sequence 0 — Hompg(A”, F') — Hompg(A, F'). Hence if
A € T, then A” € T. The initial exact sequence also induces for every T' € T
the exact sequence 0 — Hompg(7', A’) — Hompg(7, A). Hence if A € F, then
Al e F.

For the fourth condition, take a module A and let

t(A)=) {B;<A|B;eT}.
il
Since there exists a natural epimorphism f : €., B; — t(A), it follows by

(#7) and Lemma 1.2.4 that t(A) € 7.

el
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Suppose that A/t(A) ¢ F. Then there exists T € 7 and a non-zero
homomorphism g : " — A/t(A). It follows that B/t(A) = Img € 7. On the

other hand, the exact sequence
0—t(A) - B— BJ/t(A) — 0
induces for every F' € F the exact sequence
Hompg(B/t(A), F') — Homg(B, F) — Hompg(t(A), F)

Since the first and the last term are zero, we have Homg(B, F') = 0 for every
F € F, whence B € 7. But then B =t(A) and g = 0, a contradiction.

Conversely, suppose now that the classes 7 and F satisfy the conditions
(i)-(iv).

First, let T € 7 and suppose that there exists F' € F such that
Hompg(T,F) # 0,say 0 # f : T — F. Then Imf € 7 by (i) and Imf € F
by (#i7), whence Imf = 0 by (i), a contradiction.

Secondly, let A be a module such that Hompg (A, F') = 0 for every F' € F.
By (iv) there exists a submodule ¢t(A) of A such that t(A) € 7 and A/t(A) €
F. Then Hompg(A, A/t(A)) =0, whence A =t(A) € 7.

Thus the pair (7', F) satisfies the second condition from the definition of
a torsion theory. Similarly, one shows that it fulfils the third one. U

Theorem 1.2.6 Let 7 and F be classes of modules. Then:

(i) T is a torsion class for some torsion theory if and only if it is closed
under homomorphic images, direct sums and extensions.

(i) F is a torsionfree class for some torsion theory if and only if it is

closed under submodules, direct products and extensions.

Proof. (i) First suppose that 7 is a torsion class for some torsion theory 7.
Then it is closed under homomorphic images and direct sums by Theorem
1.2.5 and Lemma 1.2.4. Now let 0 — A" - A — A” — 0 be an exact



8 CHAPTER 1. INTRODUCTION TO TORSION THEORIES

sequence with A’, A” € T. Then it induces for every 7-torsionfree module F’

the exact sequence
Hompg(A", F) — Homg(A, F') — Hompg(A', F)

where the first and the last term are zero because A’, A” € 7. Hence
Hompg(A, F) =0 and thus A € 7.

Conversely, suppose that 7 is closed under homomorphic images, direct
sums and extensions. Consider the torsion theory (77, F;) generated by 7.
We will show that 7 = 7;. Let A € 7;. Then we have Hompg(A, F) = 0 for
every I € F;. Since 7 is closed under homomorphic images and direct sums,
there exists a largest submodule 7" of A that belongs to 7', namely the sum
of all submodules of A belonging to 7. We will prove that T'= A and to this
end it is enough to show that A/T € F. Let f € Homg(U, A/T) # 0 for some
U € 7. Suppose that f # 0. Then Imf = B/T € T for some submodule B
such that T' C B C A. Since 7 is closed under extensions, we have B € 7.
But this contradicts the maximality of 7. Hence Hompg(U, A/T) = 0 for
every U € T, so that A/T € F, whence T'= A, that finishes the proof.

(74) First suppose that F is a torsionfree class for some torsion theory 7.
Then it is closed under submodules and direct products by Theorem 1.2.5
and Lemma 1.2.4. Now let 0 — A” — A — A” — 0 be an exact sequence
with A’ A” € F. Then it induces for every 7-torsion module T' the exact

sequence
Hompg(T, A") — Homg(T, A) — Homg(T, A”)

where the first and the last term are zero because A’, A” € F. Hence
Hompg(T, A) = 0 and thus A € F.

Conversely, suppose that F is closed under submodules, direct products
and extensions. Consider the torsion theory (73, F,) cogenerated by F and
show, dually to (i), that F = Fo. d

Remark. A torsion class (or a torsionfree class) uniquely determines a torsion

theory.
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We define some types of torsion theories that will be of special interest.

Definition 1.2.7 A torsion theory 7 = (7, F) is called:
(i) stable if T is closed under injective hulls.

(i) hereditary if T is closed under submodules.

We will see in Proposition 1.4.8 that every torsion theory on R-Mod is
stable provided R is commutative noetherian. But for the moment, we can

give the following properties on stable torsion theories.

Proposition 1.2.8 A torsion theory T is stable if and only if t(A) is a direct

summand of every injective module A.

Proof. First, let A be an injective module. By the stability of 7, E(t(A)) is
7-torsion, hence E(t(A)) = t(A). Now A is a direct summand of ¢(A).
Conversely, let A be a 7-torsion module. Then ¢(FE(A)) is a direct
summand of E(A). Since A C t(F(A)) and A < E(A), we must have
t(E(A)) = E(A). Hence E(A) is 7-torsion and, consequently, 7 is stable. [

Proposition 1.2.9 Let 7 be a stable torsion theory and let A be a module.
Then E(AJt(A)) = E(A)/E(t(A)) and E(A) = E(t(A)) @ E(A/t(A)).

Proof. Consider the commutative diagram

0 0 0
0 t(A) A AJt(A) 0
0 E(t(A)) E(A) —— E(A)/E(t(A)) —=0
0 —= E(t(A))/H(A) —> E(A;/A Oq 0
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Since the middle row clearly splits, we have E(A) = E(t(A))®E(A)/E(t(A)),
hence E(A)/E(t(A)) is injective. Let us show that A/t(A) < E(A)/E(t(A)).
In general, for a module M and N < M, we have

NIM<«—=VY0#Axe M, Ire R:0#rxe N

<= V0#z e M,Anngr # Anng(z + N).

Now suppose that A/t(A) is not essential in F(A)/E(t(A)). Since 7 is
stable, we have E(t(A)) = t(FE(A)), hence E(A)/E(t(A)) is T-torsionfree.
Then there exists 0 # x € E(A)/E(t(A)) such that Anngr = Annggq(x).
Also there exists y € E(A) such that

Anngy = Anngr = Anngg(z) = Anngp(y) ,

contradiction with the fact that AIE(A). Therefore A/t(A)<E(A)/E(t(A))
and consequently E(A/t(A)) = E(A)/E(t(A)). Now we also have F(A) &
E(t(A)) © E(A/t(A)).

O

Proposition 1.2.10 Let 7 be a torsion theory.

(i) If T is stable, then every indecomposable injective module is either
T-torsion or T-torsionfree.

(ii) If R is left noetherian and every indecomposable injective module is

either T-torsion or T-torsionfree, then T is stable.

Proof. (i) Let A be an indecomposable injective module. If A is not 7-
torsionfree, we have t(A) < A, whence t(A) = A, because T is stable. Thus
A is T-torsion.

(77) Let A be a 7-torsion module. Since R is left noetherian, we have
E(A) = @,.; E; for some indecomposable injective modules E;. For each i
we clearly have AN E; # 0. Then each F; cannot be 7-torsionfree, hence

each E; is 7-torsion. Thus F(A) is 7-torsion and consequently 7 is stable. [J

Hereditary torsion theories can be also characterized in terms of some

closedness property of the torsionfree class.
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Proposition 1.2.11 Let 7 = (7,F) be a torsion theory. Then T is heredi-

tary if and only if F is closed under injective hulls.

Proof. Assume that 7 is hereditary. Let A € F. Then t(E(A))NA € T,
whence t(E(A)) N A C t(A) = 0. It follows that t(E(A)) = 0, that is,
E(A) e F.

Conversely, assume that F is closed under injective hulls. Let A € 7 and
let B < A. The exact sequence 0 — B — A — A/B — 0 induces the exact

sequence
Homp(A, E(B/#(B))) — Homp(B, E(B/t(B))) — Exth(A/B, E(B/t(B)))

The first term is zero because A € 7 and E(B/t(B)) € F by hypoth-
esis, whereas the last term is zero by the injectivity of E(B/t(B)). Hence
Hompg(B, E(B/t(B))) = 0. But then we must have ¢{(B) = B. Consequently,
7 is hereditary. O

Corollary 1.2.12 Let A be a class of modules closed under submodules and

homomorphic images. Then the torsion theory T generated by A is hereditary.

Proof. Let F be a 7-torsionfree module. Suppose that t(E(F)) # 0. Since
A is closed under homomorphic images, it follows that t(E(F)) contains
a non-zero submodule A € A. Then FFN A # 0. Since A is closed under
submodules, we have FNA € A, whence t(F') # 0, a contradiction. Therefore
t(E(F)) = 0, that is, E(F) is T-torsionfree. Now by Proposition 1.2.11, 7 is
hereditary. O

For a hereditary torsion theory 7, 7-torsion and 7-torsionfree modules

can be characterized as follows.

Proposition 1.2.13 Let 7 be a hereditary torsion theory.

(i) A module A is T-torsion if and only if Homg(A, E(B)) = 0 for every
T-torsionfree module B.

(i) A module B is T-torsionfree if and only if Homg(A, E(B)) = 0 for

every T-torsion module A.
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Proof. (i) If A is 7-torsion, then Homg(A, E(B)) = 0 for every 7-torsionfree
module B by Proposition 1.2.11.
Conversely, the exact sequence 0 — t(A) — A — A/t(A) — 0 induces

for every 7-torsionfree module B the exact sequence
0 — Hompg(A/t(A), E(B)) — Homg(A, E(B)) — Homg(t(A), E(B)) — 0

with the middle term zero by hypothesis. Hence Hompg(A/t(A), E(B)) =0
for every 7-torsionfree B. In particular, Hompg(A/t(A), E(A/t(A))) = 0,
whence we get t(A) = A.

(73) If B is 7-torsionfree, then Homg(A, E(B)) = 0 for every 7-torsion
module A by Proposition 1.2.11.

Conversely, the exact sequence 0 — B — F(B) — E(B)/B — 0 induces

for every 7-torsion module A the exact sequence
0 — Hompg(A, B) — Hompg(A, E(B)) — Hompg(A, E(B)/B)

with the third term zero by hypothesis. Hence Hompg(A, B) = 0 for every

T-torsion module A, that is, B is T-torsionfree. U

In the following two results, we will see how a hereditary torsion theory

can be generated or cogenerated.

Theorem 1.2.14 FEvery hereditary torsion theory T is generated by the class

A of cyclic modules R/I which are torsion modules.

Proof. Note that a module F' is 7-torsionfree if and only if Homg(R/I, F) = 0
for every R/I € A. O

Theorem 1.2.15 A torsion theory T is hereditary if and only if it is cogen-

erated by a (T-torsionfree) injective module.
Proof. Let 7 = (7,F) be a hereditary torsion theory. Denote

E =][{E(R/I) | I <g R such that R/I € F}.
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Clearly, F is injective and E € F, hence we have Homg (M, E) = 0 for every
M € T. Moreover, if M ¢ T, then there exists a non-zero homomorphism f :
C — F for some cyclic submodule C' of M and some F' € F. Since Imf € F
is cyclic, f induces a homomorphism C' — E that can be extended to a non-
zero homomorphism M — FE. Hence M € 7 if and only if Homgz(M, E) = 0,
that is, 7 is cogenerated by E. U

Example 1.2.16 (1) Denote by 0 the class consisting only of the zero mod-
ule. The pairs y = (R—Mod, 0) and £ = (0, R —Mod) are hereditary torsion
theories, called the improper and the trivial torsion theory on R-Mod respec-
tively.

(2) Let (G,+) be an abelian group. Denote by #(G) the set of elements
of G having finite order (torsion elements). Let 7 and F be the classes
of all abelian groups G such that ¢(G) = G (torsion groups) and ¢(G) = 0
(torsionfree groups) respectively. Then the pair (7', F) is a hereditary torsion
theory on Z-Mod.

(3) Let D be the class of all divisible (injective) abelian groups and let
R be the class of all reduced abelian groups, that is, abelian groups without
a non-trivial divisible direct summand. Then the pair (D,R) is a torsion
theory on Z-Mod, which is not hereditary, because the class D is not closed
under subgroups (for instance, Q is divisible, whereas Z is not).

(4) A module A is called semiartinian if every non-zero homomorphic
image of A contains a simple submodule. Let 7p be the torsion theory gen-
erated by the class of semisimple (or even simple) modules. Then 7p is a
hereditary torsion theory, called the Dickson torsion theory. Its torsion and

torsionfree classes are respectively
Tp = {A| A is semiartinian} ,
Fp={A|Soc(A) =0}.

(5) A module A is called singular if Z(A) = A and nonsingular if Z(A) =
0. Let 7¢ be the torsion theory generated by all modules of the form A/B,
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where B < A. Then 74 is a stable hereditary torsion theory, called the Goldie

torsion theory. Its torsion and torsionfree classes are respectively
1o ={A| 22(A) = A},
Fe ={A| A is nonsingular} .
If R is nonsingular, then Z(A) = Z3(A) for every module A, hence 7

consists of all singular modules.

(6) Let 71, be the torsion theory cogenerated by E(R). Then 7 is a
hereditary torsion theory, called the Lambek torsion theory. Its torsion class
is

7, = {A | Anngz dense in R,Vz € A}.

(7) A finite strictly increasing sequence py C p; C - -+ C p,, of prime ideals
of a commutative ring R is said to be a chain of length n. The supremum of
the lengths of all chains of prime ideals of R is called the (Krull) dimension
of R and it is denoted by dim R [8, p.89]. If that supremum does not exist,
then the dimension of R is considered to be infinite. For a commutative ring
R and p € Spec(R), dim R/p is called the dimension of p and it is denoted
by dim p [41, p.227].

Let n be a positive integer and let R be a commutative ring with
dim R > n. Let 7, be the torsion theory generated by the class of all modules
isomorphic to factor modules U/V', where U and V" are ideals of R containing
an ideal p € Spec(R) with dim p < n (or equivalently, the torsion theory gen-
erated by all modules of Krull dimension at most n). Then 7, is a hereditary
torsion theory. Note that 7y is the hereditary torsion theory generated by

the class of all simple modules, i.e. the Dickson torsion theory 7p.

1.3 Some bijective correspondences

In this section we will show how torsion theories are connected to radicals
and to Gabriel filters.
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Theorem 1.3.1 There is a bijective correspondence between:
(1) torsion theories in R-Mod.
(i) idempotent radicals on R-Mod.

Proof. Let 7 = (7,F) be a torsion theory in R-Mod. For every module A,
let ¢,(A) be the sum of all 7-torsion submodules of A. Clearly, ¢t = ¢, is a
preradical on R-Mod. Moreover, t(t(A)) = t(A) and, since A/t(A) € F, we
have t(A/t(A)) = 0. Thus ¢ is an idempotent radical by Lemma 1.1.5.

Conversely, let  be an idempotent radical on R-Mod. Denote
7, ={A|r(A) = A},

Fp={A|r(A) =0},

We claim that 7. = (7, F,) is a torsion theory in R-Mod. To this end, apply
Theorem 1.2.5.

Now denote by F' the correspondence 7 +— t, and by G the correspondence
r — 7,.. We will show that F' and G are inverses one to the other.

For every torsion theory 7 = (7, F), we have
G () = (T, Fo,) = (T, F) =1,

because
AeT = t,(A) =A< AcT,

and a torsion theory is determined by its torsion class. Hence G o F' = 1.

For every idempotent radical r, we show that

Denote t = t,, and let A be a module. Since r(r(A)) = r(A), we have r(A) €
7., hence r(A) < t(A). Moreover, r(A/r(A)) = 0, hence A/r(A) € F,. But
r(A) < t(A), so that it follows by Proposition 1.1.6 that 0 = t(A/r(A4)) =
t(A)/r(A), whence r(A) = t(A). Thus r =t and consequently F oG = 1. [
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Hence for any torsion theory 7, there is an associated idempotent radical
t, (usually denoted simply by t), called the torsion radical associated to .

For every module A, t(A) will be the unique maximal 7-torsion submodule
of A.

Throughout the text, ¢ will denote the idempotent radical corresponding

to a torsion theory 7.

Proposition 1.3.2 A torsion theory T = (7, F) is hereditary if and only if

the corresponding torsion radical t is left exact.

Proof. Assume that 7 is hereditary. Let A be a module and B < A. Since
t(A) € T, we have t(A) N B € T, whence t(A) N B € t(B). But ¢(B) C
t(A) N B, so that we have t(A) N B = t(B). Now by Lemma 1.1.5, ¢ is left
exact.

Conversely, assume that ¢ is left exact. Let A € F. Using Lemma 1.1.5,
we have 0 = t(A) = t(E(A)) N A, whence t(E(A)) = 0, that is, E(A) € F.
Now by Proposition 1.2.11, 7 is hereditary. O

Theorem 1.3.3 There is a bijective correspondence between:
(i) hereditary torsion theories in R-Mod.
(i) left exact radicals on R-Mod.
(111) Gabriel filters of left ideals of R.

Proof. (i) <= (ii) By Proposition 1.3.2 and Theorem 1.3.1.
(1) <= (i17) Let 7 = (7, F) be a hereditary torsion theory in R-Mod.
Define
F(R)={I<grR|R/I€T}.

We will prove that F'(R) is a Gabriel filter.
First, let I € F(R) and a € R. Define a monomorphism

f:R/(I:a)—R/I, f(r+{:a)=ra+1.
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Since R/I € T and 7 is hereditary, it follows that R/(I : a) € T, whence
(I :a) € F(R).
Secondly, let J € F(R) and let I be a left ideal of R such that (I : a) €

F(R) for every a € J. Consider the exact sequence
0—-{I+J)/)I—R/I—R/(I+J)—0.

Since R/J € T and there is a natural epimorphism R/J — R/(I + J), it
follows that R/(I + J) € 7. On the other hand, (I +J)/I = J/(INJ). But
J/(INJ) € T, because for every a € J we have (INJ) :a) = (I : a) € F(R).
Since 7 is closed under extensions, it follows that R/I € 7.

Conversely, let F'(R) be a Gabriel filter of left ideals of R. Define

7 ={A|(0:2) € F(R) for every z € A}.

We will prove that 7 is a hereditary torsion class, that is, it is closed under
submodules, homomorphic images, direct sums and extensions.

Clearly, 7 is closed under submodules.

Let A€ 7 andlet f : A — B be an epimorphism. For every y € B, there
exists © € A such that f(z) = y. Then clearly, (0 : z) C (0 : y) and since
(0:z) € F(R), it follows that (0:y) € F(R). Hence B € 7.

Let (A;)ier be a family of modules, where each A; € 7. Let (a;)ier €
P,c; Ai- Then

(0: (ai)ier) =)0 :a;) = [)(0: as)
el €K
for some finite K C I, whence (0 : (a;)icr) € F(R). Hence @, ., A; € T.

Let 0 - A/ — A — A” — 0 be an exact sequence with A", A" € T.
Assume for simplicity that A” = A/A’. Let x € A. Then (4’ : z) =
(0: 2+ A") € F(R). For every r € (A" : x), we have rz € A’, whence
((0:2):7r)=(0:rx) € F(R). But then (0: ) € F(R), hence A € 7.

Therefore 7 is a hereditary torsion class.
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Finally, let us show that we have a bijective correspondence. If we start

with a hereditary torsion class 7, then we have
F(R)y={I<rR|R/I€T}.

Since (0 : x) € F(R) for some x € A implies Rz = R/(0: z) € 7, we use the
properties of 7 to get

{A|(0:2) € F(R),Vx € A} =

= {A | every cyclic submodule of Aisin 7} =7 .

Now if we start with a Gabriel filter F/(R), then we have
T ={A](0:2) € F(R) for every x € A}.
By the properties of F'(R), we get
{I<gR|R/I€T}={I<gR|(I:7r)€e F(R),Vr e R} = F(R).

Hence the correspondence is bijective. U

We have seen that a torsion theory is completely determined by its tor-
sion class or by its torsionfree class. Now by Theorem 1.3.3, a hereditary
torsion theory 7 is also completely determined by the associated left exact
radical or by the associated Gabriel filter, that consists of the T-dense left
ideals of R. Even if some of the results to be given hold for an arbitrary
torsion theory, we are going to use the better framework of hereditary tor-
sion theories, hence of left exact radicals and of Gabriel filters. So, from now
on, we will consider only hereditary torsion theories and T will always denote

such a torsion theory.

Example 1.3.4 (1) The Gabriel filter associated to the improper torsion
theory x = (R — Mod, 0) consists of all left ideals of R, whereas the Gabriel
filter associated to the trivial torsion theory ¢ = (0, R — Mod) consists only
of R.
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(2) If (7T, F) is the usual torsion theory for abelian groups (see Example
1.2.16 (2)), then its associated Gabriel filter consists of all non-zero ideals of
Z, that is, nZ for each n € N*.

Let us now see how to compare torsion theories.

Proposition 1.3.5 The following statements are equivalent for two torsion
theories T and o:
(i) Every T-torsion module is o-torsion.

(i1) Every o-torsionfree module is T-torsionfree.

Proof. Denote by t, and t, the idempotent radicals associated to the torsion
theories 7 and o respectively.

(i) = (it) Clear.

(11) = (i) Let A be a 7-torsion module. Since A/t,(A) is o-torsionfree,
we have t,(A/t,(A)) = 0. By Proposition 1.1.6 it follows that ¢,(A)/t,(A) =
0, whence t,(A) =t.(A) = A. d

Definition 1.3.6 If 7 and o are two torsion theories for which the equivalent
conditions of Proposition 1.3.5 hold, it is said that o is a generalization of T

and it is denoted by 7 < 0.

Example 1.3.7 (1) Clearly, we have £ < 7 < x for every torsion theory 7.
(2) Consider the Lambek torsion theory 7, and the Goldie torsion theory
7. Since every dense left ideal of R is essential in R [82, p.246], we have
L < TG
(3) Let R be commutative. Consider the Dickson torsion theory 7, and

the torsion theories 7,, (n € N). Then

TD=Tp ST < - <7 <ol
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1.4 7-dense and 7-closed submodules

Recall that 7 is a hereditary torsion theory on R-Mod and ¢ is its associated
left exact radical.
Two special types of submodules play a key part in the context of torsion

theories.

Definition 1.4.1 A submodule B of a module A is called 7-dense (respec-

tively 7-closed) in A if A/B is 7-torsion (respectively 7-torsionfree).

Proposition 1.4.2 Let A be a module and B, B’ < A.

(i) If B C B, then B is T-dense in A if and only if B is T-dense in B’
and B’ is T-dense in A.

(i1) If B, B" are T-dense in A, then BN B’ is T-dense in A.

(111) If A is T-torsionfree and B is T-dense in A, then B < A.

Proof. (i) and (ii) Straightforward.
(17i) Let a € A\ B. Then Ra/(RaNB) = (Ra+B)/B is T-torsion, because
B is 7-dense in A and, consequently, 7-dense in Ra + B. Then RaN B # 0,

because Ra C A is T-torsionfree. Hence B is essential in A. O

Proposition 1.4.3 Let A be a module and B, B’ < A.

(1) t(A) is a T-closed submodule of A.

(i) If B is T-closed in A, then t(A) C B and t(B) = t(A).

(i) If B C B’ and B is T-closed in A, then B is T-closed in B’.

(iv) If B C B', B is T-closed in B" and B’ is T-closed in A, then B is
T-closed in A.

(v) The class of T-closed submodules of A is closed under intersections.

(vi) t(A) coincides with the intersection of all T-closed submodules of A.

Proof. (i), (i7i) and (iv) Clear.
(ii) If t(A) € B, then (t(A)+ B)/B = t(A)/(t(A) N B) C A/B would be
7-torsion. Hence t(A) C B and then t(B) = t(A).
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(v) Let (B;)ier be a family of 7-closed submodules of A. Since there is
a canonical monomorphism A/(",.; B; = [[,c; A/ B, it follows by Theorem
1.2.6 that (),c; B; is 7-closed in A.

(vi) Since t(A) is 7-closed in A, it belongs to the above intersection.
Conversely, if B is 7-closed in A and = € t(A), then (0 : z) C (0 : 2 + B)
implies that x + B is a 7-torsion element of A/B. Then x € B, so that
t(A) C B. O

Definition 1.4.4 Let A be a module and B < A. The unique minimal

T-closed submodule of A containing B is called the 7-closure of B in A.

Remark. Note that the intersection of all 7-closed submodules of A containing

B is 7-closed in A by Proposition 1.4.3.

Proposition 1.4.5 Let A be a module, B < A and let B" be the T-closure
of B in A. Then B'/B =1t(A/B).

Proof. 1If t(A/B) = C/B for some C' < A, then C/B is 7-closed in A/B.
Thus C is 7-closed in A and contains B, hence B C C. If B’ # C, then
C/B" C A/B’ is t-torsionfree. But it is also 7-torsion as a homomorphic

image of C'/B, a contradiction. Hence B’ = C' and consequently, B'/B =
t(A/B). O

Let us denote by C,(A) the set of all 7-closed submodules of a module A.

Proposition 1.4.6 Let A be a module and B < A. Then:
(i) C;(A) is a complete lattice.
(i1) There ezists a canonical embedding of C.(B) into C.(A).
(i1i) There ezists a canonical embedding of C,(A/B) into C,(A).
(iv) The lattices C.(A) and C,(A/t(A)) are isomorphic.

Proof. (i) For a family of T-closed submodules of a module A, the infimum is
their intersection and the supremum is the 7-closure of their sum. Note that

C-(A) has a least element, namely ¢(A), and a greatest element, namely A.
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(7i) We claim that the canonical embedding is given by taking the 7-
closure in A. Indeed, let X,Y be 7-closed submodules of B having the same
T-closure in A, say X’. Since B/X and B/Y are 7-torsionfree and X’/X and
X'/Y are t-torsion, it follows that X = X' N B =Y.

(7i1) Note that if C'//B is a 7-closed submodule of A/ B, then C'is 7-closed
in A.

(iv) Define

F:C(AfH(A)) = C-(A), F(B/t(A)) = B.

Then F'is injective by (i) and it is easy to check that Fis a lattice homomor-
phism. Now let B be a 7-closed submodule of A. Since t(A)/(B Nt(A)) =
(B +t(A))/B C A/B is both 7-torsion and 7-torsionfree, we must have
t(A) C B. Then B/t(A) is 7-closed in A/t(A) and F(B/t(A)) = B. Thus F

is surjective. Therefore F' is a lattice isomorphism. U

The following easy lemma will be frequently used.

Lemma 1.4.7 Let R be commutative and p € Spec(R). Then p is is either

T-dense or T-closed in R.

Proof. Assume that p is not 7-dense in R. Suppose that t(R/p) # 0. Let
0# a € t(R/p). Then Ra C t(R/p) is T-torsion. But Ra = R/Annga = R/p,

a contradiction. O

Proposition 1.4.8 If R is commutative noetherian, then every hereditary

torsion theory on R-Mod is stable.

Proof. Let A be a 7-torsion module. By hypothesis, every injective module
is a direct sum of indecomposable injective modules, that is, a direct sum of
modules of the form E(R/p) for p € Spec(R). So we may assume without
loss of generality that F(A) = E(R/p) for some p € Spec(R). It follows that

R/p cannot be 7-torsionfree, hence it is 7-torsion by Lemma 1.4.7. Now let
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0# x € E(A) = E(R/p). Then there exists a natural power n such that
Anngz = p" [101, Proposition 4.23]. We have

Rx = R/Anngx = R/p".

Since p is 7-dense in R, it follows by Proposition 1.1.10 that p" is 7-dense
in R. Hence Rx is T-torsion for every x € E(A) and consequently, F(A) is

T-torsion. O

The following noetherian-type notions related to 7-dense and 7-closed

submodules will be needed.

Definition 1.4.9 A torsion theory 7 is called noetherian if for every ascend-
ing chain I; C I, C ... of left ideals of R the union of which is 7-dense in R,

there exists a positive integer k£ such that [ is 7-dense in R.

Definition 1.4.10 A module is called T-noetherian if it has ACC on 7-closed

submodules.

Example 1.4.11 Every 7-torsion and every r-cocritical module is 7-

noetherian.

Proposition 1.4.12 Let A be a module and B < A. Then A is T-noetherian
if and only if B and A/B are T-noetherian.

Proof. If A is T-noetherian, then B and A/B are both 7-noetherian by
Proposition 1.4.6 (i7) and (7).

Conversely, suppose that both B and A/B are T-noetherian. Let A; C
Ay C ... be an ascending chain of 7-closed submodules of A. We have
(B+ A;)/A; = B/(BN A;), hence BN A; is 7-closed in B for each i. Thus
we have the ascending chain BN A; C BN Ay C ... of 7-closed submodules
of B. Then there exists j € N* such that BN A; = BN A, for each i > j.
For each i, denote by C; the 7-closure of B + A; in A;.



24 CHAPTER 1. INTRODUCTION TO TORSION THEORIES

We claim that the correspondence A; — C; is injective. Supposing the
contrary, we have C; = C}, for some ¢ > k. Consider the natural epimorphism
g:A;/Ar — (B+ A;)/(B+ Ax). Then

hence g is an isomorphism. It follows that
AiJAr =2 (B+A)/(B+ A) CC;/(B+ Ag)

is 7-torsion, that contradicts the fact that A is 7-closed in A.
Now C;/B is t-closed in A/B for each i, hence there exists [ € N* such
that C; = C) for each ¢ > [. Therefore A; = A; for each i > [. Thus A is

T-noetherian. O

Recall that a module A is said to have finite uniform (Goldie) dimension
if A does not contain an infinite direct sum of non-zero submodules or equiv-
alently if there exists a natural number n such that A contains an essential
submodule U; @ - - - @ U, for some uniform submodules U; of A [40, p.40].

Proposition 1.4.13 Fuvery t-torsionfree T-noetherian module has finite uni-

form dimension.

Proof. Let A be a T-torsionfree 7-noetherian module. Suppose that there
is an infinite set (A;);jen~ of non-zero submodules of A whose sum is direct.
For each j, let B; be the 7-closure of A; @ --- ® A; in A. Clearly, each
B, is a 7-closed submodule of A and B; C B,y for each j. Since A is 7-
noetherian, there exists k € N* such that B, = Byy1. Now if a € A1, then
a € By = By, hence we have Ia C A; ® --- @ A for some 7-dense left
ideal I of R. Since Ia C Ajyq and the sum A; + --- + Ajq is direct, we
must have la = 0. But A is 7-torsionfree, hence a = 0, so that A;,; =0, a

contradiction. O
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Theorem 1.4.14 The following statements are equivalent:

(i) R is T-noetherian.

(i) If Iy C Iy C ... is a strictly ascending chain of left ideals of R having
unton I, then there exists k € N* such that Iy, is T-dense in I.

(i5i) If t(R) C Iy C Iy C ... is a strictly ascending chain of left ideals of
R having union I, then there exists k € N* such that I}, is T-dense in 1.

(iv) Every direct sum of T-torsionfree injective modules is injective.

Proof. (i) = (ii) Let I, C I, C ... be a strictly ascending chain of left
ideals of R having union /. For each I; denote by I} the T-closure of I; in R.
Then I] C I, C ... is an ascending chain of T-closed left ideals of R. Since R
is 7-noetherian, there exists & € N* such that I} = I} for every j > k. Then

I=Jnclrn=1r,

JEN* JEN*

whence it follows that
I/Iy C I, /I, = t(R/1}) .

Thus I is 7-dense in [I.

(i1) = (uii) Clear.

(13i) = (iv) Let (A;)er be a family of 7-torsionfree injective module
and denote A = @,.; A;. Let I be a left ideal of R and let f : I — A be
a homomorphism. Since A is 7-torsionfree, we have t(I) C Kerf, hence f
can be extended to a homomorphism g : I + t(R) — A by taking g(r) = 0
for every r € t(R). Therefore without loss of generality we may assume that
t(R) C I.

Let us define a transfinite sequence (J,), of left ideals of R that contain
I in the following way:

e Jo =t(R);

e if o is not a limit ordinal and I/J,_; is finitely generated, then take
Jo =1
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e if o is not a limit ordinal and 7/.J,_; is not finitely generated, then take

some elements 7., € I such that
Jo1 CJy1+ Rron C Jye1+ Rrogn + Rros C ...

and take
Jo=Jac1+ Y Rros;

seN*

e if v is a limit ordinal, then take

Jo=J Js.

B<a

We use transfinite induction on the least ordinal v such that J, = I. For
v = 0, we have I = Jy = t(R), hence f = 0, that trivially extends to a
homomorphism g : R — A.

First, suppose that v is not a limit ordinal. By the induction hypothesis,
there exist a finite subset F,, C L and a homomorphism f, : R — @le Fay Ay
that extends fl;,_,.

If I/Jo—1 is finitely generated, Imf C €, A for some finite subset F,
such that F,_ C F, C L. Thus f extends to a homomorphism g : R — A.

If 1/J, is not finitely generated, then by the definition of J,, there exists

a strictly ascending chain
t(R) CJya=Lclhc---CI

of left ideals of R such that [ is their union and each [;/1; is finitely generated.
By hypothesis, there exists k € N* such that I} is 7-dense in . Since I}/ J,_1
is finitely generated, we use the above case to get a homomorphismg: R — A
that extends f|;,. Since I, C Ker(f —gl|r), f — g|r induces a homomorphism
I/1;, — A, which must be zero because I} is 7-dense in . Thus g extends f.

Secondly, suppose that a is a limit ordinal. It is enough to show that Im f
is contained in a finite direct sum of A;’s. Suppose the contrary. Then we

construct a sequence (ay,)men+ such that for every n € N* we have: o, < «,
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n < m implies o, < «,, and f(J,,) is not contained in any direct sum

consisting of n elements of the family (A;);er. Then | Jo, = I, because

neN*

otherwise there exists an ordinal 3 < «a such that (J,.y+ Ja, C J3, that

contradicts the induction hypothesis. Now proceed as above to deduce that
f extends to a homomorphism ¢g : R — A. But this is a contradiction.

(iv) = (i) Suppose that we have a strictly ascending chain I} C Iy C

- C of 7-closed left ideals of R and denote by [ their union. Note that

I(1+1;) # 0 for each j € N*. Now consider the homomorphism

fI—= @D BRI, fr)=(+ 1)
jeN
By hypothesis, @jeN* E(R/I;) is injective, hence there exists = €
D,en- E(R/1;) such that f(r) = rz for every r € I. Then f(I) is con-
tained in a finite direct sum of F(R/I;). But this contradicts the fact that
I(1+1;) # 0 for each j € N*. Thus R is 7-noetherian. 4

We can show now that the condition on R to be 7-noetherian assures a

direct sum decomposition for any 7-torsionfree injective module.

Theorem 1.4.15 Let R be T-noetherian. Then every T-torsionfree injective

module is a direct sum of indecomposable injective modules.

Proof. Let A be a t-torsionfree injective module. If 0 # = € A, then
Rz is clearly T-torsionfree and 7-noetherian by Proposition 1.4.12. Hence by
Proposition 1.4.13, Rz has finite uniform dimension, so that Rx has a uniform
submodule, hence A has a uniform submodule. Now by Zorn’s Lemma, there
exists a maximal independent family (A;);c; of uniform submodules of A.
By the injectivity of A, we have E(A;) C A for each i and, by the fact
that each A; is indecomposable, it follows that the sum ., E(A4;) is direct.
By Theorem 1.4.14, ,.; E(A;) is injective, hence it is a direct summand
of A. On the other hand, we have @, ; £(A4;) < A. Hence we must have
A=, E(A). O
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1.5 7-cocritical modules and a generalization

A certain subclass of the class of 7-torsionfree modules is of particular im-

portance. That is the class of T-cocritical modules.

Definition 1.5.1 A non-zero module A is called 7-cocritical if A is 7-

torsionfree and every non-zero submodule of A is 7-dense in A.

Proposition 1.5.2 Let A be a non-zero module. Then the following state-
ments are equivalent:
(i) A is either T-torsion or T-cocritical.

(i1) Every non-zero proper submodule B of A is not T-closed in A.

Proof. (i) = (i) This is clear.

(11) = (i) Suppose that A is not 7-torsion, that is, t(A) # A. If t(A) #
0, then by hypothesis A/t(A) is not 7-torsionfree, a contradiction. Hence
t(A) =0, i.e. Ais 7-torsionfree. Now let B be a non-zero proper submodule
of A. Then A/B is not 7-torsionfree, hence t(A/B) # 0. Let t(A/B) = C/B.
Then A/C = (A/B)/t(A/B) is T-torsionfree, whence A = C' by hypothesis.

Hence A/B is 7-torsion and thus A is 7-cocritical. d

Recall that a non-zero module A is said to be uniform in case each of its

non-zero submodules is essential in A.

Proposition 1.5.3 The following statements are equivalent for a module A:
(i) A is T-cocritical.
(i1) A is uniform and A contains a T-dense T-cocritical submodule.
(111) A is T-torsionfree and A contains a T-dense T-cocritical submodule.

(iv) Every non-zero cyclic submodule of A is T-cocritical.

Proof. (i) = (ii) Every proper submodule of A is 7-dense and, consequently,
essential by Proposition 1.4.2. Hence A is uniform. Trivially, A is a 7-dense

T-cocritical submodule of itself.



1.5. 7-COCRITICAL MODULES AND A GENERALIZATION 29

(11) = (4i1) Denote B = t(A) and let C' be a 7-dense T-cocritical sub-
module of A. Then we have C' < A. It follows that if B # 0, then BNC' # 0.
So, if B # 0, then the 7-cocritical module C' would have a 7-torsion submod-
ule, a contradiction. Hence t(A) = B = 0.

(14i) = (i) Let B be a non-zero submodule of A and let C' be a 7-dense
T-cocritical submodule of A. Then C < A and BN C is a non-zero 7-dense

submodule of A. Now consider the exact sequence
0—(B+C)/B—A/B— A/(B+C)—0
Here (B+ C)/B = C/(BNC) is t-torsion and A/(B + (') is 7-torsion as a

homomorphic image of A/C. Then B is 7-dense in A. Thus A is T-cocritical.

(i) = (iv) Let B be a non-zero submodule of A. Then B is 7-torsionfree.
Also, every non-zero submodule of B is 7-dense in A and, consequently, 7-
dense in B. Hence B is T-cocritical.

(1v) = (i) Since every non-zero cyclic submodule of A is T-torsionfree, A
is also T-torsionfree. Now assume that A is not 7-cocritical. Then there exists
a proper 7-closed submodule B of A. Let a € A\ B. Then Ra/(RanN B) =
(Ra+ B)/B C A/B is T-torsionfree. But Ran B # 0, because A is uniform,

contradicting the fact that Ra is 7-cocritical. Thus A is 7-cocritical. O

Proposition 1.5.4 Let A be a uniform module having a T-cocritical sub-

module. Then A has a unique maximal T-cocritical submodule.

Proof. Since A is uniform and has a 7-cocritical submodule, A must be 7-
torsionfree. Denote by A; the 7-cocritical submodules of A, where 1 < i < w
and w is some ordinal. Then M = >

that M is the unique maximal 7-cocritical submodule of A and we prove it

i< Ai is clearly 7-torsionfree. We claim

by transfinite induction on w. If w = 1, the assertion holds. Now take w > 1
and suppose that C' = > ._ A; is 7-cocritical. If A, C C, then M = C

and we are done. So, assume further that A, ¢ C. Let B be a non-zero

<w

submodule of M and consider the exact sequence

0—-(B+C)/B—-M/B— M/(B+C)—0
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Since A is uniform, we have BNC # 0 and (B+ C) N A, # 0. Since C' and
A, are T-cocritical, it follows that (B + C)/B = C/(BN(C) and

M/(B+C)=(B+C+A)/(B+C)=A,/(B+C)NA)

are 7-torsion. Then B is 7-dense in M. Thus M is 7-cocritical. O

Proposition 1.5.5 Let (A;):e; be a set of T-cocritical submodules of a mod-
ule A such that ), ; A; is T-dense in A and let B be a T-closed submodule
of A. Then there exists J C I such that the sum Zjej Aj is direct and
B® (Djc;A;j) is T-dense in A.

Proof. We may suppose that B # A. Let M be the family of all subsets
K C I such that the sum ), _, Ay is direct and BN (3,5 Ax) = 0. Then
M # (), because ) € M. Every chain of elements in (M, C) has the union in
M. Then by Zorn’s Lemma, M has a maximal element, say J, that clearly
has the requested properties. U

We should note that there are torsion theories 7 and rings R such that
there is no 7-cocritical module and rings R such that for every proper torsion

theory 7 there is a 7-cocritical module.

Definition 1.5.6 A ring R is said to be left seminoetherian if for every

proper torsion theory 7 on R-Mod there exists a 7-cocritical module.

Example 1.5.7 (1) There is no y-cocritical module.

Alternatively, if R is an infinite direct product of copies of a field, then
there is no 7p-cocritical module [3].

(2) [94] Every left noetherian ring is left seminoetherian. Indeed, if 7 is
a proper torsion theory and A is a non-zero 7-torsionfree module, then the
set of all submodules of A that are not 7-dense in A has a maximal element
B and then A/B is T-cocritical.
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Proposition 1.5.8 Let A be a noetherian module which is not T-torsion.
Then there ezists a submodule B of A such that A/B is T-cocritical.

Proof. Since A is not 7-torsion, there exists a proper submodule D of A such
that A/D is 7-torsionfree. Denote F' = A/D. Let F be the set of all proper
submodules G of F' such that F//G is not 7-torsion. Then F is non-empty,
containing the submodule 0 of F. Since F' is noetherian, the set F has a
maximal element Q). Let H/(Q) be a non-zero proper submodule of F/Q. By
the maximality of @, (F/Q)/(H/Q) = F/H is T-torsion. But F'/(Q) is not
7-torsion. Then F/Q is T-torsionfree, because otherwise ¢(F/Q) # 0 and
(F/Q)/t(F/Q) would be T-torsion. It follows that F'/() is T-cocritical. Now
let @ = B/D. Then A/B = F/Q is T-cocritical. O

Now let us establish a connection between cocritical modules with respect

to different hereditary torsion theories.

Proposition 1.5.9 Let 7 and o be hereditary torsion theories such that T <

o. If A is a T-cocritical module that is not o-torsion, then A is o-cocritical.

Proof. Let F'= A/t,(A). Then F is o-torsionfree, hence 7-torsionfree. Since
A is T-cocritical, we have either F' = 0 or I’ = A. Since A is not o-torsion,
F # 0. Then A is o-torsionfree. Moreover, every proper 7-closed submodule

of A is 7-closed, hence it must be zero. Thus A is o-cocritical. O

The following particular characterization of cocritical rings with respect

to the Dickson torsion theory will be used later on.

Proposition 1.5.10 Let R be a Tp-torsionfree ring such that every mazimal
left ideal of R s of the form Rp = pR for some p € R. Then:
(i) R/((N,—, M™) is Tp-torsionfree for each mazimal left ideal M of R.
(ii) R is Tp-cocritical if and only if ()., M™ = 0 for each mazimal left
ideal M of R.
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Proof. It M is a maximal left ideal of R, denote I = (), M".

(¢) Assume the contrary and let 0 # a+1 € Soc(R/I). Then there exists a
maximal left ideal Rq of R such that ga € I. Suppose that ¢ ¢ Rp = M. We
claim that Rqg+Rp™ = R for every n € N. Indeed, if Rg+ Rp" C R for some n,
then there exists a maximal left ideal N of R such that Rq+ Rp™ C N # M.
Thus p™ € N, whence p € N and then N = M, a contradiction. It follows
that 1 = rq + sp™ for some r,s € R, whence a = rqa + sp™a. Since ga € I,
we have ga = bp™ for some b € R. Then

a =rqa+ sp"a =rbp" + sp"a = (rb + sc)p”

for some ¢ € R, hence a € I, a contradiction. Therefore ¢ € Rp, whence we
have ¢ = p. Then for every n € N, pa = p"*lc € I. Since R is Tp-torsionfree,
we have a = p"c € I, a contradiction. Consequently, Soc(R/I) = 0, that is,
R/I is Tp-torsionfree.

(71) For the direct implication apply (7).

Conversely, suppose that I = 0 for each maximal left ideal M of R.
Let 0 # J C R be a left ideal of R. Then J C M for some maximal left
ideal M of R. It follows that J N M**! c J N MF* for some k € N. Let
a € (JNMF)\ (JNM*1). Then a = p*c for some ¢ € R\ M. Tt follows that
there exists 1 < I < k such that p'b = a for some b ¢ J and pb € J. Then
(J : b) = M and the set of all b’s modulo J is a simple submodule of R/J.

Hence R is Tp-cocritical. O

In the sequel we consider a class of modules including the class of simple
modules as well as the class of 7-cocritical modules. But first let us give

another property of 7-cocritical modules.

Lemma 1.5.11 Let f : A — B be a non-zero homomorphism from a 7-

cocritical module A to a T-torsionfree module B. Then f is a monomorphism.

Proof. 1f Kerf # 0, then A/Kerf = Imf C B is 7-torsionfree. But this

contradicts the fact that A is 7-cocritical. O
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Throughout the rest of this section we denote by N the class of non-zero
modules having the following property: a non-zero module A belongs to N if
and only if every non-zero endomorphism f € Endgz(A) is a monomorphism.

It is clear by Lemma 1.5.11 that every 7-cocritical module is in N.

For the rest of this section we will suppose the ring R to be commutative.
Recall that a module A is said to be faithful if AnngA = 0.

Theorem 1.5.12 Let A € N. Then:
(i) Annga = AnngA for every 0 # a € A.
(i) AnngA € Spec(R).
(111) If A is faithful, then R is a commutative domain.
(iv) A is a torsionfree R/AnngA-module.

(v) If A is uniform, then A is isomorphic to a submodule of the module

Anngp/annga)(AnngA).

Proof. (i) Let r € R be such that r ¢ AnngA and let 0 # a € A. Thus there
exists b € A such that rb # 0. Then the endomorphism g : A — A defined
by g(z) = rz is a monomorphism. Thus g(a) = ra # 0, i.e. r ¢ Annga.
Hence Annga C AnngA. Clearly AnngA C Annga. Thus Anng A = Annga.

(i1) Let r;s € R be such that rs € AnngA and let 0 # a € A. If
s ¢ AnngA = Annga, we have sa # 0. But then r € Anng(sa) = AnngA.
Hence AnngA € Spec(R).

(#7i) By (i), 0 = AnngA € Spec(R), hence R is a domain.

(iv) Since AnngA € Spec(R), R/AnngA is a commutative domain. Also
A has a natural structure of R/AnngzA-module. Denote 7 = r + AnngA for
everyr € R. Let 0 #a € Aand 0 #7 € R/AnngA. If Ta = 0, then ra = 0,
hence r € Annga = AnngA, i.e. T = 0, a contradiction. Therefore 7a # 0.
Thus A is a torsionfree R/AnngA-module.

(v) Denote p = AnngA = Annga for every a € A. Then Ra = R/p for
every a € A. Since A is uniform, we have F(A) = E(Ra) = E(R/p). Hence

A is isomorphic to a submodule of Anngr/ann,A)p- O
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Remark. Theorem 1.5.12 will be frequently used for a 7-cocritical module A.

Corollary 1.5.13 Let A be a T-cocritical module and p = AnngrA. Then:
(i) R/p is T-cocritical.
(ii) If 0 # B < Annga)p, then B is T-cocritical.

Proof. (i) If 0 # a € A, then R/AnngA = R/Annga = Ra by Theorem
1.5.12. Since A is T-cocritical, it follows by Proposition 1.5.3 that R/AnngA
is T-cocritical.

(17) Clearly, B C E(A) is 7-torsionfree. Now let D be a non-zero proper
submodule of B. Let b € B\ D. Since Anngb = p, we have Rb = R/p, hence
by (i), Rb is T-cocritical. Since RbN D # 0, it follows that Rb/(RbN D) =
(Rb + D)/D is t-torsion, whence B/D cannot be 7-torsionfree. Now by

Proposition 1.5.2, B is 7-cocritical. O

We return now to the context of the class N and give a characterization

of uniform modules in N. But first let us recall the following lemma.

Lemma 1.5.14 [101, Lemma 2.31] Let R be commutative and let p €
Spec(R). Then the collection of all annihilators of non-zero elements of the

module E(R/p) has a unique mazimal member, namely p itself.

Theorem 1.5.15 Let A be a non-zero module. Then the following state-
ments are equivalent:

(i) A is uniform and A € N.

(ii) There exist p € Spec(R) and 0 # B < Anngg/pp such that A = B.

Proof. (i) = (ii) Let p = AnngA and apply Theorem 1.5.12.

(11) = (i) For every 0 # a € E(R/p) we have Annga C p by Lemma
1.5.14. Hence Annga = p for every 0 # a € Anngg/,p. Then we have
AnngB = Annga = p for every 0 # a € B. Since E(R/p) is indecomposable
injective, B is uniform. Let 0 # f € Endg(B). Then there exists 0 # a € B
such that f(a) # 0. Suppose that f is not a monomorphism. Then there
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exists 0 # b € B such that f(b) = 0. Since B is uniform, there exist r,s € R
such that 0 # ra = sb € RaN Rb. Then rf(a) = f(ra) = f(sb) = sf(b) =
0, i.e. r € Anngf(a) = p. Hence ra = 0, a contradiction. Now f is a
monomorphism, so that B € A/. Thus A is uniform and A € N. O

Corollary 1.5.16 (i) For every p € Spec(R), R/p € N.

(i1) Every non-zero cyclic submodule of a module in N belongs to N
Let us see some properties of the endomorphism ring of a module in V.

Theorem 1.5.17 Let A € N'. Then:

(i) A is indecomposable, Endg(A) is a domain and A is a torsionfree right
Endg(A)-module.

(i1) If A is injective, then A = E(R/AnngA) and Endg(A) is a division
Ting.

(111) If A is faithful and not injective, then Endg(A) is not a division ring.

Proof. (i) Suppose that A is not indecomposable, say A = B & C for some
non-zero submodules B and C of A. Let p : A — B be the canonical
projection and ¢ : B — A the canonical injection. Then ip is a non-zero
endomorphism of A that is not a monomorphism, hence A ¢ N, a contradic-
tion. Therefore A is indecomposable. Now let 0 # f, g € Endg(A). Then f
and g are monomorphisms, hence fg # 0. Therefore Endg(A) is a domain.
Finally, if 0 # f € Endg(A) and 0 # a € A, then af = f(a) # 0, because f
is a monomorphism. Hence A is a torsionfree right Endz(A)-module.

(77) Let 0 # a € A. By Theorem 1.5.12, p = AnngA = Annga € Spec(R).
But Ra = R/Annga = R/p, hence E(R/p) = E(Ra) C A. By (i), A is
indecomposable, hence A = E(R/p). Let 0 # f € Endgr(A). Then f is a
monomorphism. Since A is indecomposable injective, f is an isomorphism.
Therefore Endg(A) is a division ring.

(731) Suppose that every non-zero f € Endg(A) is an isomorphism. By

Theorem 1.5.12, R is a commutative domain and A is a torsionfree module.
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It follows that R is isomorphic to a subring of the ring Endg(A), hence
rA = A for every non-zero element r € R. Therefore A is torsionfree and
divisible. It follows that A is injective, a contradiction. Hence there exists
0 # f € Endgr(A) which is not an isomorphism. d

Example 1.5.18 Let R be a commutative domain. Then AnngFE(R) =0 €
Spec(R). By Theorem 1.5.15, every non-zero submodule of E(R) belongs
to the class V. Hence E(R) € N. Since F(R) is indecomposable injective,
every non-zero endomorphism f € Endg(FE(R)) is an isomorphism. If A is a
non-zero proper submodule of E(R), then A is not injective because E(R) is

indecomposable. By Theorem 1.5.17, Endg(A) is not a division ring.

Proposition 1.5.19 Let A € N be quasi-injective.
(i) If 0 # B < A, then B € N.
(ii) If p=AnngA and A < B < Anngap, then B € N.

Proof. (i) Denote by i : B — A the inclusion homomorphism and let 0 #
f € Endg(B). Since A is quasi-injective, there exists h € Endg(A) such that
hi =if. It follows that h # 0 and thus h is a monomorphism. Therefore f
is a monomorphism. Hence B € N.

(i7) We have Annga = p for every 0 # a € Anngayp. Let 0 # f €
Endg(B). Then there exists 0 # b € B such that f(b) # 0. Since A < B,
there exists r € R such that 0 # rb € AN Rb. Therefore r ¢ p and
f(rd) = rf(b) # 0, i.e. fla # 0. But f extends to an endomorphism
g € Endgr(E(A)). Since A is quasi-injective, we have g(A) C A, hence
f(A) € A. Let h € Endg(A) be defined by h(a) = f(a) for every a € A.
Since h(b) = f(b) # 0, it follows that h is a monomorphism. Suppose now
that f is not a monomorphism. Then there exists 0 # ¢ € B such that
f(e) = 0. Also there exists s € R such that 0 # sc € AN Re. We have

h(sc) = f(sc) = sf(c) =0, a contradiction. Hence f is a monomorphism. O

Remark. Clearly, Theorem 1.5.17 (i) and Proposition 1.5.19 (i) hold for an
arbitrary ring R.
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1.6 7-simple and T-semisimple modules

We introduce now the torsion-theoretic generalizations of the notions of sim-

ple and semisimple module.

Definition 1.6.1 A non-zero module A is called 7-simple if it is not 7-

torsion and its only 7-closed submodules are ¢(A) and A.

The connections between 7-simple and 7-cocritical modules are given in

the following lemma, whose proof is immediate.

Lemma 1.6.2 Let A be a non-zero module. Then:
(i) A is T-cocritical if and only if A is T-simple and T-torsionfree.
(11) A is T-simple if and only if AJ/t(A) is T-cocritical.

Note that there are 7-simple modules that are not 7-cocritical and there

are torsion theories 7 and rings R such that there is no 7-simple module.

Example 1.6.3 (1) [65] Let p be a prime and let n € N*. Then Z,» is clearly
a Tg-simple Z-module that is not 7g-cocritical.
(2) [3] Let R be an infinite direct product of copies of a field. Then there

is no 7p-simple module.

Proposition 1.6.4 Let A be a module and B < A. Then:
(i) B is T-simple if and only if the T-closure B’ of B in A is T-simple.
(i1) If A is T-torsionfree, then B is T-cocritical if and only if its T-closure

i A is T-cocritical.

Proof. (i) First assume that B is 7-simple. Then it is not 7-torsion, hence
B’ is not 7-torsion. Let C' be a proper submodule of B’. Since C/(BNC) =
(B+C)/BC B'/B, BNnC is 7-dense in C.

If BN C is T-torsion, then C is 7-torsion as an extension of B N C' by
C/(BNC), hence C' C t(B’). Now by Proposition 1.4.3, C' is 7-closed in B’
if and only if C' = ¢(B’).
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If BN C is not 7-torsion, then B N C' is not 7-closed in B because B is
7-simple. Hence BN C has to be 7-dense in B, that implies that (B + C)/C
is 7-torsion. Also, B'/(B+ () is 7-torsion as a homomorphic image of B'/B.
Then B'/C' is T-torsion as an extension of (B+C')/C by B'/(B+ C). Hence
C'is 7-dense in B’.

Therefore B’ is 7-simple.

Conversely, assume that B’ is 7-simple. Then it is not 7-torsion, hence
B is not 7-torsion, because otherwise, since B and B’/B are both 7-torsion,
one deduces that B’ is 7-torsion. Now let C' be a proper submodule of B.
If C C ¢(B), then by Proposition 1.4.3 C' is 7-closed in B if and only if
C = t(B). If C is not 7-torsion, then B’/C is 7-torsion because B’ is 7-
simple. It follows that C' is 7-dense in B. Therefore B is T-simple.

(1) It follows by Lemma 1.6.2 and by (i). O

Proposition 1.6.5 Let A be a module, let B be a T-simple submodule of A
and let C' be a T-closed submodule of A. Then either B N C' is T-torsion or
BCC.

Proof. Suppose that B N C' is not 7-torsion. Since B is 7-simple, it follows
that BN C is 7-dense in C'. Then C' is 7-dense in B 4+ C'. But C' is 7-closed
in A, so C'is 7-closed in B+ C'. It follows that B+ C = C, hence B C C'. J

Let us introduce now some notions related to 7-simple modules.

Definition 1.6.6 The 7-socle of a module A, denoted by Soc,(A), is defined
as the 7-closure of the sum of all 7-simple submodules of A.

A module A is called 7-semisimple if Soc,(A) = A.

A module A is called T-semiartinian if every non-zero factor module of

A has a non-zero T-socle.

We collect in the following lemma some basic properties of the above

notions.
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Lemma 1.6.7 (i) The sum of all T-simple submodules of a module equals
the sum of all its T-closed T-simple submodules.

(i1) If A is a T-torsionfree module, then there exists a maximal indepen-
dent family (A;)ier of T-cocritical submodules of A such that Soc,(A) is the
T-closure of @,.; A; in A.

(111) If (Si)icr is the family of all T-simple submodules of a module A,
then

il

t(A) € Z S; € Soc(A).
iel
(iv) Every T-torsion module is T-semisimple.
(v) A module A is T-semisimple if and only if AJ/t(A) is T-semisimple.
(vi) R is T-semiartinian if and only if Soc.(A) < A for every module A.

Proof. (i) By Proposition 1.6.4.
(1) By Proposition 1.5.5.
(i73) — (vi) Straightforward. O

Proposition 1.6.8 Let A be a module. Then the following statements are
equivalent:

(i) A is T-semisimple.

(ii) The lattice of T-closed submodules of A is complemented and every
T-closed submodule of A that is not T-torsion contains a T-simple submodule.

(11i) For every proper T-closed submodule B of A, there exists a T-simple

submodule S of A such that BN S = t(S).

Proof. (i) = (ii) Let B be a 7-closed submodule of A. We may assume
without loss of generality that B # t(A), because otherwise a complement of
B in A is exactly A.

Denote by U the sum of all 7-simple submodules of A. Then by Lemma
1.6.7,U = ), ; Ai, where each A, is a 7-closed 7-simple submodule of A. For
every ) # J C I, denote Ay = . _; A;j and if J = ), then put Ay = t(A).
For each A;, denote by A’; its 7-closure in A. Consider the family M of all
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subsets J C I such that BN A", = t(A). Then M # (), because ) € M.
Now take a chain (Jg)rex of elements of M and in what follows denote
J = Uiex Je- We have to show that A; € M. Since B and A; are 7-closed
in A, we have t(A) C BN A. Now let a« € BN A’;. Then (A, : a) is
7-dense in R. For every r € (Ay:a), ra € Ay, hence ra € A for some finite
subset ' C J. It follows that ra € BN A, = t(A) for some k € K, hence
(As:a)a Ct(A). Then a € t(A) and consequently we have BN A, = t(A).
Thus A; € M. Now by Zorn’s Lemma, M has a maximal element, say L.
We are going to prove that A’ is a 7-closed complement of B. We have
just seen that the first condition for that holds, namely BN A} =t(A). Let
us suppose that the second condition does not hold, that is, we assume that
B+ A’ is not 7-dense in A. Then U € B + A/, so that A; € B + A}, for
some i € I. Denote W = L U {i}. We will show that Ay € M. Since 4, is
7-closed in A, we have t(A4;) = t(A). By Proposition 1.6.5, it follows that

Ain(B+ A) =t(A) =t(A).

We have t(A) € BN Aj;,. Now let a € BN Aj;,. Then (Aw : a) is a 7-dense
left ideal of R. For every r € (Aw : a), we have ra € Ay, so that ra = a; +x
for some a; € A; and x € Ap, whence a; € A;,N(B+ A}) =t(A) C Ar. It
follows that ra € Ap, so that ra € BN Ay = t(A). As above, this means
that a € t(A) and consequently B N A}, = t(A). But this contradicts the
maximality of L. Therefore B + A’ is 7-dense in A and consequently the
lattice of 7-closed submodules of A is complemented.

For the second part, let B be a 7-closed submodule of A that is not 7-
torsion. Then B has a 7-closed complement C', hence we have BN C = t(A)
and B + C is 7-dense in A. It follows that A; N C = t(A) for some ¢ € I,
because otherwise the inclusions A; C C' for each ¢ imply A C C' and B =
t(A), a contradiction. Then (A; +C)/C = A;/t(A;) is a T-closed T-cocritical
submodule of A/C. Also, (BN (A; +C))/C is a T-cocritical submodule of
B/C. Now it follows that B N (A; + C) is a 7-simple submodule of B.
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(1) = (iii) Let B be a proper 7-closed submodule of A. Then B has a
7-closed complement C, hence we have BN C = t(A) and B + C' is 7-dense
in A. Note that C is not 7-torsion, because otherwise C' C B. Hence C has

a T-simple submodule S. Then we have BNS C BNC =t(A), whence
t(S) CBNSCSNtA) =t(S9).

Thus BN S = t(9).

(i4i) = (i) Suppose that A is not 7-semisimple. Then there exists a
7-simple submodule S such that SN Soc,(A) = t(S). Since S C Soc,(A), we
deduce that S = ¢(.5), a contradiction. O

It is well-known that semisimple rings are characterized by the fact that
every module is semisimple. Also, every semisimple module is semiartinian.

The torsion-theoretic versions of these properties hold as well.

Theorem 1.6.9 The following statements are equivalent:
(i) R is T-semisimple.

(i1) Every module is T-semisimple.

Proof. (i) = (ii) Let (S;)icr be the family of all 7-simple left ideals of R.
Then ), , S; is T-dense in R. Now let A be a module. We may suppose that
A is not 7-torsion, because otherwise it is clearly 7-semisimple. Let B be a
proper 7-closed submodule of A and let a € A\ B. Then (B : a) is not 7-
dense in A, hence S; € (B : a), that is, Sia € B. Then S;a is not 7-torsion,
so that S;a = S; and thus S;a is 7-simple. It follows that S;a N B = 0,
because otherwise S;a/(S;a N B) would be 7-torsion and (S;a + B)/B would
be 7-torsionfree. Now A is 7-semisimple by Proposition 1.6.8.

(i) = (i) Obvious. O

Corollary 1.6.10 If R is T-semisimple, then R is T-semiartinian.

Proof. If R is 7-semisimple, then by Theorem 1.6.9 every module A is 7-
semisimple, that is, we have Soc,(A) = A for every module A. Now by

Lemma 1.6.7, R is clearly 7-semiartinian. U
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1.7 71-complemented modules

This section contains some essential properties of 7-complemented modules,

that will be useful in the later stages.

Definition 1.7.1 A module A is called 7-complemented if every submodule

of A is 7-dense in a direct summand of A.

Example 1.7.2 Every semisimple, uniform, 7-torsion or 7-cocritical module

is clearly T-complemented.
We have the following basic characterization of 7-complemented modules.

Proposition 1.7.3 A module A is T-complemented if and only if every 7-

closed submodule of A is a direct summand of A.

Proof. Suppose first that A is 7-complemented. Let B be a 7-closed submod-
ule of A. By hypothesis, B is 7-dense in a direct summand C' of A. Then
C'/B C A/B is T-torsionfree, whence B = C.

Conversely, assume that every 7-closed submodule of A is a direct sum-
mand of A. Let B be a submodule of A. Also, let C'/B = t(A/B). Since
C' is 7-closed in A, C' is a direct summand of A. Thus B is 7-dense in the

direct summand C' of A, showing that A is 7-complemented. O

Let us now recall the definition of an extending module and see some
similarities between 7-complemented modules and extending modules. A
module A is called extending if every submodule of A is essential in a direct
summand of A. For instance, every uniform or quasi-injective module is
extending.

We have an immediate characterization of extending modules, similar to
the one for 7-complemented modules. Recall that a submodule of a module

A is called closed if it does not have any proper essential extension in A.
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Proposition 1.7.4 [40, p.55] A module A is extending if and only if every

closed submodule of A is a direct summand.

Extending modules and 7-complemented modules are also connected in

the sense of the following proposition.

Lemma 1.7.5 (i) Every T-torsionfree T-complemented module is extending.

(ii) Every extending module is T¢-complemented.

Proof. (i) This is immediate noting that every 7-dense submodule of a 7-
torsionfree module is essential (see Proposition 1.4.2).

(77) Clear, since every essential submodule is 7g-dense. U

Other examples of T7-complemented modules can be obtain as follows.

Proposition 1.7.6 (i) The class of T-complemented modules is closed under
homomorphic itmages and direct summands.

(i1) Let A be a T-complemented module and let S be a semisimple module.
Then A& S is T-complemented.

(i1i) Let A be a T-complemented module and let T be a T-torsion module.

Then A® T is T-complemented.

Proof. (i) Let A be a 7-complemented module and let B < A. Also let
C/B < A/B. Since A is T-complemented, C' is 7-dense in a direct summand
D of A. Then C/B is clearly 7-dense in the direct summand D/B of A/B.
The last part is now clear.

(17) Let B < A& S. Then we have

A+B=A®(SN(A+ D))

and, since SN (A + B) is a direct summand of S, it follows that A+ B is a
direct summand of A&® S. Now since A is 7-complemented, AN B is 7-dense
in direct summand C of A. Also write A = C @ D for some D < A. Then

(B+C)/B=C/(BNC)=C/(AnBNC)=C/(ANB),



44 CHAPTER 1. INTRODUCTION TO TORSION THEORIES

hence B is 7-dense in B + C. Moreover, we have
(B+C)ND=(B+C)NAND=(AnB)+C)NnD=CnND=0,

whence A+ B = (B+ C) @ D. It follows that B is 7-dense in the direct
summand B + C of A&® S. Therefore A& S is T-complemented.

(7i1) We may assume that A is 7-complemented 7-torsionfree. Let D be a
7-closed submodule of A@T'. Then by Proposition 1.4.3, t(D) = t(A®T) =
T. We also have D = (AND)&T. Since A/(AND) = (D+A)/D = (A®T)/D
is 7-torsionfree, the 7-closed submodule A N D is a direct summand of the
r-complemented module A, say A = (AN D)@ C. But then

AT =(AND)aCaT=DaC,

hence D is a direct summand of A @ T. Thus A& T is 7-complemented. [J

In general, the class of 7-complemented modules is not closed under sub-

modules or direct sums, as we can see in the next example.

Example 1.7.7 [104] Denote by Q) the localization of Z at the prime ideal
27.. Then Q) @ Q(g) is a Tg-torsionfree abelian group. It is also extend-
ing [64], hence it is 7g-complemented by Lemma 1.7.5. But its submodule
Q(2) @ Z is not extending [64], hence it is not 7g-complemented by Lemma
1.7.5. Furthermore, Z and Q) are uniform abelian groups, so that they
are clearly 7g-complemented, whereas we have just seen that Q) @ Z is not

Ta-complemented.

Theorem 1.7.8 The following statements are equivalent for a module A:
(i) A is T-complemented.
(1)) A = t(A)®B, where B is a (T-torsionfree) T-complemented submodule
of A.

Proof. (i) = (ii) Since A is 7-complemented, t(A) is 7-dense in a direct
summand D of A. Then we must have t(A) = D, whence A = t(A) & B for
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some T-torsionfree submodule B of A. Moreover, B is 7-complemented by
Proposition 1.7.6 (7).
(i) = (i) By Proposition 1.7.6 (iii). O

The following result will be useful in the process of establishing direct

sum decompositions for 7-complemented modules.

Proposition 1.7.9 Let A be a T-complemented module with finite uniform

dimension. Then every submodule of A has ACC on T-closed submodules.

Proof. Denote by n the uniform dimension of A, let B < A and consider
a properly ascending chain By C By C ... of 7-closed submodules of B.
Since A is T-complemented, B, is 7-dense in a direct summand C; of A.
Write A = C} & D; for some submodule D; of A. If D; = 0, then B, is
7-dense in A, hence B, is 7-dense in B, whence it follows that B, ,; = B,
a contradiction. Thus D; # 0. By Proposition 1.7.6, C is 7-complemented,
hence B,, is 7-dense in a direct summand Cy of C. Write C7 = Cy @ D,
for some submodule Dy of . If Dy = 0, then B, is 7-dense in C, whence
B,.1 = B,, a contradiction. Hence D, # 0. Continuing the procedure,
we get a direct sum Dy & Dy @ -+ ® D, 1 of non-zero submodules of A, a

contradiction. O

Theorem 1.7.10 The following statements are equivalent for a -
complemented module A:

(i) A is a direct sum of a T-torsion and T-cocritical modules.

(i1) R has ACC on left ideals of the form Anngx, where x € A/t(A).

Proof. (i) = (ii) Suppose that A = T' & (D,, C;) for some 7-torsion
module 7" and some 7-cocritical modules C; (j € J). Then C' = @, C;
is 7-torsionfree and T" = t(A). Now consider a properly ascending chain
Anng(c;) C Anng(ce) C ... of left ideals, where each ¢; € C = A/t(A).
Since

Rey/Anng(c;)er = R/Anng(c;) = Re; € C
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it follows that Anng(cy)e; C Anng(csz)e; C ... is a properly ascending
chain of 7-closed submodules of Rc;. Also, there exists a finite set K C J
such that Rey C ;i €. But each Cj is uniform, hence @, C; is a
T-complemented module with finite uniform dimension, which is a contradic-
tion by Proposition 1.7.9.

(11) = (i) Assume (i7). By Theorem 1.7.8 and Lemma 1.7.5, we can
write A = ¢(A)®B for some extending submodule B of A. Then B = @,., B;
for some uniform submodules B; of B [89, Lemma 3]. By Proposition 1.7.6,

each B; is T-complemented, hence 7-cocritical. O

1.8 The torsion theories 7,

In this section we come back to the torsion theories 7,, previously defined, in
order to establish a few properties that will be used later on. These torsion
theories will be the usual framework to detail results on 7-injectivity.

Throughout this section we will assume the ring R to be commutative.

Let us recall the definition of the torsion theories 7,,. For a positive integer
n, let A, be the class consisting of all modules isomorphic to factor modules
U/V, where U and V are ideals of R containing an ideal p € Spec(R) with
dimp < n. In order to ensure that our study is not vacuous, we assume
that dim R > n. The class A, is closed under submodules and homomorphic
images, hence the torsion theory generated by the class A, is hereditary.
Denote by 7, this hereditary torsion theory, which can be also seen as being
generated by all modules of Krull dimension at most n. Also denote by 7,
and F,, the 7,-torsion class, respectively the 7,,-torsionfree class of 7,,.

Note that:

A CA C--CA, C...
ThyCchc---CT,C...
FoFi2--2F2...
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Therefore we have

o<1 <--- <71

— 'n

<...

If dim R = m, then the above sequences end for n = m.

Note also that 7y is the hereditary torsion theory generated by the class
Ay consisting of all simple modules, i.e. the Dickson torsion theory 7. Recall

that this torsion theory is defined for a noncommutative ring R as well.

Recall now that every p € Spec(R) is either 7-dense or T-closed in R. For

the torsion theories 7,, we may analyze this by the dimension of the ideal p.

Proposition 1.8.1 Let p € Spec(R). Then:
(i) p is To-dense in R if and only if dimp < n.
(i) p is T,-closed in R if and only if dimp > n + 1.

Proof. (1) Obvious.

(#7) If p is 7,-closed in R, then by (i) we have dimp > n + 1. Now
let dimp > n + 1. In order to prove that R/p is 7,-torsionfree, we will
show that Hompg(A, R/p) = 0 for every A € A,,. Let A € A, and let f €
Hompg (A, R/p). Without loss of generality, we may assume that A = U/V/,
where U,V are ideals of R containing an ideal ¢ € Spec(R) with dim ¢ < n.
Suppose that f # 0. Then there exist » € U\ V and s € R\ p such
that f(r+V) =s+p. IV \p =0, then V C p, hence ¢ C p, so that
dimp < dim ¢, a contradiction. Now let v € V' \ p. Then vf(r+V) = vs+p,
hence f(V) = vs + p. Since f(V) = p, it follows that vs € p, whence v € p

or s € p, a contradiction. Hence f = 0 and thus R/p is 7,-torsionfree. U

The next proposition answers the question whether and when 7, equals

the extreme torsion theories, namely the trivial one and the improper one.

Proposition 1.8.2 (i) 7, cannot be the trivial torsion theory & on R-Mod.
(ii) Let R be a domain. Then T, coincides with the improper torsion
theory x on R-Mod if and only if dim R = n.
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Proof. (i) Note that A,, contains at least all modules isomorphic to R/M for
some maximal ideal M of R.

(7i) Suppose first that 7, = x. If dim R > n + 1, then R is 7,,-torsionfree
by Proposition 1.8.1, a contradiction. Hence dim R = n.

Suppose now that dim R = n. Since 0 € Spec(R), 7, is generated by the
class A,, consisting of all modules isomorphic to factor modules U/V| where
U and V are ideals of R containing an ideal p € Spec(R) with dimp < n.
Let A be a non-zero module and let 0 # a € A. Then Ra = R/Annga, hence

A contains the submodule Ra € A,,. Hence A is 7,-torsion. Thus 7,, = x. U

We continue with a couple of results on 7,-cocritical modules.

Proposition 1.8.3 Let A be a 7,-cocritical module. Then:
(i) AnngA € Spec(R) and dim AnngA =n + 1.

(i1) For every natural number k # n, A is not T-cocritical.

Proof. (i) Denote p = AnngA. By Theorem 1.5.12 and Corollary 1.5.13, p €
Spec(R) and R/p is T,-cocritical, hence R/p is 7,-torsionfree. By Proposition
1.8.1, dimp > n + 1. Suppose that dimp > n + 1. Then there exists
q € Spec(R) with dimg =n + 1 and p C q. Moreover, again by Proposition
1.8.1, R/q is m,-torsionfree. On the other hand, R/q = (R/p)/(q/p) is Tu-
torsion, a contradiction. Hence dimp =n + 1.

(13) If A is 7,-cocritical and T7i-cocritical, then by (i) we have p =
AnnpA € Spec(R) and dimp =n+ 1=k + 1, hence k = n. d

Throughout we will prove a few results under the hypothesis on p €

Spec(R) to be N-prime, i.e. R/p to be noetherian.

Corollary 1.8.4 Let p be an N-prime ideal of R. Then R/p is T,-cocritical
if and only if dimp =n + 1.

Proof. The "only if” part follows by Proposition 1.8.3. Suppose now that
dimp = n + 1. Then R/p is 7,-torsionfree. Since the R-module R/p is
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noetherian, by Proposition 1.5.8 there exists an ideal ¢ of R such that p C ¢
and R/q is 7,-cocritical. By Proposition 1.8.3, ¢ = Anng(R/q) € Spec(R)
and dimg =n + 1. Then p = ¢, hence R/p is 7,-cocritical. O

Example 1.8.5 (1) Let R be a principal ideal domain. Then R is noethe-
rian, dim R < 1 and 0 € Spec(R). By Corollary 1.8.4, R is m-cocritical. In
particular, the ring Z is 1g-cocritical.

(2) Let R = K[X3,...,X,,] be the polynomial ring over a field K, where
m > 2. Let p=(Xy,...,X;m_n_1), where n < m — 1. Then p € Spec(R) and
dimp =n+ 1. By Corollary 1.84, R/p = K[X_n, ..., Xm] is T,-cocritical.

References: T. Albu [3], T. Albu, C. Nastasescu [4], K. Aoyama [7], L. Bi-
can, L. Salce [10], P. Bland [13], J.L. Bueso, P. Jara [14], M.-C. Chamard [17],
S. Crivei [23], [31], S.E. Dickson [39], N.V. Dung, D.V. Huynh, P.F. Smith,
R. Wisbauer [40], P. Gabriel [45], J.L. Garcia [47], J.S. Golan [48], [49],
A. Goldie [52], [53], O. Goldman [54], A. Hudry [57], J.P. Jans [62],
H. Katayama [65], J. Lambek [68], [69], W.G. Lau [70], J. N. Manocha
[72], J.-M. Maranda [73], A.P. Mishina, L.A. Skornjakov [76], K. Morita
[80], C. Nastasescu [81], [82], C. Nastasescu, C. Nita [86], Z. Papp [92],
N. Popescu [94], [95], P.F. Smith, A.M. Viola-Prioli, J.E. Viola-Prioli [104],
[105], B. Stenstrém [107], M. Teply [110], [112], C.L. Walker, E.A. Walker
[115], J. Zelmanowitz [119].

Notes on Chapter 1

This chapter mainly contains standard material on torsion theories. Their
study began in early 1960’s, often in the context of an abelian category and
not only R-Mod. Out of an extensive literature, we should mention the
influential work of P. Gabriel (1962), J.-M. Maranda (1964), S.E. Dickson
(1966), and C.L. Walker and E.A. Walker (1972), that has been completed
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and followed by many other important papers. Since we need only selected
topics in torsion theories, we are far from presenting a complete picture
of them, so that we do not insist on their general history. Nevertheless,
out of the special notions that we will use, 7-noetherian modules and 7-
semisimple modules were first studied by C. Nastasescu and C. Nita (1965)
and respectively by W.G. Lau (1980). Also, 7-complemented modules were
introduced by J.S. Golan (1986) under the name of 7-direct modules and
afterwards reconsidered by P.F. Smith, A.M. Viola-Prioli and J.E. Viola-
Prioli (1997).



Chapter 2
T-injective modules

In this chapter we introduce injective modules relative to a hereditary torsion
theory 7 and we study their main properties. We give characterization the-
orems for injective modules, including some in terms of a generating class of
7. We show that every module has a 7-injective hull, unique up to an isomor-
phism. The class of 7-injective modules is also studied in terms of closedness
properties. Moreover, the relationship between 7-injectivity and usual in-
jectivity is analyzed. Finally, we discuss a relative injectivity generalizing

injectivity with respect to the Dickson torsion theory.

2.1 General properties

Let us begin with a basic characterization theorem, that will serve to define

T-injective modules.

Theorem 2.1.1 The following conditions are equivalent for a module A:
(i) A is injective with respect to every monomorphism having a T-torsion
cokernel.
(i1) A is a T-closed submodule of E(A).
(i1i) Any homomorphism from a T-dense left ideal of R to A can be ex-

tended to a homomorphism from R to A.

o1
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(iv) Extp(B, A) = 0 for every T-torsion module B.
(v) Extr(R/I, A) = 0 for every T-dense left ideal I of R.

Proof. (1) = (ii) Denote by A’ the T-closure of A in F(A). Then 14 extends
by hypothesis to a homomorphism h : A’ — A. Then clearly h is surjective,
but also injective, because A < A’. Hence A’ = A and consequently A is
T-closed in E(A).

(11) = (uii) Let I be a 7-dense left ideal of R and let g : I — A be
a homomorphism. Denote by ¢ : I — R and j : A — E(A) the inclusion
homomorphisms. Then there exists a homomorphism h : R — FE(A) such

that hi = jg. If we denote a = h(1), we have
(Ra+ A)JA=R/(A:a).

Since I C (A :a), (A: a)is 7-dense in R, so that (Ra + A)/A C E(A)/A is
T-torsion. Then by hypothesis it follows that a € A, whence Imh C A. Thus
h: R — A extends g.

(7i1) = (i) Let C' be a module, B a 7-dense submodule of C and g :
B — A a homomorphism. Consider the set M of all pairs (M, ), where
BCMCCand ¢: M — Aisahomomorphism that extends g. Define on
M a partial order by

(Mla(pl) S (MZ,QDQ) <~ Ml Q MQ and @2‘M1 = 901 .

Clearly, M # ) and it is inductive. By Zorn’s Lemma, M has a maximal
element (M, po). We will show that My, = C. Suppose that there exists
c € C\ My and denote I = (M : ¢). Then I is a 7-dense left ideal of R,
because (B : ¢) C I. By hypothesis, the homomorphism « : I — A defined
by a(z) = po(zc) can be extended to a homomorphism 5 : R — A. But then

the homomorphism
v: Mo+ Rc— A, ~(mg+rc) = po(mg) + 6(r)

extends ¢y, that contradicts the maximality of (My, ¢o). Hence My = C.
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(11) = (iv) For every module B, the short exact sequence 0 — A —
E(A) — E(A)/A — 0 induces the exact sequence

Homp(B, E(A)/A) — Extp(B, A) — Extp(B, E(A))

The first term is zero because B is 7-torsion and E(A)/A is 7-torsionfree,
whereas the last term is again zero by the injectivity of E(A). Hence
Exth(B, A) = 0.

(iv) = (v) Clear.

(v) = (4i7) Clear. O

Definition 2.1.2 A module satisfying the equivalent conditions of Theorem

2.1.1 is called T-injective.

Actually, when checking 7-injectivity, we can restrict ourselves to 7-dense

essential left ideals of R. Thus we have the following proposition.

Proposition 2.1.3 A module A is T-injective if and only if any homomor-
phism from a T-dense essential left ideal of R to A can be extended to a

homomorphism from R to A.

Proof. The direct implication is obvious. For the converse, let I be a 7-dense
left ideal of R and let f : I — A be a homomorphism. Consider the set M
consisting of all pairs (J, g), where J is a left ideal of R that contains I and
g :J — Ais a homomorphism that extends f. Use Zorn’s Lemma to obtain
a maximal element of M, say (Jo, go). Suppose that Jy is not essential in R.
Then there exists a non-zero left ideal K of R such that JyN K = 0. Then
the homomorphism h : Jy + K — A defined by h(j + K) = go(j) clearly

extends ¢g, a contradiction. Hence Jy < R. Now the conclusion follows. [l

In the view of the following result, let us give first a definition.
Definition 2.1.4 Let 7 be a hereditary torsion theory generated by a class A

of modules closed under submodules and homomorphic images. A submodule
B of a module A is called A-dense if A/B € A.
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The following proposition shows that in order to check 7-injectivity in

this case, it is enough to consider A-dense left ideals of R.

Proposition 2.1.5 Let A be a class of modules closed under submodules and
homomorphic images and let T be the hereditary torsion theory generated by
A. Then the following statements are equivalent for a module A:

(i) A is T-injective.

(11) A is injective with respect to every monomorphism having the cokernel
in A.

(111) Any homomorphism from an A-dense left ideal of R to A can be
extended to a homomorphism from R to A.

(iv) Extp(B, A) = 0 for every module B € A.

(v) Extip(R/I,A) =0 for every A-dense left ideal I of R.

Proof. The equivalences (ii) <= (iii) <= (iv) <= (v) follow in a similar
way as for Theorem 2.1.1 and the implication (i) = (iv) is obvious.

(iv) = (i) Suppose that A is not 7-closed in E(A). Then there exists
C' < E(A) such that A C C and C/A € A. Now by hypothesis, the exact
sequence 0 — A — C' — C/A — 0 splits, hence A is a direct summand of
C'. But this is a contradiction, because A < C. Hence A is 7-closed in E(A)
and consequently A is 7-injective by Theorem 2.1.1. O

Let us give now a characterization of 7-injective modules in terms of
projectivity of some 7-torsion modules with respect to certain short exact

sequences of modules.

Proposition 2.1.6 Let 7 be a hereditary torsion theory generated by a class
A of modules closed under submodules and homomorphic images. Then the
following statements are equivalent for a module A:

(i) A is T-injective.

(i1) Every module of the class A is projective with respect to the exact
sequence of modules 0 - A — E(A) — E(A)/A — 0.
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Proof.  Since FE(A) is injective, for every module B € A we have

Exth(B, A) = 0 if and only if the induced sequence
0 — Homg(B, A) — Homg(B, E(A)) — Homg(B, E(A)/A) — 0

is exact, that is, B is projective with respect to the initial exact sequence. [

Certain properties of injective modules over noetherian rings can be gen-
eralized to T-injective modules over rings R such that every A-dense left ideal

of R is finitely generated. For instance, we give the following proposition.

Proposition 2.1.7 Let 7 be a hereditary torsion theory generated by a class
A of modules closed under submodules and homomorphic images. Let R be a
ring such that every A-dense left ideal of R is finitely generated. Then every

module has a maximal T-injective submodule.

Proof. Let A be a non-zero module. Denote by B the set of all T-injective
submodules of A. Then B # 0, because 0 € B. Let (B;)je; be a chain
in B and denote B = |J;c; Bj. Let I be an A-dense left ideal of R and
let f: 1 — B be a homomorphism. If [ is generated by rq,...,7,, then
f(I) is generated by f(r1),..., f(r,), hence there exists k € J such that
f(r),..., f(rp) € By, i.e. Imf C By. Since By is 7-injective and By C B,
there exists an homomorphism g : R — B that extends f. Hence B is 7-
injective. By Zorn’s Lemma, 4 has a maximal element, which is a maximal

T-injective submodule of A. O

We give now a characterization of stable torsion theories related to 7-

injectivity (see also Proposition 1.2.8).

Proposition 2.1.8 7 is stable if and only if t(A) is a direct summand of

every T-injective module A.

Proof. First, let A be a 7-injective module. Then A is 7-closed in E(A),
whence t(E(A)) C A. By hypothesis, t(A) = t(E(A)) is a direct summand
of F(A), so that it is injective. Hence t(A) is a direct summand of A.
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Conversely, let A be a 7-torsion module. By hypothesis, t(E(A)) is a
direct summand of E(A). Since A C t(E(A)) and A < E(A), we must have
t(E(A)) = E(A). Hence E(A) is 7-torsion and, consequently, 7 is stable. [J

Let us now give some properties for 7-torsion or T-torsionfree T-injective

modules.

Proposition 2.1.9 (i) Every T-torsion T-injective module is quasi-injective.

(i1) If T is stable, then every T-torsion T-injective module is injective.

Proof. (i) Let A be a T-torsion 7-injective module. If B < A, then B is
T-dense in A, so that every homomorphism B — A extends to an endomor-
phism of A by the 7-injectivity of A.

(77) Let A be a 7-torsion T-injective module. By Proposition 2.1.8, we
have A =t(E(A)) = E(A). O

Proposition 2.1.10 The following statements are equivalent for a module
A:

(i) A is T-torsionfree T-injective.

(i1) For every module B and every T-dense submodule C' of B, every

homomorphism C — A uniquely extends to a homomorphism B — A.

Proof. (i) = (ii) Let B be a module and let C' be a 7-dense submodule of
B. Then the exact sequence 0 — C — B — B/C — 0 induces the exact

sequence
0 — Homp(B/C, A) — Hompg(B, A) — Homg(C, A) — Extg(B/C, A)

By hypothesis we have Homg(B/C, A) = 0 and Ext},(B/C, A) = 0, hence
Hompg(B, A) = Hompg(C, A), that gives the requested uniqueness.

(11) = (i) Assuming (ii), A is clearly 7-injective. By hypothesis we
have Hompg(B, A) = Homg(C, A) for every module B and every 7-dense
submodule C of B. If B is any 7-torsion module and C' = 0, then from the

above exact sequence we get Hompg(B, A) = 0. Thus A is 7-torsionfree. [
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Proposition 2.1.11 Let A be a module and B < A.
(i) If A is T-torsionfree and B is T-injective, then B is T-closed in A.
(i) If A is T-injective and B is T-closed in A, then B is T-injective.
(i1i) If B is T-injective and B < A, then B is T-closed in A.

Proof. (i) Let T be a 7-torsion module. The exact sequence 0 — B — A —

A/B — 0 induces the exact sequence
Homg(T, A) — Homp(T, A/B) — Exty(T, B)

Since A is 7-torsionfree and B is 7-injective, the first and the last term are
zero, hence we have Hompg (7T, A/B) = 0. Thus A/B is 7-torsionfree, that is,
B is T-closed in A.

(17) Let T be a 7-torsion module. The exact sequence 0 — B — A —

A/B — 0 induces the exact sequence
Hompz(T, A/B) — Exty(T, B) — Exty(T, A)

Since A/B is T-torsionfree and A is 7-injective, the first and the last term
are zero, hence we have Exty (T, B) = 0. Thus B is 7-injective.
(¢4i) Since B is 7-injective, E(A)/B = E(B)/B is T-torsionfree. Then so
is A/B, that is, B is 7-closed in A. O
Let us now see when the 7-injectivity of a module B assures the 7-

injectivity of Homg(A, B).

Theorem 2.1.12 Let R be commutative and let A and B be modules.

(i) If B is T-injective and Torf(R/I, A) = 0 for every T-dense ideal I of
R, then Hompg(A, B) is T-injective.

(i) If B is T-torsionfree T-injective, then so is Hompg(A, B).

Proof. (i) Let I be a 7-dense ideal of R. The exact sequence 0 — I — R —

R/I — 0 induces the exact sequence

0—>Tor®(R/I,A) —= I @r A—> Rop A—2~ R/ @ A—>0
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Since Rep A= Aand R/I®@r A= A/IA, we have Imf = Kerg = [ A. Thus

we obtain an exact sequence
0 — Torf(R/I,A) - I@r A — IA—0

Using the hypothesis, we have I ® g A = TA. Then we get the following

commutative diagram

HOHlR(A, B) —_— HOIIIR<R SR A, B) e HOHlR(R, HOIIIR<A, B))

| | i

Hompg(IA, B) — Hompg(I ®g A, B) —— Hompg(/, Homg(A, B))

where the horizontal arrows are isomorphisms and the first two vertical ar-
rows are epimorphisms. It follows that the third vertical arrow is an epimor-
phism, that shows that Homg(A, B) is T-injective.

(74) Since B is 7-torsionfree, for every 7-torsion module 7" we have
Hompg (T, Homg(A, B)) = Homg(A, Homg(T, B)) = 0.

Hence Hompg(A, B) is 7-torsionfree. Let I be a 7-dense ideal of R. It is
enough to show that

Hompg(R,Hompg(A, B)) = Hompg(I, Homg(A, B)).
By the 7-injectivity of B, the exact sequence
0 — Tor®(R/I,A) = I ®r A — 1A — 0
induces the exact sequence
0 — Homg(IA, B) — Homg(I ®g A, B) — Hompg(Torf(R/I,A), B) — 0

We claim that Torf{(R/I, A) is 7-torsion. To this end, consider an exact
sequence 0 — K — P — B — 0 with P projective. It induces an exact

sequence

0 — Torf(R/I,A) - R/ I@r K — W — 0
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Now for every 7-torsionfree module F' we have the exact sequence
Homp(R/I ®r K, E(F)) — Hompg(Torf(R/I, A), E(F)) — Extp(W, E(F))
The last term is clearly zero and

Hompg(R/I ®r K, E(F)) =2 Homg(K,Homg(R/I, E(F))) =0,

whence we get Homg(Torf(R/I,A), E(F)) = 0. By Proposition 1.2.13,
Torf(R/I, A) is T-torsion.
Now Hompg(Torf(R/I, A), B) = 0, whence we obtain the isomorphisms

Hompg(I/A, B) = Hompg(I ®r A, B) = Hompg(/, Homg(A, B)) .

On the other hand, again by the 7-injectivity of B, the exact sequence 0 —
IA— A — A/IA — 0 induces the exact sequence

0 — Hompg(A/IA, B) — Homg(A, B) — Homg(/A,B) — 0

Since A/I A is T-torsion, the last Hom is zero, hence we have the isomorphism
Hompg(I A, B) =2 Hompg(A, B). Therefore we get the isomorphisms

Hompg (I, Homg(A, B)) = Homg(A, B) 2 Homg(R ®r A, B)

=~ Hompg(R, Homg(A, B)),

that finish the proof. O

2.2 r7-injective hulls

Now we introduce the torsion-theoretic version of the notion of injective hull

of a module.

Definition 2.2.1 The 7-closure of a module A in F(A) is called a T-injective
hull of A and is denoted by E;(A).
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The following result summarizes some first properties of 7-injective hulls,
that will be often used.

Lemma 2.2.2 Let A be a module. Then:

(i) E-(A) is an essential T-injective submodule of E(A) and it is the
minimal such submodule of E(A).

(i) EA(A)/A = ((E(A)/A),

(111) If D is a T-injective module, then D = E.(A) if and only if A is a
T-dense essential submodule of D.

(i) If A is T-torsion (respectively T-torsionfree or T-cocritical), then

E.(A) has the same property.

Proof. (i) By Theorem 2.1.1.

(71) By Proposition 1.4.5.

(¢73) By (¢) and (7).

(1v) If A is 7-torsion, then by (7), E;(A)/A is T-torsion, whence it follows
that E.(A) is 7-torsion. If A is 7-torsionfree, then by Proposition 1.2.11,
E.(A) C E(A) is T-torsionfree. The 7-injective hull of a 7-cocritical module

is 7-cocritical by Proposition 1.6.4. O

Theorem 2.2.3 FEvery module has a T-injective hull, unique up to an iso-

morphism.

Proof. The existence is clear by definition. Let A be a module and suppose
that F; and E5 are 7-injective hulls of A. Denote by ¢ : A — E; and
j + A — FEs the inclusion homomorphisms. By the 7-injectivity of Es, there
exists a homomorphism f : Fy — FEs such that fi = j. Since 7 is an essential
monomorphism, it follows that f is a monomorphism. By the 7-injectivity
of f(E4), the exact sequence 0 — f(E;) — Ey — E5/f(E) — 0 splits, say
E; = f(Ey)) ® B. Then j(M)N B = 0. Since j(M) < E, we have B = 0,
hence f is an epimorphism. Thus F; & Fs. U

Now we can characterize 7-injective hulls in terms of their elements.
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Theorem 2.2.4 Let A be a module. Then:
(i) E-(A) ={x € E(A) | (A:x) is T-dense in R}.

(i1) If E is an injective module that cogenerates T, then
E.(A)={x € E(A) | f(x) =0 for every f : E(A) — E with f(A) =0}.
Proof. (i) Denote
D={xe€ FE(A)| (A:z)is 7-dense in R}.

We will prove that A is a 7-dense essential submodule of D and D is 7-
injective. It is easy to check that A C D and D is a submodule of E(A).
Moreover, A < D and A is 7-dense in D by Proposition 1.4.5. Also, D is the
maximal submodule of E(A) that contains A as a 7-closed submodule.
Now let T be a 7-torsion module. The exact sequence 0 — D — E(A) —

E(A)/D — 0 induces the exact sequence
Homp (T, E(A)/D) — Extg(T, D) — Exty(T, E(A))

Since E(A)/D is 7-torsionfree and E(A) is injective, the first and the last
term are zero, hence we have Ext(T, D) = 0. Thus D is 7-injective. Now it
follows that D = E,(A).

(77) First, let € E.(A). Let f : E(A) — E be a homomorphism with
f(A) = 0. Let I be a 7-dense left ideal of R such that Iz C A. Then
If(x) = f(Iz) = 0 and, since E' is 7-torsionfree, it follows that f(z) = 0.

Now let € E(A) be such that f(x) = 0 for every homomorphism f :
E(A) — E with f(A) = 0. In order to prove that x € E.(A), it suffices by
(1) to show that the left ideal I = (A : z) is 7-dense in R, or equivalently, to
show that Homg(R/I,E) = 0. Let g : R/I — E be a homomorphism and let
i: R/I — FE(A)/A be the monomorphism defined by i(r + I) = rz + A. By
the injectivity of F, g extends to a homomorphism h : E(A)/A — E. Denote
by p: E(A) — E(A)/A the natural homomorphism. Since (hp)(A) = 0, by
hypothesis we get (hp)(x) = 0, whence g = 0. O
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It is known that if B is an essential submodule of a module A, then

E(B) = E(A). In the torsion-theoretic case we give the following result.

Lemma 2.2.5 Let A be a non-zero module and B 1 A. Then B is T-dense
in A if and only if E.(B) = E,(A).

Proof. Suppose that B is 7-dense in A. We have E(A)
other hand, A/B C t(E(A)/B) = E.(B)/B, hence A
E.(A) C E.(B), hence E.(B) = E,.(A).

Assume now that E, (A) = E.(B). Then A/B C E.(A)/B = E.(B)/B.
But E.(B)/B is T-torsion, hence A/B is T-torsion. O

E(B). On the
E.(B). Then

N

Proposition 2.2.6 Let (A;)ic; be a family of modules. If one of the follow-
ing conditions holds:

(i) I is a finite set;

(i1) T is generated by a class A of modules closed under submodules and

homomorphic images, and every A-dense left ideal of R is finitely generated;

then
ET(@ A) = EB Er(4;).

i€l i€l

Proof. (i) Immediate taking into account that in this case the class of 7-
injective modules is closed under direct sums (see Theorem 2.3.5).

(it) Put A = @,.; Ai. Since A; < E-(A;) for every i € I, it follows
that A I @,.; E-(A;) J E.(A). Since every A-dense left ideal of R is
finitely generated, the module &, ., E;(4;) is T-injective (see Proposition
2.3.9). Hence E (A) =P,.; E-(4)). O

el T

Proposition 2.2.7 Let 7 be a stable torsion theory and let A be a module.
Then E-(A/H(A)) = H(E(A)/E(H(A)) = E(H(A)) and E(A) = E,((A)) &
EL(AJt(A)).



2.2. 7-INJECTIVE HULLS 63

Proof. 1Tt is similar to the proof of Proposition 1.2.9. Thus we obtain a
commutative diagram of the same type with the injective hulls replaced by
the 7-injective hulls. Similarly, one shows that E,(A)/E(t(A)) is an essential
T-injective extension of A/t(A). Furthermore, since E,(A)/A is T-torsion, C'
will be 7-torsion, hence A/t(A) has to be 7-dense in E,(A)/E(t(A)). Thus
E.(A/t(A)) = E.(A)/E(t(A)) and the conclusion follows. O

Proposition 2.2.8 Let A = ).,
ingective module. Then there exists J C I such that A = @jeJ A;.

A;, where each A; is a T-cocritical T-

Proof. Consider a maximal independent family (A;);ec; of (A4;)icr. Then for
every i € I, there exists 0 # a € A; N (D,c; Aj), which implies that there
exists a finite subset K C J such that A; = E,(Ra) C GB]EK A;. It follows
that A =,.; 4;. O

Proposition 2.2.9 The following statements are equivalent:
(i) The essential submodules of every T-torsionfree module are T-dense.
(i1) The lattice of T-closed submodules of every T-torsionfree module is
complemented.

(111) Every T-torsionfree T-injective module is injective.

Proof. (i) = (iii) Let A be a 7-torsionfree 7-injective module. Then A is
7-closed in E(A). On the other hand, E(A) is 7-torsionfree and A < E(A),
whence by hypothesis we deduce that A is 7-dense in F(A). Thus A = E(A)
is injective.

(171) => (i) Let A be a T-torsionfree module and B < A. By hypothesis,
we deduce that E.(B) = E(B) = E(A). Since B is 7-dense in E.(B), it
follows that B is 7-dense in A.

(i1) = (iii) Let A be a T-torsionfree 7-injective module. Then A is
T-closed in E(A). By hypothesis, A has a 7-closed complement C, hence we
have A+ C = E(A) and ANC =t(E(A)) = 0. Now clearly A is injective.
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(1i1) = (1i) Let A be a 7-torsionfree module. Note that the lattice
C-(A) is clearly isomorphic to the lattice C.(E;(A)). But E.(A) is injective
by hypothesis, hence the lattice C,(E.(A)) is clearly complemented. O

Proposition 2.2.10 Let A be a T-cocritical faithful module over a commu-

tative ring R. Then E;(A) = E(A) = E(R).

Proof. Let 0 #£ a € A. Since A is 7-cocritical, by Theorem 1.5.12 we have
Annga = AnngA = 0. Then R = Ra is T-cocritical, hence every 7-injective
module is injective. Now F(A) = E.(A) = E;(Ra) = E(Ra) = E(R). O

We continue with a few results on homomorphisms between 7-injective

hulls of certain modules.

Proposition 2.2.11 Let A and B be modules with B T-torsionfree. Then
Homg(FE,(A), E.(B)) = Homg(A, E.(B)).
Proof. Note that E,(B) is T-torsionfree and apply Proposition 2.1.10. U

Proposition 2.2.12 Let A and B be T-cocritical modules. Then every non-
zero f € Homg(E,(A), E;(B)) is an isomorphism.

Proof. Let 0 # f € Homg(E;(A), E;(B)). Clearly, E.(A) and E.(B)
are 7-cocritical. Then by Lemma 1.5.11, f is a monomorphism. Also,
E.(B)/f(E.(A)) is T-torsion. By the 7-injectivity of f(FE.(A)), it follows
that f(E.(A)) is a direct summand of E,(B). On the other hand, f(FE.(A))
is 7-dense in E.(B), hence we have f(E;(A)) < E.(B) by Proposition 1.4.2.
Then we must have f(E;(A)) = E;(B). Thus f is an isomorphism. O

Recall that R is called a left H-ring if whenever S; and Sy are simple
modules such that Hompg(F(S1), E(S3)) # 0, then S; = S;. For instance,

every commutative noetherian ring is an H-ring [101, p.110].
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Proposition 2.2.13 Let R be a left H-ring and let S1, S be simple modules.
Then Sy = Sy if and only if Homg(E.(S1), E;(S2)) # 0.

Proof. The direct implication is obvious.

Conversely, assume that Hompg(E,(S1), E-(S2)) # 0. Let f : E.(S1) —
E.(S3) be a non-zero homomorphism. Let i : E.(S;) — E(S;) and j :
E.(S2) — E(S3) be the inclusion homomorphisms. By the injectivity of
E(Sz), there exists a non-zero homomorphism ¢ : E(S;) — FE(Sz2) such that
gi = jf. Since R is a left H-ring, it follows that S; = Ss. O

Proposition 2.2.14 Let R be commutative noetherian and p,q € Spec(R).
Then q C p if and only if Homg(E;(R/q), E-(R/p)) # 0.

Proof. Assume first that ¢ C p. Then we have the following diagram with

exact row: ’
0 R/q———E.(R/q)
/
gl . /
/
R/p Y /f
J{ ,
J s
%
E.(R/p)

where ¢ and j are inclusion homomorphisms and ¢ is induced by the identity
map of R. Since F,(R/q) is 7-injective and FE,(R/q)/(R/q) is T-torsion,
there exists a homomorphism f : E,(R/q) — E.(R/p) such that fi = jg. It
follows that f # 0, because g # 0.

Conversely, let 0 # f € Homg(E,(R/q), E-(R/p)). Let j : E.(R/p) —
E(R/p) and i : E.(R/q) — E(R/q) be the inclusion homomorphisms. By
injectivity of E(R/p), there exists 0 # g € Homg(E(R/q), E(R/p)) such that
gi = jf. Then it follows that ¢ C p [101, Proposition 4.21]. O

Corollary 2.2.15 Let R be commutative noetherian and let p,q € Spec(R)
be such that R/p and R/q are T-cocritical. Then q¢ = p if and only if

Homg(E, (R/q). E.(R/p)) # 0.
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Proposition 2.2.16 Let R be a left H-ring, S be a simple module and A be
a proper submodule of E., (S). Then:

(i) Soc(E;,(S)/A) = @, Si, where S; =2 S for every i € I.

(ii) There ezists B < E;,(S) containing A such that Soc(E,,(S)/B) = S.

Proof. (i) Since E.,(S) is semiartinian, we have Soc(FE.,(S)/A) # 0. Let
Soc(Er,(S)/A) = @,c; Si» where S; is simple for every i € I. Let v :
E. (S) — E;,(S5)/A be the natural homomorphism and let j € I. Then we

have the following diagram with exact row:

0 8j " ., (5) /A
f -7
| -4
ETD(SJ)

where u, f are inclusion homomorphisms. Since (E,,(S)/A)/S; is semiar-
tinian and E;, (S;) is 7p-injective, there exists g : E.,(S)/A — E.,(5;)
such that gu = f. Then 0 # gv € Homg(E,,(S5), E;,(S;)). By Proposition
2.2.13, S; = S.

(7i) If we denote B = Ker(gv) with the above notations, then we have
0# E-,(S)/B = Im(gv) € Er(S5) = Erp(5) -

Therefore Soc(E.,(S)/B) = S. O

It is well known that every module is cogenerated by an injective module.
We prove now that every 7p-torsion module and every 7p-cocritical module is

cogenerated by a 7p-injective module. But first we give the following lemma.

Lemma 2.2.17 Let A be a non-zero module which is either semiartinian or

Tp-cocritical and let 0 # a € A. Then there exist a simple module S and a

homomorphism f : A — E. (S) such that f(a) # 0.

Proof. For the proper left ideal Annga of R, there exists a maximal left ideal
M of R such that Annga C M. We may define a map g : Ra — R/M
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by g(ra) = r+ M for every r € R. If ra = 0, then r € Annga C M
and r + M = M, hence g is well-defined. It is easy to check that ¢ is a
homomorphism and g(a) # 0. Let S = R/M. Let v : S — E; (S) be the
inclusion homomorphism. We may suppose that Ra # A. Then A/Ra is a
non-zero semiartinian module. Since F, (S) is Tp-injective, there exists a
homomorphism f : A — E;, (S) that extends vg, hence f(a) = g(a) #0. O

Now consider all the isomorphism classes of simple modules and let (S;);er

be a family of representatives, one for each isomorphism class.

Theorem 2.2.18 FEvery semiartinian module and every Tp-cocritical module

is cogenerated by the Tp-injective module [],.; Er,(S;).

Proof. Denote D = [[,.; E;,(S;). Let A be a non-zero module which is
either semiartinian or 7p-cocritical and let 0 # a € A. By Lemma 2.2.17,
there exist ¢ € I and a homomorphism f; : A — E._(S;) such that f;(a) # 0.
Let w; : E;,(S;) — D be the canonical injection. Define the homomorphism
he : A — D by h, = u;f;. We have h,(a) = (u;f;)(a) # 0. Denote D, = D
for every 0 # a € A. We define

h:iA— [ Da; h(@) = (ha(2))eca oy
a#0,a€A

for every x € A. It is easy to check that h is a monomorphism. Hence A can
be embedded in a direct product of copies of D, i.e. A is cogenerated by the

Tp-injective module D. 0

2.3 The class of 7-injective modules

Let us see first when the class of T-injective modules coincides with R-Mod.
It is well-known that semisimple rings are characterized by the fact that every

module is injective. For 7-injective modules we have the following result.
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Proposition 2.3.1 The following statements are equivalent:
(i) Every T-dense left ideal of R is a direct summand of R.

(i1) Every module is T-injective.

Proof. Immediate by Theorem 2.1.1. O

Remark. Clearly, if R is semisimple, then every module is 7-injective by
Proposition 2.3.1. But in general the converse does not hold, as we may see

in the next example.

Example 2.3.2 Let K be a field, let J be an infinite set and let R = K”7. Let
7 be the hereditary torsion theory on R-mod whose corresponding Gabriel
filter consists of those left ideals I of R such that there exists a cofinite subset
H of J (i.e. |J\ H]| is finite) such that K# C I. Note that every 7-dense
left ideal of R is a direct summand of R. Then every module is 7-injective

by Proposition 2.3.1, but clearly R is not semisimple.

Nevertheless, we can specialize the previous result for the Dickson torsion

theory 7p or for the torsion theories 7,,.

Proposition 2.3.3 The following statements are equivalent:
(i) R is semisimple.
(11) Every maximal left ideal of R is Tp-injective.

(11i) Every module is Tp-injective.

Proof. (i) = (ii) Clear.

(11) = (uii) Let S be a simple module and let M be the left maximal
ideal of R such that S = R/M. Since M is tp-injective, R =2 M @ S. Thus
every simple module is projective. Now the conclusion follows by Proposition
2.1.6.

(1i1) = (i) Let A be a non-zero module and 0 # a € A. Then Ra has a
maximal submodule B. If B = 0, then Ra is simple. If B # 0, then by the
Tp-injectivity of B there exists a simple module S such that Ra = B &® S.
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In both cases we have Soc(Ra) # 0, hence Soc(A) # 0. It follows that every
module is semiartinian, that is, 7p-torsion. Then every 7p-injective module

is injective, hence every module is injective. Thus R is semisimple. U

Corollary 2.3.4 The following statements are equivalent for a ring R:
(i) R is semisimple.
(i1) For every n € N, every module is T,-injective.

(111) There ezists n € N such that every module is T, -injective.

Proof. If there exists n € N such that every module is 7,,-injective, then every

module is Ty-injective and apply Proposition 2.3.3. O

In what follows let us study some closedness properties of the class of

T-injective modules.

Theorem 2.3.5 The class of T-injective modules is closed under direct prod-
ucts, finite direct sums, direct summands, extensions and T-closed submod-

ules.

Proof. Let (A;);er be a family of 7-injective modules. Also, let A be a module,
B be a 7-dense submodule of A and f: B — []
For each j € I, denote by p; : [],.; Ai — A; the canonical projection. For

ser Ai be a homomorphism.

each 7-injective module A;, there exists a homomorphism g¢; : A — A; that
extends p;f. Then g: A — [[,.; Ai, defined by g(a) = (g;(a));er, extends f.
Thus [],.; A; is T-injective. Also, it is now clear that the class of T-injective

modules is closed under finite direct sums.

el

el

It is immediate to see that every direct summand of a 7-injective module
is again T-injective.

Now let 0 - X — Y — Z — 0 be an exact sequence with X and Z 7-
injective. For every 7-torsion module B the previous exact sequence induces

the exact sequence

Extp(B, X) — Exth(B,Y) — Extyp(B, 2)
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Since the first and the last term are both zero by hypothesis, we have
Exty(B,Y) = 0. Thus Y is r-injective.

Every 7-closed submodule of a 7-injective module is again 7-injective by
Proposition 2.1.11. O

We have seen in Theorem 2.3.5 that the class of 7-injective modules is
closed under finite direct sums. Under certain extra conditions, the class
of 7-injective modules is closed under arbitrary direct sums. But let us see
first some necessary and sufficient conditions for the classes of T-torsion 7-
injective modules and 7-torsionfree 7-injective modules to be closed under

direct sums.

Theorem 2.3.6 The following statements are equivalent:
(i) R has ACC on T-dense left ideals.
(i1) The class of T-torsion T-injective modules is closed under direct sums.
(i1i) The class of T-torsion T-injective modules is closed under countable

direct sums.

Proof. (i) = (ii) Let A=D,;
modules. Then A is 7-torsion. Let I be a 7-dense left ideal of R and let
f I — A be a homomorphism. Then Kerf is 7-dense in I, so that it

A; be a direct sum of 7-torsion 7-injective

is 7-dense in R. For every j € J, denote by p; : A — A; the canonical
projection.

Let us now show that the set ' = {j € J | p; f(I) # 0} is finite. Suppose
the contrary. Then choose an infinite countable subset K = {ky, ka,...} C J
such that p; f(I) = 0 for every j € K. For every [ € N*, denote

L= € A).

lE(J\K)U{k1,...,]€l}

But I; € I, C ... is an infinite countable chain of left ideals of R, which
represents a contradiction. Thus F' is finite and we have f(I) C B, p 4;.



2.3. THE CLASS OF 7-INJECTIVE MODULES 71

Finally, using the previous partial result and the fact that every finite
direct sum of 7-injective modules is again 7-injective, we can extend f to a
homomorphism from R to A. Thus A is 7-injective.

(14) = (i7i) Obvious.

(i19) = (i) Let Iy C I, C ...... I, € ... (j € J) be a chain of 7-
dense left ideals of R and set I = (J;; ;. Then @, ; E-(R/I;) is T-torsion
T-injective by hypothesis. It follows that the homomorphism

fIl—=EDEAR/L), f(r)=(r+1)jes
jeJ
extends to a homomorphism g : B — A. Then g(1) C P, E-(R/I;) has
a finite number of non-zero coordinates, hence there exists an index k such
that I = I,. Thus R has ACC on 7-dense left ideals. O

Theorem 2.3.7 The following statements are equivalent:
(i) T is noetherian.
(i1) The class of T-torsionfree T-injective modules is closed under direct

sums.

Proof. (i) = (ii) Let (Ag)kex be a family of 7-torsionfree 7-injective mod-
ules. Denote by py : [[,cx Ar — A the canonical projection. Clearly, both
the direct sum and the direct product of the modules A; are 7-torsionfree.
Let I be a 7-dense left ideal of R and let f: I — @, , Ax be a homomor-
phism. By the 7-injectivity of Ay, there exists a homomorphism hy : R — Ay
that extends pyf. Define the homomorphism

h:R— H Ap, h(r) = (ha(r))rex -

We claim that Imh C @, A. For that, it suffices to show that {k € K |
h; # 0} is finite. Suppose that it is infinite and consider a countable subset
of indices ki, ko, .... For each [ € N*, denote

Ii={rel|h(r)=0for every s > [}.
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Then I; C I, C ... is an ascending chain of left ideals of R. Moreover,
their union is I, because if r € I, then hg(r) = (ppf)(r) # 0 for finitely
many indices. By hypothesis, there exists an index ¢ such that [; is 7-dense
in R. If s > t, then hy, (I;) = 0, so that h, induces a homomorphism in
Homp(R/I;, [ Tex Ax) = 0. But then hy, = 0 for every s > ¢, a contradic-
tion.

(1) = (i) Let I; C I, C ... be an ascending chain of left ideals of
R such that their union [ is 7-dense in R. For each k, let J, denote the
T-closure of I, in R. Suppose that there is no I, 7-dense in R. Then each
Jy is a proper left ideal of R and we have J; C Jy C .... If we denote
by J their union, then I C J, hence J is 7-dense in R. If there exists
an index [ such that J, = J; for every k > [, then J; = J is 7-dense in
R, a contradiction. Hence we may assume that J; C Jo C .... Denote
ur = qgpr, where py : J — J/Ji is the natural homomorphism and ¢ :
J/Jy — R/ Jy is the inclusion homomorphism. Denote by E the T-torsionfree
injective module that cogenerates 7 (see Theorem 1.2.15). Since R/J is 7-
torsionfree, it follows that there exists a homomorphism v : R/J, — E such
that vyuy, # 0. Now consider the homomorphisms v : J — €, .. Ji defined
by u(j) = (ur(j))ken and v = @), .- vx- Then Im(vu) is not contain in any

finite direct sum of copies of £/. We have the following diagram:

«

0 J

l /
u /
/
/
@keN* R/‘]ﬁ/w

/
v /

¥
GakeN* E

where a is the inclusion homomorphism. Since J is 7-dense in R and @, . F

is T-injective by hypothesis, there exists a homomorphism w that extends vu.
It follows that Im(vu) C Imw = Rw(1) is contained in a finite direct sum of

copies of F, a contradiction. O
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Theorem 2.3.8 The following statements are equivalent:
(i) R has ACC on T-dense left ideals and T is noetherian.
(i1) The class of T-injective modules is closed under direct sums.
(i1i) The class of T-injective modules is closed under countable direct

sums.

Proof. (i) = (ii) Let A= €D,
Let I be a 7-dense left ideal of R and let f : [ — A be a homomorphism.
Suppose that f(I) € ;. A; for some finite ' C J. As in the proof of

Theorem 2.3.6, we construct a strictly increasing chain I; C I, C ... of left

Aj be a direct sum of 7-injective modules.

ideals of R having the union I. Since [ is 7-dense in R and 7 is noetherian,
there exists a 7-dense left ideal I,, of R. Now since R has ACC on 7-dense
left ideals, it follows that I,,, = I,,.1 = ... for some m > n, a contradiction.
Hence there exists a finite /' C I such that f(I) C D;cr Aj. But P;cp A;
is T-injective, whence it follows that A is 7-injective.

(i1) = (¢ii) Obvious.

(i1i) = (i) Let Iy C I, C ...... I, C ... (j € J) be a chain of 7-
dense left ideals of R such that I = UjeJ I; is 7-dense in R. Define the
homomorphism

fI—-EDE(R/L), f(r)=(r+1I)es
jeJ
Then there exists x € D,c; E-(R/1;) such that (r + I;)je; = ar for every
r € I. If n is a non-zero coordinate of x, then r 4+ I,, = 0 for every r € I, so
that I = I,,. Thus [, is 7-dense in R. Therefore 7 is noetherian. Choosing
the left ideals I; to be 7-dense, we easily get that R has ACC on 7-dense left
ideals. U

In the following proposition we ask for a condition on .A-dense left ideals,

where A is a generating class for 7.

Proposition 2.3.9 Let 7 be a hereditary torsion theory generated by a class

A of modules closed under submodules and homomorphic images. Let R be a
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ring such that every A-dense left ideal of R is finitely generated. Then every

direct sum of T-injective modules is T-injective.

Proof. Let (D;)ier be a family of 7-injective modules and put D = €,.; D;.
Let M be an A-dense left ideal of R and let f : M — D be a homomorphism.
Since M is finitely generated, there exists a finite subset J of I such that
f(M) € D' = @,.,;Di. Consider the following diagram of modules with

exact row
0—M—R
W,
gi A /
D’ //h
i /
vl
¥
D
where g : M — D’ is a homomorphism defined by g(x) = f(x) for each
x € M and wu,v are inclusion homomorphisms. Then we have f = vg. Since
D’ is a finite direct sum of T-injective modules, D’ is T-injective, hence there
exists a homomorphism h' : R — D’ such that h'u = g. Let h = vh’. Then

hu = vh'u = vg = f. Hence D is T-injective. O

Let us discuss now when the class of 7-injective modules is closed under

homomorphic images.

Theorem 2.3.10 The following statements are equivalent:
(i) The class of T-injective modules is closed under homomorphic images.
(i1) Every T-torsion module has projective dimension at most 1.
(111) Every T-dense submodule of a projective module is projective.

(iv) Every T-dense left ideal of R is projective.

Proof. (i) = (ii) Let T be a 7-torsion module and let A be any module.
Then the exact sequence 0 — A — E(A) — E(A)/A — 0 induces the exact

sequence

Extp(T, E(A)/A) — Ext%(T, A) — Ext%(T, E(A))
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By hypothesis we have the first Ext zero and clearly the last one is zero,
hence Ext%(7T, A) = 0. Thus T has projective dimension at most 1.

(i1) = (i7i) Let P be a projective module and let B be a 7-dense
submodule of P. Also, let A be any module. Then the exact sequence

0 — B — P — P/B — 0 induces the exact sequence
Extp(P, A) — Extp(B, A) — Exth(P/B, A)

The first Ext is clearly zero and the last one is zero by hypothesis, hence
Exty(B, A) = 0. Thus B is projective.

(14i) = (iv) Obvious.

(iv) = (i) Let I be a 7-dense left ideal of R. Let A be a 7-injective
module and let f : A — C be an epimorphism with kernel B. The exact

sequence 0 — I — R — R/I — 0 induces the exact sequence
Extp(I, B) — Exth(R/I, B) — Ext*(R, B)

By the projectivity of I and R, the first and the last Ext are zero, hence we
have Exth(R/I, B) = 0. Now the exact sequence 0 — B — A — C' — 0

induces the exact sequence
Exty(R/I,A) — Exty(R/I,C) — Ext%(R/I, B)

The first and the last Ext are zero by the 7-injectivity of A and by what
we have showed above, hence we have Extp(R/I,C) = 0. Thus C is 7-
injective and consequently the class of 7-injective modules is closed under

homomorphic images. U

The previous result can be refined in the following way.

Proposition 2.3.11 Let 7 be a hereditary torsion theory generated by a class
A of modules closed under submodules and homomorphic images. Then the
following statements are equivalent for a ring R:

(i) Every A-dense left ideal of R is projective.

(ii) The class of T-injective modules is closed under homomorphic images.
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Proof. Immediate by Theorem 2.3.10. O

Corollary 2.3.12 If every A-dense left ideal of R is projective, then every

sum of two T-injective submodules of a module A is T-injective.

Proof. By Proposition 2.3.11, every factor module of a 7-injective module
is T-injective. Let B and C' be two T-injective submodules of A and define
the homomorphism f : B® C — B+ C by f(b,c) = b+ c¢. Then f is an

epimorphism, hence B 4 C' is T-injective. U

Remark. In particular, if R is left hereditary, then every factor module of a
T-injective module is T-injective and every sum of two 7-injective submodules

of a module is 7-injective.

We end this section with an equivalent condition for the class of 7-injective

modules to be closed under both direct sums and homomorphic images.

Theorem 2.3.13 The following statements are equivalent:
(i) The class of T-injective modules is closed under direct sums and ho-
momorphic images.

(i1) Every T-dense left ideal of R is finitely generated projective.

Proof. (i) = (ii) Let I be a 7-dense left ideal of R. By Theorem 2.3.10, I
is projective. Then I = ., J; for some countably generated ideals J; of R.

We claim that each J = J; is finitely generated. Let z1, xs,... be a count-
able set of generators for J. For each i = 1,2,..., denote K; = Z;Zl Rzx;.
By hypothesis, E = @;-, E(J/K;) is 7-injective. Let p; : J — J/K; and
u; « J/K; — E(J/K;) be the natural epimorphism and the inclusion homo-
morphism respectively. Since for every x € J, there exists n € N such that
x €Y. Rx; and then w;p;(x) = 0 for every i > n. Thus we may define the
homomorphism f : J — E by f(z) = (u;pi(z))i>1. By the 7-injectivity of
E, f extends to a homomorphism g : R — E. Then g(R) C ", E(J/K;)
for some m € N, hence f(J) C @, E(J/K;), that is, J is generated by

Ti1yeooy iy
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Now L has to be finite, because otherwise there exists a proper countably
infinite subset L' C L and then J = €,.;, J; is a countably generated direct
summand of I that is not finitely generated. Therefore [ is finitely generated.

(11) = (i) By Theorem 2.3.10, the class of 7-injective modules is closed
under homomorphic images. Now let (4;);es be a family of 7-injective mod-
ules and denote A = P, ;A;. Let I be a 7-dense left ideal of R. By
hypothesis, [ is finitely generated, say by x1,...,2z,. Alsolet f: [ — A be a
homomorphism. Now each f(x;) is contained in a finite sum of components
of A, hence f(I) has the same property. This sum is clearly 7-injective and
thus f extends to a homomorphism g : R — A. Hence A is T-injective,

showing that the class of 7-injective modules is closed under direct sums. [

2.4 T7-injectivity versus injectivity

In this section we will see several cases when injectivity and 7-injectivity are

or are not the same.
Proposition 2.4.1 FEvery 1g-injective module is injective.

Proof. Note that every essential left ideal of R is clearly 74-dense in R. [

Hence the Goldie torsion theory is not interesting from the point of view
of studying torsion-theoretic injectivity. We are going to see that there are
some other torsion theories, such as the Dickson torsion theory or the torsion
theories 7,, for which 7-injectivity and usual injectivity do not coincide.

Clearly, we have the following result for an arbitrary torsion theory.

Lemma 2.4.2 If R is T-torsion or T-cocritical, then every T-injective module

1S injective.

In what follows we compare usual injectivity to injectivity with respect

to the Dickson torsion theory or the torsion theories 7,.
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Corollary 2.4.3 Let R be a noetherian commutative domain such that every

maximal ideal of R is principal. Then every Tp-injective module is injective.

Proof. Since R is a domain, clearly Soc(R) = 0, i.e. R is 7p-torsionfree.
The condition (), M™ = 0 for each maximal ideal M of R holds because
R is a noetherian domain [101, Proposition 4.23, Corollary 1]. Hence by

Proposition 1.5.10, R is 7p-cocritical. Now use Lemma 2.4.2. U
For the rest of this section the ring R will be assumed to be commutative.

Let £ and &, be the class of injective modules and 7,-injective modules

respectively. Then
EDED-DE,D---DE.
It follows that for a module A we have
Fry(A) € Bn(A) C o C B (A) C - C B(A).

Therefore for a commutative ring 7Tp-injectivity (i.e. 7p-injectivity) is a
generalization of 7,-injectivity. On the other hand, the my-injective hull of a

module is the ”closest” to the module among its 7,-injective hulls.

Proposition 2.4.4 Let R be a noetherian domain. Then the following state-
ments are equivalent:

(i) Every t,-injective module is injective.

(1)) dim R < n + 1.

Proof. Suppose first that dim R > n + 2. We will show that there exist
Tp-injective modules which are not injective. By Proposition 1.8.1, R is 7,-
torsionfree and by Proposition 1.8.3, R is not 7,-cocritical. It follows that
E(R) is 1,-torsionfree and E(R) is not 7,-cocritical. Then by Lemma 3.1.2,
there exists a non-zero proper 7,-injective submodule A of F(R). Since E(R)

is indecomposable, A is not injective.
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Suppose now that dim R < n+1. If dim R < n, then by Proposition 1.8.1,
R is 1,-torsion. If dim R = n + 1, then by Corollary 1.8.4, R is 7,-cocritical.

In both cases, every 7,-injective module is injective by Lemma 2.4.2. U

Remarks. (i) Note that the hypothesis on R to be noetherian is needed only
for showing that if dim R = n+ 1, then every 7,-injective module is injective.

(17) The equivalence of the statements (i) and (ii) in Proposition 2.4.4
does not hold for an arbitrary hereditary torsion theory on R-Mod, where R
is an arbitrary ring. We will give an example of a commutative ring R with
dim R = 0 and a hereditary torsion theory 7 on R-Mod with the property

that not every 7-injective module is injective.

Example 2.4.5 Let K be a field, let J be an infinite set and let R = K”7. Let
7 be the hereditary torsion theory on R-Mod whose corresponding Gabriel
filter consists of those left ideals I of R such that there exists a cofinite
subset H of J such that K C I. We have seen in Example 2.3.2 that
every module is T-injective, but R is not semisimple. Therefore there exist
T-injective modules that are not injective. On the other hand, R is von

Neumann regular, hence dim R = 0 [67, Theorem 3.71].

Corollary 2.4.6 If R is either a commutative principal ideal domain or a

Dedekind domain, then every 1,-injective module is injective.

Proof. FEvery commutative principal ideal domain R is noetherian with
dim R < 1. Since every Dedekind domain R is a noetherian ring whose every

non-zero prime ideal is maximal, we have dim R < 1. Now use Proposition
2.44. O

In the sequel, we will give some first examples of non-injective 7,,-injective

modules, other examples being included in Chapter 3.

As a consequence of Proposition 2.4.4 and the remark following it, we

have the next corollary.
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Corollary 2.4.7 Ifdim R > n+2, then there exist non-injective T, -injective

modules.

Proposition 2.4.8 Let R be a unique factorization domain such that every
maximal ideal of R is not principal. Then R is a 19-injective R-module which

18 not injective.

Proof. Since R is not a field, it follows that R # FE(R), i.e. R is not injective.
Consider E(R) as the field of fractions of R. Suppose that Soc(E(R)/R) # 0.
Then there exists a simple module S C F(R)/R. Let M be the maximal ideal
of R such that S = R/M. Then AnngS = M. Let S = Ra, wherea = a+ R
and a € E(R) \ R. Since R is a unique factorization domain, there exist
b,c € R such that a = l—c’, where ¢ is not invertible and the greatest common
divisor of b and ¢ is 1. Since S is simple, Annga = M. Then for every
m € M we have mg € R. Hence for every m € M, there exists d € R such
that m = dc € Re. It follows that M C Re. But ¢ is not invertible and M
is a maximal ideal of R, so we obtain M = Rec, i.e. M is a principal ideal.
This provides a contradiction. It follows that Soc(E(R)/R) = 0. Hence R is

1o-closed in E(R). Therefore R is a m-injective R-module. O

Lemma 2.4.9 Let R be a mg-injective domain with dim R > 1. Then R has

no principal maximal ideal.

Proof. Suppose that M is a principal maximal ideal of R. Then M = R
is 7p-dense in R and 7p-injective, hence M is a direct summand of R, a

contradiction. O

Example 2.4.10 (1) Let R = K[[X1,...,X,,]] (m > 2) be the ring of formal
power series on the set of commuting indeterminates X, ..., X,, over a field
K. Then M = RX; + --- + RX,, is the unique maximal ideal of R, hence
R is a local ring. Since K is a field, R is a unique factorization domain [97,
Chapter VIII, Corollary 2.2.1]. Obviously, the ideal M is not principal. By

Proposition 2.4.8, R is a 7yp-injective R-module which is not injective.
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(2) Let R = K[Xy,...,X;] (m > 2) be the ring of polynomials on the
set of commuting indeterminates Xi,...,X,, over an algebraic closed field
K. Then every maximal ideal of R is of the form (X7 — aq,..., X, — an),
where aq, ..., a,, € K. Therefore the unique factorization domain R does not
have any principal maximal ideal. By Proposition 2.4.8, R is a 7y-injective
R-module which is not injective. Moreover, by Lemma 2.4.9, every non-
maximal prime ideal of R is mp-injective as well. For instance, (X;,, ..., X;,)

is Tp-injective, where k € {1,...,m — 1} and iy,...,ix € {1,...,m}.

Using Proposition 2.4.8, we are able to give examples of non-injective

Tp-injective modules over noncommutative rings as well.

Example 2.4.11 Consider the polynomial ring R = K[X,Y], where K is an
algebraically closed field and let () be the field of fractions of R. By Example
2.4.10 (2), R is a Tp-injective module that is not injective.
R 0
Consider the ring T' = (Q o) Then T is left noetherian [82, Chapter
II, Example 5.1.6] and E(T") = M»(Q) as left T-modules [67, p.79]. We have

T =A® B, where A = 0 and B = 00 are left ideals of T". Also
Q@ 0 0 @

0 0
My(Q) = C& D, where C' = g 0) and D = (0 g are indecomposable
injective T-modules. Then A < C and B < D. The submodules of C'
containing A are of the form L where L is an R-submodule of ()

containing R. Since R is Tp-injective, Soc(Q)/R) = 0, hence Soc(C'/A) = 0,

i.e. A is tp-injective. Clearly, A is not injective.

Remark. Therefore injectivity with respect to the Dickson torsion theory or
to the torsion theories 7,, do not coincide in general with the usual injectivity.
This is the reason for us to prefer them as the main particular torsion theories

in order to strengthen results on 7-injectivity.
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2.5 A relative injectivity

At this point, let us leave for the moment the context of torsion theories
and discuss a special type of relative injectivity. Thus we will obtain a more
general result from which a part of Proposition 2.1.5 will be recovered as a

particular case.

Let C be a class of modules closed under isomorphisms, having also the
following property:

For every module M and for every family (M;);c; of submodules of M
such that M; € C for every i € I, there exists a subset J of I such that

Y Mi=EPM;.

iel jed

Example 2.5.1 The class C may be considered to be the class of all simple
modules or the class of all 7-cocritical 7-injective modules (see Proposition
2.2.8).

In what follows C will be a class of modules with the above property.

For every module M, put Co(M) = 0 and denote by C;(M) the sum of all
submodules of M which belong to the class C. If M does not contain such
submodules, take C;(M) = 0.

Following [1, p.1336], for every module M we define an ascending chain
of submodules of M

0=Co(M) CCi(M) C--- CCW(M) CCoa(M) C ...
where for every ordinal a > 0,
Ca+1(M)/Co(M) = Ci(M/Co(M))

and for every limit ordinal «,

Ca(M) = |J ca(M).

<8<«



2.5. A RELATIVE INJECTIVITY 83

The ascending chain of submodules of M defined above is called the C-series
of M.

Since M is a set, there exists an ordinal « such that Co (M) = Cpq1 (M) =
.... The least ordinal with that property is called the C-length of the C-series
of M and it is denoted by I(M).

We will denote ¢(M) = Cyary(M). Then I(c(M)) = I(M). A module M
is called C-module if ¢(M) = M.

Example 2.5.2 If the class C is the class of all simple modules, then
C1(M) = Soc(M) and the C-series of a module is its Loewy series [82, p.115].
In this case, the C-modules are exactly the semiartinian modules [82, Chapter
I, Theorem 11.4.10).

Let
0 A—>pB-—s(C 0 (1)

be a short exact sequence of modules.

Theorem 2.5.3 The following statements are equivalent for a module D:
(i) D is injective with respect to every exact sequence (1) where C' € C.
(ii) D is injective with respect to every exact sequence (1) where C is a

C-module.

Proof. (i) = (1i) Assume (i) and let (1) be a short exact sequence of
modules, where C' is a C-module. We may assume without loss of generality
that A is a submodule of B and wu is the inclusion homomorphism. Since
B/A = (C, it follows that B/A is a C-module.

Denote by v = [(B/A), Ay = A and A, = B. The C-series of B/A is a
collection {A,/Ap | @ < v}, where A, is a submodule of B for every ordinal
a < 7. It follows that {A, | @ <~} is a chain of submodules of B such that
Apg C A, whenever 3 < a.
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Let fo : A — D be a homomorphism. Let o be an ordinal and suppose
that for every 3 < a there exists a homomorphism fz : Ag — D such that if
5 <, then f5 [a,= f.

Suppose that « is a successor of an ordinal 3, i.e. o = 4+ 1. Then
A, /Ag is the sum of all submodules of B/Ajz which belong to the class C, say
AafAg =3, (M;/Ag). Then by the definition of the class C, there exists a
subset J of I such that

Aa/As = ED(M;/45).
jeJ
Then Ay =3, Mj and My, N (32, M;) = Ap for every h € J.

By hypothesis, for every j € J there exists a homomorphism g; : M; — D
such that g; |4,= fg. If v € Ag, there exist m;, € M;,, where j, € J,
k=1,...,n,such that x = m;, +---+m,;, . Then we may define f, : A, — D
by

fal@) = g5, (mg,) + -+ + gj,(my,).

If also x = m) +---+m} with m) € M; , where each j, € J, then for

Jk?

every s € {1,...,n}, we have
n
!/
m;, —mjs € Z Mjk‘
k=1, k+#s

Hence there exist a; € Ag such that m;, = m;-k + ay for every Kk =1,...,n

and a; + -+ +a, = 0. It follows that

n

falz) = Zgjk (m]k) = Z(gjk (m3k> + Y (ar)) =

k=1

= Y9 (ml) + Y Falar) = g5 (ms,).
k=1 k=1 k=1

hence f, is well-defined. It is easy to check that f, is a homomorphism.
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Now suppose that « is a limit ordinal. Then A, = Uﬁm Ag. If x € A,,

then there exists an ordinal 3 < o such that z € Az and we may define

fa:Aa_)Da foz(w):fﬁ(a:)

If also x € As, 0 < «, then we have either § < ( or § < J, hence
fs(x) = fa(x), therefore f, is well-defined. It is easy to check that f, is
a homomorphism.

By transfinite induction, there exists a homomorphism h : B — D such
that hu = fy, i.e. D is injective with respect to the exact sequence (1), where
C' is a C-module.

(1) = (i) Assume (77) and let (1) be a short exact sequence of modules,
where C' € C. Since Cy(D) = D, D is a C-module. Now the result follows. [

In the particular case when the class C is the class of all simple modules,
as a consequence of Theorem 2.5.3 we obtain in a different way Proposition

2.1.5 in the particular case of the Dickson torsion theory.

Let us see a situation when the condition (i) of Theorem 2.5.3 holds.

Proposition 2.5.4 Let C be the class of all T,-cocritical T,-injective mod-
ules. Then every T,.1-injective module is injective with respect to every exact

sequence (1) where C € C.

Proof. Since C'is 7,-cocritical, C' cannot be 7,,1-cocritical by Proposition
1.8.3. But 7, < 7,41, hence by Proposition 1.5.9, C' is 7,,,1-torsion. Now if
D is a 7,1-injective module, it follows that D is injective with respect to

every exact sequence (1), where C' € C. O

References: T. Albu [1], [2], J.S. Alin, S. Dickson [5], K. Aoyama [7],
G. Bacella [9], P. Bland [11], J.L. Bueso, P. Jara, B. Torrecillas [15], [16],
S. Crivei [22], [24], [25], [32], L. Fuchs [44], P. Gabriel [45], J.S. Golan [48],
[49], J.S. Golan, M. Teply [51], O. Goldman [54], G. Helzer [56], .D. Ion
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[60], J. Lambek [68], J.-M. Maranda [73], K. Masaike, T. Horigome [74],
K. Nishida [88], D.F. Sanderson [98], B. Sarath, K. Varadarajan [100],
B. Stenstrom [107], M. Teply [111], C.L. Walker, E.A. Walker [115].

Notes on Chapter 2

As is the case for some general properties of torsion theories, it is rather
difficult to trace all the results on torsion-theoretic injectivity. Different
characterizations and general properties on 7-injectivity, sometimes called 7-
divisibility, have been established in the 1960’s. In what follows we mention
some of the more significant later results. G. Helzer (1966) characterized the
situation when the class of 7-injective modules is closed under both direct
sums and homomorphic images. G. Helzer (1966), J.S. Golan and M. Teply
(1973), and K. Masaike and T. Horigome (1980) studied when the class of 7-
torsionfree T-injective, T-injective, respectively 7-torsion 7-injective modules
is closed under direct sums. Many properties of 7-torsionfree 7-injective
modules, especially used in the context of localization, were established by
J.S. Alin and S. Dickson (1968). Results on the 7-injective hull of a module as
well as on the 7-injectivity of Hompg(A, B) for a 7-injective module B were
given by K. Aoyama (1976). K. Masaike and T. Horigome (1980) showed
that from any sum of 7-cocritical 7-injective modules it can be refined a
direct sum of 7-cocritical 7-injective modules. This result was the author’s
motivation to introduce a special class of modules in the final part of the

chapter.



Chapter 3
Minimal 7-injective modules

The present chapter deals with minimal 7-injective modules, which play an
important part in direct sum decompositions of 7-injective modules. Par-
tial or complete structure theorem for them will be established in several
cases. In tight connection with minimal 7-injective modules, we will study
the structure of the 7-injective hull of a module. Moreover, we are interested
in obtaining information on the structure of the injective hull of a module
by studying the existence of (minimal) 7-injective submodules contained in
the injective hull. In the end we will give a few results on change of ring and

direct sum decompositions for 7-injective hulls.

3.1 General properties

Definition 3.1.1 A non-zero module which is the 7-injective hull of each of

its non-zero submodules is called minimal T-injective.

Minimal 7-injective modules play in the torsion-theoretic context a similar
part with indecomposable injective modules.
The following lemma collects some first properties of minimal 7-injective

modules, that will be frequently used.

87
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Lemma 3.1.2 (i) Every minimal T-injective module is uniform.
(i1) A module A is T-injective T-cocritical if and only if A is T-torsionfree
mainimal T-injective.
(111) Every minimal T-injective module is either T-torsion or T-cocritical.
(iv) The endomorphism ring of a minimal T-injective module is local.
(v) Let (A;)icr be a family of minimal T-injective modules. Then they are

relatively injective.

Proof. (i) It is clear that every non-zero submodule of a minimal 7-injective
module A is essential in A.

(73) Suppose first that A is T-injective 7-cocritical. Let B be a non-
zero submodule of A. Clearly, E,(B) C A. Since A is 7-cocritical, A is
T-torsionfree, B is 7-dense in A and A is uniform, hence E(B) = E(A).
Then A/B C t(E(A)/B) = t(E(B)/B) = E.(B)/B, whence A C E.(B).
Consequently, A is minimal 7-injective.

Conversely, suppose that A is 7-torsionfree minimal 7-injective. Let B
be a non-zero submodule of A. Denote C'/B = t(A/B). Since A is minimal
T-injective, we have E,(C') = A. Then A/B is 7-torsion as an extension of
the 7-torsion module C'/B by the 7-torsion module A/C' = E.(C)/C. Thus
A is T-cocritical.

(7i7) Let A be a minimal 7-injective module. If A is not 7-torsion, then
let 0 # a € A\ t(A), whence it follows that A = E.(Ra) is 7-torsionfree.
Then by (i7), A is T-cocritical.

(1v) Let A be a minimal 7-injective module and let 0 # f € Endg(A).
Then A is uniform. Also, Kerf N Ker(ly — f) = 0, hence Kerf = 0 or
Ker(14 — f) = 0, that is, either f or 14 — f is a monomorphism. In both
cases, the image of this monomorphism is 7-injective, hence it has to be A.
Now it follows that f is an automorphism.

(v) Let @ € I. Since A; is a non-zero minimal 7-injective module, ev-
ery proper factor module of A; is 7-torsion. Then by the definition of 7-

injectivity, A; is A;-injective for every j € I. O
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Let us now consider a couple of other properties of 7-torsion or 7-

torsionfree minimal 7-injective modules.

Theorem 3.1.3 Let 7 be a hereditary torsion theory generated by a class
A of modules closed under submodules and homomorphic images. Then the
following statements are equivalent for a mon-zero T-torsion module A:

(i) A is minimal T-injective.

(1)) A= E.(B), where B € A and B is uniform.

Proof. (i) = (i7) Since A is 7-torsion, there exists a non-zero submodule B
of A such that B € A. Then A = E,(B). Since A is uniform, it follows that
B is uniform.

(11) = (i) Let C be a non-zero submodule of A. Since A is 7-torsion,
E.(C) is T-dense in A. Then E.(C) is a direct summand of A. But A is

uniform, hence E,;(C') = A. Hence A is minimal 7-injective. O
In the sequel we assume R to be commutative, unless stated otherwise.

Theorem 3.1.4 Let A be a T-torsionfree minimal T-injective module. Then
A= E.(R/p), where p= AnngrA € Spec(R).

Proof. Note that A is 7-cocritical. By Theorem 1.5.12 and Corollary 1.5.13,
p € Spec(R) and R/p is T-cocritical. Let 0 # a € A. Then again by Theorem

1.5.12 we have Ra = R/Annga = R/p. Since A is minimal 7-injective,
A= E,(Ra) = E,(R/p) O

We obtain some stronger results for minimal 7,-injective modules.

Proposition 3.1.5 Let p € Spec(R). Then:
(i) E., (R/p) is T,-torsion minimal T,-injective if and only if dimp < n.
(ii) If E. (R/p) is T,-torsionfree minimal T,-injective, then dimp = n+1.
(i1i) If E. (R/p) is T,-torsionfree, but not minimal T,-injective, then
dimp >n+ 1.
(iv) If dimp > n + 2, then E, (R/p) is T,-torsionfree, but not minimal

Tn-tnjective.
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Proof. (i) Suppose that E, (R/p) is 7,-torsion minimal 7,-injective. Then
R/p is T,-torsion, hence dimp < n by Proposition 1.8.1.

Assume that dimp < n. Then E, (R/p) is 7,-torsion by Proposition
1.8.1. Since R/p is uniform and R/p € A,, it follows by Theorem 3.1.3 that
E., (R/p) is minimal 7,-injective.

(11) Since E. (R/p) is m,-cocritical, then by Proposition 1.8.3, ¢ =
AnngFE, (R/p) € Spec(R) and dimg = n + 1. On the other hand, by The-
orem 1.5.12, we have ¢ = Annga = p for every non-zero element a € R/p.
Hence dimp =n + 1.

(7i1) Since R/p is T,-torsionfree, dim p > n + 1 by Proposition 1.8.1.

(1v) By Proposition 1.8.1, E,, (R/p) is T,-torsionfree. Since dimp # n+1,
it follows by (i7) that E,, (R/p) is not minimal 7,-injective. O

For a noetherian ring R we are able to establish the form of minimal

Tp-injective modules.

Corollary 3.1.6 Let R be noetherian and let A be a module. Then:

(i) A is T,-torsion minimal T,-injective if and only if A = E(R/p) for
some p € Spec(R) with dimp < n.

(i1) A is T,-torsionfree minimal T,-injective if and only if A= E, (R/p)
for some p € Spec(R) with dimp =n + 1.

Proof. (i) It follows by Proposition 2.1.9, Proposition 1.8.1 and by the fact
that E(R/p) is indecomposable.

(74) The "only if” part follows by Theorem 3.1.4 and Proposition 3.1.5.
Conversely, suppose that A = E_ (R/p) for some p € Spec(R) with dimp =
n+ 1. Then by Corollary 1.8.4, R/p is 7,-cocritical. Hence A = E_ (R/p) is

Tp-torsionfree minimal 7,,-injective. l

We have the following characterization of minimal 7p-injective modules.

Recall that 7p is generated by the class of simple modules.
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Proposition 3.1.7 The following statements are equivalent for a module D
over a not necessarily commutative ring:
(i) D is minimal Tp-injective.

(1) D = E,, (A), where A is either Tp-cocritical or simple.

Proof. (i) = (i1) Suppose that D is minimal 7p-injective. If D is 7p-torsion,
then by Theorem 3.1.3, we have D = E,_(S), where S is a simple module.
If D is tp-torsionfree, then A is 7p-cocritical.

(i1) = (i) Suppose that D = E,_(A), where A is either 7p-cocritical or
simple. If A is simple, then D is minimal 7p-injective by Theorem 3.1.3. If
A is Tp-cocritical, then D = E,_(A) is Tp-cocritical by Lemma 2.2.2, hence

D is minimal 7p-injective. U

Proposition 3.1.8 Let R be a not necessarily commutative ring such that
every maximal left ideal of R is finitely generated projective and let D be a
minimal Tp-injective R-module. Then for every non-zero proper submodule

A of D, there exists a family of simple modules (S;)ier such that

D/A: @E‘I‘D(Si)'

el

Proof. By Propositions 2.3.11, D/A is 7p-injective. Since D is min-
imal 7p-injective, D/A is semiartinian. Then Soc(D/A) < D/A and
(D/A)/Soc(D/A) is semiartinian, hence E,, (Soc(D/A)) = E., (D/A) by
Lemma 2.2.5. Now let Soc(D/A) = @,., S;, where S; is simple for every
1 € I. Then by Proposition 2.2.6, we have

D/A = ETD(D/A) = E’T‘D(SOC(D/A)) = ETD(@ Sz) = @E’T‘D(Si) : O

icl icl

Clearly, Proposition 3.1.8 holds for R left hereditary left noetherian. We

illustrate this in the following example.
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Example 3.1.9 The ring Z is commutative hereditary noetherian with
dimZ = 1. Hence every 7p-injective Z-module is injective by Proposition
2.4.4. If P is the set of prime numbers, we have Q/Z = @pep Zyeo, where
Q = E(Z) and Zy~ = E(Z,) are indecomposable injective Z-modules for
every p € P.

Corollary 3.1.10 Let R be a not necessarily commutative left H-ring such
that every mazimal left ideal of R is finitely generated projective. Let S be a
simple R-module and let A be a proper submodule of E.,(S). Then:

(i) E-,(S)/A = @,c; Er,(Si), where S; = S for everyi € I.

(ii) There exists a proper submodule B of E.,(S) which contains A and
Erp(5)/B = Erpy(S).

Proof. 1t follows by Propositions 2.2.16 and 3.1.8. |

We end this section with some examples of minimal 7p-injective modules

over a noncommutative and even non-left noetherian ring.

Z
Example 3.1.11 Consider the ring T = (O g) . Then T has the following

properties:

(i) T is not left noetherian and 7" is not left semiartinian [82, Chapter II,
Example 5.1.6].

(ii) E(T) = M5(Q) as left T-modules [55, p.82].

The left ideals of T" are exactly the sets:

{(S Z) |(z,q)€H,u€U}

where H is a subgroup of Z& Q and U is an ideal of Q such that U C H [82,
Chapter II, Proposition 5.1.1]. Hence we have three types of left ideals of 7"

nZ Q . 0 Q z q
(v &)= (o) {G ) ewent
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Then the maximal left ideals of T are of the following two types:

M, = (pOZ g) (p prime), M = (f %) :

0
The Jacobson radical of T"is J(T') = 0 % . Clearly, the maximal left

ideals of T" are essential in 7', hence Soc(7") C J(T'). But J(T') does not
contain any simple T-submodule, because Q does not contain any simple

subgroup. Therefore Soc(7T) = 0, i.e. T is T7p-torsionfree.

Z 0 0
We have T" = B & C, where B = and C = Q . Clearly,
0 0 0 Q

0
D = g 0 is a T-module and E(T") = D&C'. Hence D and C are injective

T-modules. Since B is essential in D, we have E(B) = D. The class of 7p-
torsionfree modules is closed under injective hulls and submodules, hence D

and C' are Tp-torsionfree. We show that D and C are minimal 7p-injective.

0
Let X = (% 0). Then the T-submodules of X are of the form X4 =

A0
0 , where A is a subgroup of Q. Since Q = E, (Z) = E(Z) is p-
cocritical, Q/A contains a simple subgroup, hence X/X, contains a simple
submodule. Since X is 7p-torsionfree, it follows that X is 7p-cocritical.
We have

- )
qg O 0 O 0 ¢q 0 O
Then D/X is simple. But X is essential in D, therefore F, (X) = D.
Since X is tp-cocritical, D is 7p-cocritical, hence D is minimal 7p-injective.
Moreover, E,,(B) = D. Similarly, we have E.,(J(T)) = C and C' is minimal
Tp-injective.

The only 7p-torsion minimal 7p-injective modules are E(T/M) and
E(T/My).
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3.2 7-injective hulls versus injective hulls

Let us begin with a general result characterizing when the 7-injective hull

and the injective hull of a module coincide.

Theorem 3.2.1 Let A be a T-torsionfree module. Then E.(A) = E(A) if
and only if for every left ideal I of R and for every homomorphism f : [ — A,
there exist a T-dense left ideal J of R with I C J and a homomorphism
g:J — A that extends f.

Proof. First suppose that E,(A) = E(A). Let I be a left ideal of R and
let f: I — A be a homomorphism. Then there exists a homomorphism
h : R — E(A) that extends f. By hypothesis, J = (A : h(1)) is a 7-dense
left ideal of R, I C J and h(J) C A. Then g = h|; extends f.

For the converse, let I be a left ideal of R and let f : I — A be a
homomorphism. Let h : R — E(A) be the homomorphism that extends f
and denote z = h(1).

We claim that © € E.(A). Suppose the contrary. Let u : (A:z) — A
be the homomorphism defined as the right multiplication by x. Then there
exist a 7-dense left ideal I’ of R with (A : ) C I’ and a homomorphism
v : I'" — A that extends u. Then (A : z) C I’, because if the equality
holds, then x € E;(A), a contradiction. It follows that there exists y € E(A)
such that v is the right multiplication by y. Since (A : x) C I' C (A : y),
(A :y) is 7-dense in R. But E(A) is 7-torsionfree, whence we deduce that
Hompg(R/(A : y), E(A)) = 0. Since x # y, it follows that (A : y)(z —y) # 0.
Hence there exists b € (A : y) such that bx # by. But Rb(z —y) N A # 0,
so there exists 7 € R such that 0 # rb(x —y) € A. Since rby € A, we have
rbx € A. Then rb(z —y) = rbx — rby = u(rb) — v(rb) = 0, a contradiction.
Therefore = € E.(A).

Now let  : I — E,(A) be a homomorphism and denote K = a~'(A).

Then K is 7-dense in R, because « induces a monomorphism [/K —
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E.(A)/A. Let § = a|k. Since E,(A) is T-torsionfree T-injective, it follows by
Proposition 2.1.10 that there exists a unique homomorphism v : I — E (A)
that extends . By the above arguments, there exists © € E,(A) such that
[ is the right multiplication by x. By uniqueness, we deduce that « is the
right multiplication by x. Thus «a can be extended to a homomorphism
R — E.(A). Therefore E.(A) is injective, whence E.(A) = E(A). O

Throughout the rest of this section R will be assumed to be commutative.

Theorem 3.2.2 Let p € Spec(R) be such that E.(R/p) = E(R/p). Then

E.(R/p) is minimal T-injective.

Proof. Let A be a non-zero submodule of E.(R/p) and let 0 # a € A. Since
R/p < E;(R/p), there exists r € R such that 0 # b =ra € RaN R/p. But
Anngb = p, hence Rb = R/p. It follows that E.(Rb) = E.(R/p) = E(R/p),
which means that E.(Rb) is injective. But E(R/p) is indecomposable injec-
tive and E,(Rb) < E(R/p), hence E.(Rb) = E(R/p). We also have

E.(Rb) < F,(A) < E,(R/p) = B(R/p).
Hence E,(A) = E(R/p). Thus E(R/p) is a minimal 7-injective module. [J

We deduce now a number of corollaries of Theorem 3.2.2.

Corollary 3.2.3 The following statements are equivalent for a domain R:
(i) R is T-cocritical.

(ii) T is proper and E.(R) = E(R).

Proof. (i) = (i1). It follows by Proposition 2.2.10.

(i1) = (). Assume (ii). By Theorem 3.2.2, E,(R) is minimal 7-
injective. Since 0 € Spec(R), R is either 7-torsion or 7-torsionfree by Lemma
1.4.7. If R is T-torsion, then every module is 7-torsion, a contradiction. Hence

R is T-torsionfree. Therefore E,(R) is T-cocritical. O

Note that Corollary 3.2.3 does not hold anymore if R is not a domain, as

we can see in the following example.
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Z
Example 3.2.4 Consider the ring T' = (O g) and use the same notations

as in Example 3.1.11. Then we have E, (T) = E(T) = M>(Q). Note that

Soc(T) = 0 and T is not Tp-cocritical.
Let us now recall an auxiliary result.

Lemma 3.2.5 [101, Proposition 2.26, Corollary 1] If I is a proper left ideal
of a domain R, then AnngE(R/I) = 0.

Corollary 3.2.6 Let R be a domain and let p € Spec(R) be 7,-closed in R.
If E. (R/p) = E(R/p), then dimp = n+ 1, p = 0 and every 7,-injective

module is injective.

Proof. By Theorem 3.2.2 and Proposition 1.8.1, E, (R/p) is 7,-torsionfree
minimal 7,-injective. By Proposition 3.1.5, dimp = n+ 1. Since E. (R/p) is
T,-cocritical, it follows by Theorem 1.5.12 that AnngF,, (R/p) = p. Since R
is a domain, AnngE(R/p) = 0 by Lemma 3.2.5. It follows that p = 0. Now

R is 7,-cocritical, hence every 7,-injective module is injective. U

Corollary 3.2.7 Let p € Spec(R). If one of the following conditions holds:
(i) dimp > n + 2;
(i1) R is a domain with dim R > n + 2 and dimp > n + 1,

then E, (R/p) is not injective.

Proof. If dimp > n + 2, then the result follows by Theorem 3.2.2 and
Proposition 3.1.5. If R is a domain with dim R > n + 2 and dimp > n + 1,
then apply Corollary 3.2.6. U

We need the following preliminary result.

Proposition 3.2.8 [101, Proposition 2.27] Let I be a two-sided ideal of R
and let E be an injective R-module. Then Anngl is injective as an R/I-
module. Moreover, if E is the injective hull of an R-module A, then Anngl

is an injective hull of AN Anngl considered as an R/I-module.
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Now we are able to give the main result of this section, establishing the

structure of the 7-injective hull of some R/p, where p € Spec(R).

Theorem 3.2.9 Let p € Spec(R) be such that R/p is T-cocritical. Then:
(i) E-(R/p) = Anngg/pp.
(i1) There exists an R/p-isomorphism (and hence an R-isomorphism,) be-
tween E-(R/p) and the field of fractions of R/p.
(111) If p is not mazximal, then R/p # E.(R/p).

Proof. (i) Denote A = E.(R/p). Note that A is 7-torsionfree minimal 7-
injective. We have seen in the proof of Theorem 3.1.4 that AnngA = p. It
follows that A C Anngg/p,p. By Lemma 1.5.14, we have Anngd C p for
every 0 # d € E(R/p). Let 0 # b € Anngg/pp. Then Anngb = p and
Rb = R/p is T-cocritical. But since E(R/p) is uniform, A is the maximal 7-
cocritical submodule of E(R/p) by Proposition 1.5.4. It follows that Rb C A,
hence Anngr/pp € A. Therefore E (R/p) = Anngg/p)p-

(4i) By (i) and Proposition 3.2.8, it follows that E.(R/p) = Anngg/pp
is an injective hull of R/p considered as an R/p-module. Since R/p is a
domain, E,(R/p), considered as an R/p-module, is isomorphic to the field of
fractions of R/p.

(¢31) It follows by (i7), because R/p is not a field. O

Remarks. (i) Note that the hypothesis needed in the proof is for E.(R/p) to
be 7-torsionfree minimal 7-injective.

(77) Consider the context of Theorem 3.2.9 and suppose that R is a domain
and p # 0. Then AnngE(R/p) = 0 by Lemma 3.2.5. On the other hand,
by Theorem 1.5.12; AnngE,(R/p) = p. Hence the 7-injective hull does not

coincide here with the injective hull.

Let us now see an example of determining the 7-injective hull of a 7-

cocritical module R/p for some p € Spec(R) by using Theorem 3.2.9.
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Example 3.2.10 Consider the polynomial ring R = K[Xi,...,X,,] (m >
2), where K is a field, and let p = (X3,..., X},_,—1), where n < m—1. Then
p € Spec(R) and we have the ring isomorphism

KX, Xl (X1 X)) 2 K[ X s - Xon] -

But K[X,—n,..., X has both a structure of R/p-module and R-module
by restriction of scalars. Since R is noetherian and dimp =n+ 1, R/p is a
Tp-cocritical R-module by Corollary 1.8.4. Then E, (R/p) is 7,-torsionfree

minimal 7,-injective. Now by Theorem 3.2.9 we have the R-isomorphism
E. (K[X1,...,Xo/(X1,. .., Xonn1)) 2 KXoy -5 X))
where K(X,,—n,...,X) is the field of fractions of K[X,,_p, ..., X
We continue with two important corollaries of Theorem 3.2.9.

Corollary 3.2.11 FEwvery t-torsionfree minimal T-injective module is iso-

morphic to the field of fractions of R/p for some p € Spec(R).

Proof. By Theorems 3.1.4 and Theorem 3.2.9. U

Recall that a module A is called locally noetherian if every finitely gen-
erated submodule of A is noetherian [40, p.10]. Recall also that a module A
is said to be Y -Z if any direct sum of copies of A has the property Z. For
instance, a module A is said to be » -injective if any direct sum of copies of

A is injective.

Corollary 3.2.12 Let p be an N-prime ideal of R such that R/p is T-
cocritical. Then E.(R/p) is locally noetherian and ) -quasi-injective.

Proof. Let A be a non-zero finitely generated submodule of E.(R/p). Since
R/p is T-cocritical, E,(R/p) is minimal 7-injective. Also E,(R/p) is 7-
cocritical, hence A is 7-cocritical. By Theorem 3.2.9, E.(R/p) = Anngr/p)p.
Then AnngA = Annga = p, for every 0 # a € A.
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If {ai,...,a,} is a set of generators of A, then Ra, ~ R/p are noetherian
R-modules, for every k € {1,...,n} and considering the canonical epimor-
phism

@:@Rak — ZRak =A,
k=1 k=1

it follows that A is noetherian. Therefore E.(R/p) is locally noetherian.
Now let I be a set and denote A; = E,(R/p) for every i € I. Then we
have seen that every A; is minimal 7-injective and locally noetherian. By
Lemma 3.1.2, A; is Aj-injective for every 4,5 € I. Hence P, ; A; is Aj-
injective ([40, p.10]). It follows that &, ; A; is €D, Ai-injective. Therefore
P,c; Ai is quasi-injective, i.e. E (R/p) is ) -quasi-injective. O

Corollary 3.2.13 Let p be an N-prime ideal of R with dimp = 1. Then
for every non-zero finitely generated submodule A of E,,(R/p) and for every

non-zero proper submodule B of A, A/B has a composition series.

Proof. Let A be a non-zero finitely generated submodule of £, (R/p) and let
B be a non-zero proper submodule of A. By Corollary 3.2.12; A is noetherian
and by Corollary 1.8.4, A is 1p-cocritical. Hence A/ B is noetherian and semi-
artinian. Then A/B has a composition series ([82, Chapter II, Proposition
2.1.1]). O

We have seen in Lemma 3.1.2 that every minimal 7-injective module is

uniform. Now we can show that the converse does not hold in general.

Example 3.2.14 Consider the polynomial ring R = K[X3,...,X,,] (m >
2), where K is a field and the prime ideal p = (Xy,..., X,,—1) of R. Then
dimp = 1 and E,,(R/p) is a 7p-torsionfree minimal 7p-injective R-module
by Proposition 1.8.1. But E. (R/p) = Anng/,p by Theorem 3.2.9 and
R is a domain, so that AnngFE, (R/p) = p # 0 = AnngF(R/p). Then
E. (R/p) # E(R/p). Therefore E(R/p) is not minimal 7o-injective, but it is

uniform since R is noetherian.
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The following theorem is a partial converse of Theorem 3.2.9.

Theorem 3.2.15 Let p € Spec(R). If E.(R/p) = Anngg/pp, then

E.(R/p) is minimal T-injective.

Proof. Suppose that E.(R/p) is not minimal 7-injective. Then there exists a
non-zero proper 7-injective submodule A of E(R/p). Let 0 # a € A. Then
Annga = p and

E.(Ra) = E.(R/p) = Anngr/pp -

Thus E;(Ra) is a proper submodule of Anngr/,)p, hence E-(Ra) is a proper
R/p-submodule of Anngg/pp. By Proposition 3.2.8, Anngr/y)p is the injec-
tive hull of R/p considered as an R/p-module. Moreover, both Anngg/y)p
and E,(Ra) are injective indecomposable R/p-modules. Then E.(Ra) is a

direct summand of Anngr/,)p, a contradiction. O

For p € Spec(R) such that R/p is 7-cocritical, we have showed in Theorem
3.2.9 the equality between the 7-injective hull of R/p and the annihilator of p
in E(R/p). In what follows let us see what is the relationship between them

in some other cases.

Theorem 3.2.16 If p € Spec(R) is 7-dense in R, then Annggm,mp C
E-(R/p).

Proof. Let 0 # a € Annggr/pp. Then Annga = p, hence Ra = R/p. Since
Ra is T-torsion, we get Ra C E,(R/p). Hence Anngr/pyp C E-(R/p). O

Theorem 3.2.17 Let p € Spec(R) be such that dimp = n + 1 and R/p is

T, -cocritical. Then

E(R/p) C Er(R/p) C -+ C Er,_ (rjp) C Er,(R/p) = Annpgrpp-

Proof. The inclusions are clear and by Theorem 3.2.9 we have E. (R/p) =
AnDp(r/p)P-
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Suppose now that E, _ (R/p) = E,, (R/p). By Proposition 1.8.1, dimp >
n+ 1 and R/p is 7,—1-torsionfree. By Proposition 1.8.3, E,. ,(R/p) is not
Tn_1-cocritical, hence it is not minimal 7,,_;-injective. Therefore there exists
a non-zero proper 7,_j-injective submodule A of E. | (R/p). Now let 0 #
a € A. Then Ra = R/p. Hence

E;, (Ra) = E;,_(R/p) = E., (R/p).

m

But E, _,(Ra) C E, _,(R/p). This contradicts the fact that E, (R/p) is

minimal 7,-injective. Now the result follows inductively. O

Remark. In the context of Theorem 3.2.17, we have £, (R/p) C E,, (R/p).
Then for every k € {0,...,n — 1}, E,, (R/p) is a 7y-injective module which
is not 7,-injective. This is also an example of a 7;-injective module which is

not injective.

Example 3.2.18 Let R = K[Xj,...,X,,] be the polynomial ring over a
field K (m > 2). Let 0 <n<m—1andlet p=(Xy,...,X;n—n-1). Then
p € Spec(R) and dimp = n + 1. Since R is noetherian, R/p is 7,-cocritical
by Corollary 1.8.4 . Then E, _ (R/p) is a 7,_i-injective module which is not

Tp-injective.

Proposition 3.2.19 Let R be noetherian and let 0 # p € Spec(R) be ,-

closed in R. Then Annggr/p,)p s T,-injective.

Proof. Denote A = Anngg/p. We will show that E(R/p)/A is 7,-
torsionfree. Suppose the contrary. Then there exists a non-zero submod-
ule B of E(R/p)/A such that B € A,. It follows that B = U/V, where
U and V are ideals of R containing an ideal ¢ € Spec(R) with dimg < n.
Then qU C V', hence ¢B = 0. On the other hand, there exists an element
x € E(R/p) \ A such that x + A € B. Now let r € ¢\ p and let s € p such
that sz # 0. Then rx € A, which implies srz = 0. Since multiplication by r
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on E(R/p) is an automorphism [118, p.83], we have rsx # 0, a contradiction.

Hence A is 7,-injective. O

For R noetherian, the following theorem offers a complete picture of the

relationship between E, (R/p) and Anngg/pp, where 0 # p € Spec(R).

Theorem 3.2.20 Let p € Spec(R).

(i) If dimp < n, then Anngg/p C E., (R/p).

(ii) Let R be 7,-noetherian. If dimp = n + 1, then Anngg,pp =
Er, (R/p).

(iii) Let R be noetherian. If dimp > n+2, then Anngg/mp O Er, (R/p).

Proof. (i) By Proposition 1.8.1 and Theorem 3.2.16.

(77) By Corollary 3.1.6 and Theorem 3.2.9.

(iti) By Proposition 3.2.19, Anngr/,p is T,-injective. Since R/p C
Annggr/pp, we have £, (R/p) < Annggr/pp. Since dimp > n+2, E. (R/p)
is not minimal 7,,-injective by Proposition 3.1.5. Now by Theorem 3.2.15, it
follows that £, (R/p) # Anngg/pp-. O

3.3 7-injective submodules of indecompos-

able injective modules

We begin our discussion on 7-injective submodules of indecomposable injec-

tive modules by considering the minimal ones.

Proposition 3.3.1 Let A be an indecomposable injective module over a not
necessarily commutative ring. Then A contains at most one minimal T-

injective submodule.

Proof. Suppose that B and C' are minimal 7-injective submodules of A. Since
B and C' are essential submodules of A, F(B) = E(C) = A. Since B and
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C' are T-injective, it follows that B and C' are 7-closed in A. Then BN C'is
T-closed in A, hence B N C is t-injective. Then BNC = B = C. g

For the rest of this section, the ring R will be assumed to be commutative.
Let us now recall the following lemma.

Lemma 3.3.2 [101, Lemma 2.31 Corollary| Let p,q € Spec(R) be such that
E(R/p) = E(R/q). Then p = q.

Proposition 3.3.3 Let p € Spec(R). Then:

(1) If dimp < n, then E(R/p) contains a unique minimal T,-injective
submodule, namely E,, (R/p).

(1) If dimp > n + 2, then E(R/p) does not contain any minimal T, -

injective module.

Proof. (i) It follows by Propositions 3.3.1 and 3.1.5.

(#7) Suppose that E(R/p) does contain a minimal 7,-injective module D.
By Proposition 1.8.1, R/p is 7,-torsionfree. It follows that D is 7,,-torsionfree.
Then by Theorem 3.1.4, we have D = E, (R/q), where ¢ € Spec(R) and by
Proposition 3.1.5 we have dimq = n 4+ 1. Since F(R/p) is indecomposable,
it follows that F(R/p) = E(D). But E(D) = E(E. (R/q)) = E(R/q),
hence E(R/p) = E(R/q). Then ¢ = p by Lemma 3.3.2. This provides a

contradiction. O

R 0
Example 3.3.4 Consider the ring T = o) where R = K[X,Y] is

Q
the polynomial ring over an algebraically closed field K and @ is the field of

fractions of R. Use the notations from Example 2.4.11.

Since dimR = 2 and 0 € Spec(R), R does not contain minimal 7p-
injective R-submodules by Proposition 3.3.3, so that A has the same property.
Hence A is not minimal 7p-injective.

Clearly, B is a simple T-module and B < D. Then E(B) = D. Since T is
left noetherian, E., (B) = E(B) = D. Moreover, D is minimal 7p-injective.

Also, C' = E(A) is indecomposable injective and not minimal 7p-injective.
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By Proposition 3.3.3, we obtain immediately the following corollary con-
necting the situation when every 7,-injective module is injective with the

dimension of R, result that generalizes an implication from Proposition 2.4.4.

Corollary 3.3.5 If every 7,-injective module is injective, then dim R < n +
1.

We have analyzed in Proposition 3.3.3 whether F(R/p) contains or not a
minimal 7,-injective submodule depending on the dimension of p € Spec(R).
For an N-prime ideal p of R, and thus for a noetherian ring R, we are able

to clarify the case dimp =n + 1 as well.

Corollary 3.3.6 Let p be an N-prime ideal of R with dimp =n + 1. Then

E(R/p) contains a unique minimal T, -injective submodule, namely E, (R/p).

Proof. By Corollary 1.8.4, R/p is 7,-cocritical, hence E, (R/p) is minimal
Tp-injective. Now by Proposition 3.3.1, E, (R/p) is the unique minimal 7,,-
injective submodule of E(R/p). O

Theorem 3.3.7 Let p € Spec(R) be such that dimp > n + 2. Then there
exist T, -injective modules Dy, (k € N*) such that

-~ CDyC---CDyCE,(R]/p)
and Dy, = E, (R/p) for every k > 1.

Proof. By Corollary 3.2.7, E. (R/p) is not injective. By Proposition 3.3.3,
the indecomposable injective module E(R/p) does not contain any minimal
Tp-injective submodule. Now let D be a non-zero proper T,-injective sub-
module of E, (R/p) and let 0 # a € D. Then there exists € R such that
0 # ra € R/p. It is known that the collection of all annihilators of non-
zero elements of F(R/p) has a unique maximal member, namely the ideal p.
Then Anng(ra) = p. But Rra C D, hence Anng(Rra) = p. It follows that
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Rra = R/Anng(ra) = R/p. Put D, = E. (Rra). Then D, C D C E,, (R/p)
and Dy = E, (R/p). Now repeat the argument for D; instead of E. (R/p).

The requested modules Dy, are obtained inductively. U

Every injective submodule of an injective module is a direct summand.
We can show now that there exist 7,,-injective modules with 7,-injective sub-

modules which are not direct summands.

Example 3.3.8 Consider E, (R/p) and the modules Dy from Theorem
3.3.7. Then every non-zero proper 7,-injective submodule of E, (R/p) is not

a direct summand, because E,, (R/p) is uniform as a submodule of E(R/p).

We continue with some results on the existence of 7-injective (but not

necessarily minimal 7-injective) submodules of injective hulls of modules.

Theorem 3.3.9 Let R be a domain and let A be a non-zero proper -
injective submodule of E(R). Then there exists a proper T-injective submodule
of E(R) which strictly contains A.

Proof. Since 0 € Spec(R), by Lemma 1.4.7, E(R) is either 7-torsion or
T-torsionfree. First we will show that E,(R) is 7-torsionfree, but not 7-
cocritical. Suppose that E,(R) is either 7-torsion or 7-cocritical. Then R is
either 7-torsion or 7-cocritical. Hence every non-zero ideal of R is 7-dense.
Then every 7-injective module is injective. Since E(R) is indecomposable,
it follows that A = E(R), a contradiction. Therefore E.(R) is T-torsionfree,
but not 7T-cocritical.

Suppose now that it does not exist any proper 7-injective submodule of
E(R) which strictly contains A. Then every non-zero proper submodule D
of E(R) strictly containing A is not 7-closed in F(R), i.e. E(R)/D is not 7-
torsionfree. Since A is T-injective, F(R)/A is T-torsionfree. Then by Proposi-
tion 1.5.2, E(R)/A is T-cocritical. By Theorem 1.5.12, p = Anng(E(R)/A) €
Spec(R). Assume p = 0. Then E(R)/A is faithful 7-cocritical. By Propo-
sition 2.2.10, E.(E(R)/A) = E(R), hence E(R) is minimal 7-injective, a
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contradiction. Therefore p # 0. Now let d be a non-zero element of p. We
may assume that F(R) is the field of fractions of R. Let § € E(R)\ A. On
the other hand § = d- {5 € A, a contradiction. Therefore there exists a
proper 7T-injective submodule of E(R) which strictly contains A. U

Corollary 3.3.10 Let R be a domain such that E.(R) # E(R). Then there
exists T-injective modules By, (k € N*) such that

E.(R)C B C---CB,C---CE(R).

Recall that we have denoted by .4, the class of modules that generates

the torsion theory 7,.

Corollary 3.3.11 Let R be a domain with dim R > n + 2 such that every
ideal in A, is finitely generated. Then E(R) = J,c; Bi, where (B;)icr is a
totally ordered family of T,-injective modules such that E, (R) C B; C E(R)
for every i € I.

Proof. By Corollary 3.2.7, E. (R) C E(R). Let F be the family of all
Tp-injective modules A such that E, (R) C A C E(R). Clearly, F # 0.
Suppose now that F(R) is not a union of a totally ordered subset of F.
Let (D;)jes be a totally ordered subset of F and denote D = {J;; D;. Let
I €A,andlet f: I — D beahomomorphism. Since [ is finitely generated,
f(I) € Dy, for some k € J. But Dy is 7,-injective and [ is a 7,-dense ideal
of R, hence there exists a homomorphism ¢ : R — Dj, that extends f. Thus
D is 7,-injective. We also have D # FE(R). Hence D € F and D is an
upper bound of (D;);e;. By Zorn’s lemma, F has a maximal element. On
the other hand, by Theorem 3.3.9 F does not have a maximal element, a

contradiction. Now the result follows. O

Theorem 3.3.12 Let R be a domain, let A be a non-zero T-injective module
with AnngA = 0 and let B be a proper essential T-injective submodule of A
with Anng B = s # 0. Then there exist infinitely many T-injective submodules

of A which strictly contain B.
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Proof. Suppose that it does not exist any 7-injective module C' such that
B c C Cc A. Then by Proposition 2.1.11, for every module D such that
B Cc D C A, A/D is not t-torsionfree. Since B is a proper essential 7-
injective submodule of A, it follows that A/B is T-torsionfree. Hence A/B
is T-cocritical. Then by Theorem 1.5.12, p = Anng(A/B) € Spec(R). As-
sume p = 0. Then A/B is faithful 7-cocritical. By Proposition 2.2.10,
E.(A/B) = E(R), hence E(R) is 7-torsionfree minimal 7-injective. Then
R is 7-cocritical, hence every 7-injective module is injective. Then B is a
non-zero proper injective submodule of A, i.e. B is a direct summand of A, a
contradiction. Therefore p # 0. Now let d be a non-zero element of p and let
r be a non-zero element of s. Then dra = 0 for every a € A, a contradiction.

Therefore there exists a T-injective module D; such that B C D, C A. If
AnngD; = 0, there exists a T-injective module D, such that B C Dy C D;.
If AnngD; # 0, there exists a 7-injective module D such that D; C D, C A.

Now the result follows by complete induction. Il

Corollary 3.3.13 Let R be a domain and let 0 # p € Spec(R) be such that
R/p is T-cocritical. Then there exist infinitely many T-injective submodules
of E(R/p) which strictly contain E,(R/p).

Proof.  Since R/p is 7-cocritical, E.(R/p) is 7-torsionfree minimal 7-
injective. Then by Theorem 3.2.9, E.(R/p) = Anngr/,p. We also have
Anng(E.(R/p)) = p and Anng(E(R/p)) = 0, hence E,(R/p) C E(R/p).
The result follows now by Theorem 3.3.12. U

In the sequel we are interested in studying certain particular submodules
of E(R/p), where R is noetherian and 0 # p € Spec(R).
Following [118, p.83], for each positive integer m > 1 denote

Ay = {x € B(R/p) | "z = 0},

NOtethatAlgAgggAmgAWH,lg
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If R is noetherian, then we have

o0

E(R/p) = | Am

[118, p.83]. In this case of a noetherian ring, we will establish several prop-

erties of the submodules A,,.

Proposition 3.3.14 Let R be a noetherian domain and let 0 # p € Spec(R)

be T-dense in R. Then for every m > 1, A,, is not T-injective.

Proof. Since R is noetherian and R/p is 7-torsion, we have E.(R/p) =
E(R/p). Then by Theorem 3.2.2, F(R/p) is minimal 7-injective. On the
other hand, since R is a domain, each A,, is a proper submodule of E(R/p).

Therefore for every m > 1, A,, is not 7-injective. O

We have seen in Proposition 3.2.19 that A; = Anngg/,)p is T,-injective
provided R is noetherian and 0 # p € Spec(R) is 7,-closed in R. More

generally, we have the following result, whose proof is similar to that for A;.

Theorem 3.3.15 Let R be noetherian and let 0 # p € Spec(R) be 1,-closed

in R. Then A,, is T,-injective for every m > 1.

Proof. Let m > 1. We will show that E(R/p)/A,, is T,-torsionfree. Suppose
the contrary. Then there exists a non-zero submodule B of E(R/p)/A,, such
that B € A,. It follows that B = U/V, where U and V are ideals of R
containing an ideal ¢ € Spec(R) with dimg < n. Then qU C V, hence
gB = 0. On the other hand, there exists an element x € E(R/p) \ A,, such
that x + A,, € B. Now let r € ¢\ p and let s € p™ such that sz # 0. Then
re € A,,, which implies srz = 0. Since multiplication by r on E(R/p) is an
automorphism [118, p.83], we have rsx # 0, a contradiction. Hence A,, is

Tn-1injective. U

Corollary 3.3.16 Let R be a noetherian domain and let 0 # p € Spec(R).

Then each A,, is T,-injective if and only if p is 1,-closed in R.



3.4. CHANGE OF RING AND 7-INJECTIVE MODULES 109

Proof. By Proposition 1.8.1, Theorem 3.3.15 and Proposition 3.3.14. Il

Corollary 3.3.17 Let R be a noetherian domain, let 0 # p € Spec(R) be
such that dimp > n+2 and let m > 1 be a positive integer. Then there exist
Tp-injective modules By, (k € N*) such that

ApC+CBCC B C Ay

Proof. Let us show first that A, # A,,+1 for each m. Suppose that there
exists m such that A,, = A,,.1. Then it follows easily that A,,.; = A,, for
every i € N, hence E(R/p) = A,,. Since R is a domain, we have

p™ C AnngA,, = AnngFE(R/p) =0,

a contradiction.

Now let B be a 7,-injective module such that A,, C B C A,,.1. Suppose
that there does not exists a 7,-injective module D such that A,, C D C B.
Then B/A,, is 7,-cocritical. By Proposition 1.8.3, ¢ = Anng(B/A,) €
Spec(R) and dimqg = n+ 1. Now let b € B\ A,,. Then p™b # 0. But
gb € A, hence p"gb = 0, i.e. ¢ € Anng(p™b). Since p™b € E(R/p), by

Lemma 1.5.14 we have g C p, a contradiction. Now the result follows. [l

Remarks. (i) The hypothesis on R to be a domain in Corollary 3.3.17 is
needed for ensuring that A,, C A, for each 7p.

(77) In the context of Corollary 3.3.17, each A,, is a proper submodule
of E(R/p). Since E(R/p) is an indecomposable injective module, for every
m > 1, A, is not injective. Thus E(R/p) is a union of 7,-injective modules

which are not injective.

3.4 Change of ring and 7-injective modules

We have seen in Proposition 3.2.8 that if [ is a two-sided ideal of R and F
is an injective R-module, then Anng/ is an injective R/I-module. A similar

result holds for 7-injective modules as well.
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Theorem 3.4.1 Let I be a non-zero proper two-sided ideal of R and let A
be a T-injective R-module. Then:

(i) Annyul is T-injective as an R/I-module.

(11) If I C AnngA, then A is T-injective as an R/I-module.

Proof. i) Let J/I be a 7-dense left ideal of R/I. Then (R/I)/(J/I) = R/J
is 7-torsion, hence J is a 7-dense left ideal of R. Both J/I and R/I may be
seen as R/I-modules and R-modules as well. Consider the following diagram

with exact rows and commutative square:

0 J R
\
ul ’U\L \
J \\
0 J/T -R/T
P \
fl /’//h \“
Anny/ A

k

where 1, 7, k are inclusion homomorphisms, u, v are natural R-epimorphisms
and f : J/I — Annul is an R/I-homomorphism. Seeing J/I and Ann,l
as R-modules, f is also an R-homomorphism. Since A is a 7-injective R-
module and J is a 7-dense left ideal of R, there exists an R-homomorphism
g : R — A such that gi = kfu. Note that g(s) = kfu(s) = 0 for every
sel CJ.

Now define the R/I-homomorphism

h:R/T — Annal, h(r+1I)=g(r)

for every r € R. If r,s € Rand r+ 1 = s+ I, then r — s € I, hence
g(r—s)=0,1ie. g(r)=g(s). f se€ I and r € R, we have sg(r) = g(sr) =0,
which means that ¢g(r) € Annsl. Therefore h is well-defined.

For every r € J we have

hjir+1)=h(r+1)=g(r)=gi(r) =kfulr)=kf(r+1)=f(r+1).
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Hence hj = f, i.e. Annyl is 7-injective as an R/I-module.
(17) If I C AnngA, then Annsl = A and the result follows by (). O

For the rest of this section, the ring R will be assumed to be commutative.

Corollary 3.4.2 Let R be noetherian and let 0 # p € Spec(R) be such that
dimp >n+2. Then E, (R/p) is T,-injective as an R/p-module.

Proof. By Theorem 3.2.20, E, (R/p) C Anngg/yp and by Lemma 1.5.14,
AnngE, (R/p) = p. Now by Theorem 3.4.1, E, (R/p) is T,-injective as an
R/p-module. O

Quite interestingly, a converse of Theorem 3.4.1 holds in the case of 7,-

injectivity provided [ is an s-pure ideal of R.

A submodule B of a module A is called s-purein Aif 1¢®i : S®B — S®A
is a monomorphism for every simple right module S, where i : B — A is the

inclusion homomorphism [20].

Theorem 3.4.3 Let I be a non-zero proper s-pure ideal of R and A an R-
module such that I C AnngA. Then A is To-injective as an R-module if and

only if A is To-injective as an R/I-module.

Proof. Suppose that A is m-injective as an R-module. Since Annysl = A, by
Theorem 3.4.1, A is 1p-injective as an R/I-module.

Now suppose that A is 7p-injective as an R/I-module. It is known that
I is an s-pure submodule of R if and only if IM = I N M for every maximal
ideal M of R [106, p.170].

Let M be a maximal ideal of R. Let ¢ : M — R be the inclusion homo-
morphism and f : M — A an R-homomorphism.

If r € IM, we have r = > s;t;, where s; € [ and t; € M for every
j€{l,...,n}. Then

fr) = f(z sit;) = Zsjf(tj) —0.
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We distinguish two cases: I C M and I M.
Assume first that I C M. Then IM = I. Consider the following diagram

with exact row and commutative square:

0 M———R
7/ M/T—=R/I
s /g - /h/

where j is the inclusion homomorphism and u, v natural R-epimorphisms.

If r € I = IM, it follows that f(r) = 0. Now f induces an R-
homomorphism ¢ : M/I — A, defined by g(r + I) = f(r) for every
r € M, such that gu = f. But g is an R/I-homomorphism as well, be-
cause Anng(M/I) = AnngA = I. Since A is Tp-injective as an R/I-module,
there exists an R/I-homomorphism h : R/I — A such that hj = g. We have
hvi = hju = gu = f.

Now assume that I & M. Then M + [ = R. If r € R, there exists
m € M such that r + I = m + I. Then we can define an R-homomorphism
q:R— Abyq(r)=f(m). lfre Ryr+I=m+1Iandr+1 =m'+1, where
m,m' € M, then m —m' € INM = IM. It follows that f(m) = f(m’).
Hence ¢ is well-defined. We have qi(s) = f(s) for every s € M, i.e. qi = f.

Therefore A is 1p-injective as an R-module. O

Remarks. (i) The theorem holds for every pure ideal, since every pure ideal
is s-pure.
(7i) Note that the theorem does not hold if we simply replace 7p-injective

modules by injective modules.

Corollary 3.4.4 Let R be a (von Neumann) reqular ring. An R-module A

is To-ingective if and only if A is To-injective as an R/AnngA-module.

Proof. Note that every ideal of R is pure, hence s-pure, and apply Theorem
3.4.3. [
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Corollary 3.4.5 Let I be a non-zero proper idempotent ideal of R and let A
be an R-module such that I C AnngA. Then A is Tg-injective as an R-module

if and only if A is Tg-injective as an R/I-module.

Proof. Let M be a maximal ideal of R.

fICM, wehave I =1?CIM CINMCI. Then IM =1NM.

If I & M, then I + M = R, hence I and M are comaximal ideals. Then
INM=1M.

Therefore I N M = IM for every maximal ideal M, which means that I
is an s-pure ideal of R. Now the result follows by Theorem 3.4.3. O

Corollary 3.4.6 Let 0 # p € Spec(R) be s-pure with dimp > 2. Then:

(i) The submodules of Ay = Anngr/p,p are To-injective as R-modules if
and only if they are To-injective as R/p-modules.

(ii) There exist To-injective R-modules By, (k € N*) such that

E. (R/p)CB C---CB,C---CA.

Proof. (i) By Theorem 3.4.3, noting that every non-zero submodule of A,
has annihilator p.

(i7) Note that R/p is a domain with dimp > 2, hence by Corollary 3.2.7
it follows that E. (R/p) is not injective. By Theorems 3.2.9 and 3.4.3, A; is
the injective hull of R/p as an R/p-module. Now apply Corollary 3.3.10. O

References: S. Crivei [21], [24], [25], [26], [28], [31], [36], T. Izawa [61],
K. Masaike, T. Horigome [74], B. Stenstrém [107], H. Tachikawa [108], J. Xu
118].

Notes on Chapter 3

The terminology of minimal 7-injective module was used by the author,

this notion appearing in the literature either without a special name (in
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most of the cases) or under the name of 7-uniform 7-injective module, like
in the work of J.L. Bueso, P. Jara and B. Torrecillas (1985). K. Masaike
and T. Horigome (1980) showed that the endomorphism ring of a minimal
T-injective module is local. An equivalent condition for the 7-injective hull
of a 7-torsionfree module to coincide with its injective hull is based on the
work of H. Tachikawa (1971) and T. Izawa (1981). The chapter is completed

with the author’s results.



Chapter 4

T-completely decomposable

modules

This chapter develops a study of 7-completely decomposable modules, that is,
direct sums of minimal 7-injective submodules. We give some classical direct
sum decomposition properties and we study when 7-injective modules are
T-completely decomposable. Furthermore, we see the class of 7-completely
decomposable modules as a subclass of the class of 7-complemented modules.
This allows us to establish some further important properties of 7-completely
decomposable modules, especially concerning their direct summands (on a

generalized problem of Matlis) or their extensions.

4.1 Some T-complete decompositions
Let us begin with the definition of the key notion of this chapter.

Definition 4.1.1 A module is called (finitely) T-completely decomposable if

it is a (finite) direct sum of minimal 7-injective submodules.

Example 4.1.2 (1) Taking the improper torsion theory y on R-mod where

R is left noetherian, the minimal y-injective modules are exactly the indecom-

115
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posable injective modules, therefore every injective module is y-completely
decomposable.

(2) M5(Q) is Tp-completely decomposable (see Example 3.1.11).

(3) Consider the polynomial ring R = K|[X,Y], where K is an alge-
braically closed field and let @) be the field of fractions of R. Then M5(Q) is
not 7p-completely decomposable (see Examples 2.4.11 and 3.3.4).

We immediately have the following property.

Lemma 4.1.3 The class of T-completely decomposable modules is closed un-

der direct sums.

Proposition 4.1.4 Let A=
and let B = @jeJ B;j be a T-completely decomposable submodule of A, where

ser Ai be a T-completely decomposable module

each A; and each B; is minimal T-injective. If J is finite or infinite countable,
then there exists a subset K C I such that B = @, Ak

Proof. For every j € J, denote
J(j) ={s € J|B;= B}

I(j)={tel|A =A}.

Let us show that for every j € J, we have |J(j)| < |I(j)|. Let j € J, let
S1,82,...,5, € J(j) be distinct and, for every u € {1,...,n}, let z, be a

non-zero element of B;,. We have

éBsu GBE (Rzx,) = @Rmu )
u=1

Then there exists a monomorphism f : @._, B,, — .-, 4;, for some m
such that @)_, B;, is not contained in any direct sum of a proper subset
of A; ,A; . For every v € {1,...,m}, denote by p;, : A — A;, the

(SR
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canonical projection. For every v € {1,...,m} choose y, € @._, Bs, such
that p;, f(y») # 0 and p;, f(y,) = 0 for every t # v. We have

f(Ry1 ® - ® Rypm) = f(Ry1) - @ f(Rym) € Ay @ --- @ Ay,

hence E. (D)., Ry,) = A;,®---@A,,,. It follows that P! _, By, = P, A,
By Lemma 3.1.2, the endomorphism ring of a minimal 7-injective module
is local, hence by Krull-Remak-Schmidt-Azumaya Theorem, it follows that
n = m and each A;, is isomorphic to some Bg,. Therefore if J(j) is finite,
then |J(j)] < [I(j)|. Also, if J(j) is infinite, it follows that |I(j)| is infinite

and the conclusion follows from the fact that |.J| is infinite countable. U

In what follows we will study when every (7-torsion, 7-torsionfree) 7-

injective module is 7-completely decomposable.

Theorem 4.1.5 The following statements are equivalent:
(i) R has ACC on T-dense left ideals.

(i1) Every T-torsion T-injective module is T-completely decomposable.

Proof. (i) = (4i) Assume (7). Let A be a 7-torsion 7-injective module. Also,
let 0 # 2 € A. Then Rx = R/Ann(z) is clearly 7-torsion and noetherian by
hypothesis. Hence Rx contains a uniform submodule B. It follows that A
has a minimal 7-injective submodule, namely E,(B).

Now let (A4;);es be a maximal independent family of minimal 7-injective
submodules of A. Let us show that @, ; A; JA. If 0 # y € A, then E;(Ry)
has a minimal 7-injective submodule, hence (B, ; A;) N E-(Ry) # 0. But
then (B, ; Aj)NRy # 0 and consequently B, ; A;<JA. Since P ; A; is 7-
injective by Theorem 2.3.6, it is a direct summand of A, hence ®jeJ A=A

(i1) = (1) Assume (i7). Consider a complete family (B;);je; of repre-
sentatives of isomorphism classes of 7-torsion 7-injective uniform modules.
Then clearly each B; is minimal 7-injective. Let A = E, (P icd BJ(.Z)). By hy-

pothesis, we can write A = @, Ax as a direct sum of minimal 7-injective
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I BJ(Z) is isomorphic to a direct

submodules. By Proposition 4.1.4, C' =
summand of A, hence it is T-injective.
Now suppose that there exists a strictly increasing chain I; C I, C ... of
7-dense left ideals of R. Denote I = J; cy. Ix- Then for every k, E.(R/I}) is
a direct sum of 7-torsion minimal 7-injective modules. It follows that every I}
is an annihilator of a subset of € ies Bj- Now choose some elements z1, T, . . .
of @jeJ B, such that for every k we have Iyz, = 0 and I12441 # 0. Define
the homomorphism f : I — C by f(r) = (rayg)g>1. Since [ is 7-dense in R
and C' is T-injective, f extends to a homomorphism g : R — C. But this
contradicts the fact that for every n € N*, there exists an element r such

that rx,, # 0. Thus R has ACC on 7-dense left ideals. OJ

We have seen in Theorem 1.4.14 that R is 7-noetherian if and only if every
T-torsionfree injective module is a direct sum of indecomposable injective
modules. We can give now, for a stable torsion theory 7, a sufficient condition
for 7-torsion injective (or equivalently 7-torsion 7-injective by Proposition

2.1.9) modules to be a direct sum of indecomposable injective modules.

Theorem 4.1.6 Suppose that 7 is stable and R has ACC on T-dense left ide-
als. Then every T-torsion injective module is a direct sum of indecomposable

injective modules.

Proof. Let A be a 7-torsion injective module. By Zorn’s Lemma, A has a
family (A;);e; of indecomposable injective submodules that is maximal with
ser Ai. Then
B is injective by Theorem 2.3.6 and Proposition 2.1.9, hence A = B @& C
for some C' < A. Suppose that C' # 0. If ¢ € C, then Rc has ACC on

T-dense submodules as a homomorphic image of R. Since Rc is 7-torsion,

respect to the property that their sum is direct. Denote B = €P

every submodule of Rc is 7-dense, hence Rc is noetherian. Then it has a
submodule D such that E(D) is indecomposable. Now the sum B + E(D)
is direct, because E(D) C C. This contradicts the maximality of B. Thus
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C = 0 and consequently A = @,.; A; is a direct sum of indecomposable

injective modules. U

Now let us see when every 7-torsionfree 7-injective module is 7-completely

decomposable. We need the following lemma.

Lemma 4.1.7 The following statements are equivalent:
(i) R is T-semisimple.

(i1) Every T-torsionfree T-injective module is T-semisimple.

Proof. (i) = (i1) By Theorem 1.6.9.

(11) = (i) Let A be a module. By Lemma 1.6.7 (i7) and (éi7), we may
assume without loss of generality that A is 7-torsionfree. Let B be a 7-closed
submodule of A. Then E,(B) is 7-closed in the 7-torsionfree 7-injective
module E,(A). By Proposition 1.6.8, there exists a 7-simple submodule C'
of E;(A) such that E.(A) N C = ¢(C). Then C" = BN C is a 7-simple
submodule of B and B N C’" = t(C"). Now by Proposition 1.6.8, A is 7-

semisimple. Finally, by Theorem 1.6.9, R is 7-semisimple. U

Theorem 4.1.8 The following statements are equivalent:

(i) R is T-noetherian and T-semisimple.

(i1) R is T-noetherian and every T-torsionfree T-injective module is injec-
tive.

(i1i) Every T-torsionfree T-injective module is T-completely decomposable.

Proof. (i) = (i1) By Lemma 4.1.7 and Propositions 1.6.8 and 2.2.9.

(11) = (i7i) Let A be a 7-torsionfree T-injective module. Then A is
injective by hypothesis. Since R is 7-noetherian, it follows by Theorem 1.4.14
that A is a direct sum of indecomposable injective modules, say €, ; A;.
Since R is 7-semisimple, each A; is 7-semisimple by Theorem 1.6.9, hence
each A; contains a 7-cocritical submodule C;. But A; is uniform, hence

C; < A; and since A is T-torsionfree, C; is 7-dense in A; by Proposition 1.6.8.
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Now by Proposition 1.5.3 A; is 7-cocritical. It follows that A is 7-completely
decomposable.

(14i) = (i) By hypothesis, every 7-torsionfree 7-injective module is 7-
semisimple. Then by Lemma 4.1.7, R is 7-semisimple. Again by Lemma 4.1.7
and by Proposition 1.6.8, it follows that the lattice of 7-closed submodules of
every T-torsionfree module is complemented. Now by Proposition 1.6.8, every
T-torsionfree 7-injective module is injective. Finally, by Theorem 1.4.14, R

is T-noetherian. O

We will see in a forthcoming result (see Theorem 4.5.4) when every 7-

injective module is 7-completely decomposable.

We continue with an equivalent condition for the 7-injective hull of a

finitely generated module to be a direct sum of uniform modules.

Theorem 4.1.9 Let A be a finitely generated module. The following state-
ments are equivalent:

(i) E-(A) = @;_, A; for some uniform submodules Ay, ..., A, of A.

(ii) There ezist submodules By, ..., By of A such that ﬂ;?:l B; =0 and
for each j, C; = nle,l?éj B, € Bj, A/B;j is uniform and Bj + C; is T-dense
in A.
Proof. (i) = (i) For every i € {1,...,n}, denote C; = AN A, and B; =
ANt A Then B; # 0 and (;_, B; = 0. Also C; # 0 and C; =
ﬂle’l# B, ¢ Bj;. Since A/B; is isomorphic to a submodule of A;, it is
uniform. Furthermore, C; is 7-dense in A;, because

A;j/C5=(A+ A;)JAC E(A)/A.

Then )77, Cj is 7-dense in E,(A), hence it is 7-dense in A. Now since we
have 2?21 C; C Bj + C}, it follows that B; + C; is 7-dense in A.

(11) = (7) Since ﬂ?zl B; = 0, there exists a canonical homomorphism

p:A— @ A/B;. Then Imp < @le A/B; because

Imp N (A/B)) 2 (B; +Cj)/B; # 0.
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Also, B;+C; is T-dense in A, so that Im is 7-dense in @)_, A/B;. Tt follows

that
2

E-(A) = E(Imp) = D E-(4/B))

i=1
and clearly each E;(A/B;) is uniform. O

We will now establish conditions under which the 7-injective hull of a
module, not necessarily finitely generated, is a direct sum of minimal 7-
injective modules. Recall that every minimal 7-injective module is uniform,
but the converse does not hold in general.

We begin with a useful preliminary theorem. Recall that an intersection
Kin---N K, of submodules of a module A is said to be irredundant if

K2KnN -NK_ NKwan---NK,
for every i € {1,...,n}.

Theorem 4.1.10 Let A be a module and let B = By N ---N B, be an ir-
redundant intersection of submodules of A such that E,(A/B;) is a minimal

T-injective module for every i € {1,...,n} Then

E(4/B) = @ E.(4/B)
i=1
and any two such direct sum decompositions are isomorphic.
Proof. Let f: A — @;_, E;(A/B;) be defined by
fla)=(a+ By,...,a+ B,).

Then f is a homomorphism with Kerf = B. Hence f induces a monomor-
phism g : A/B — @, ,E;(A/B;). For each i € {1,...,n}, let ¢ :
E.(A/B;) — @, E;(A/B;) denote the canonical injection. Since the in-

tersection B = B; N --- N B, is irredundant, for every ¢ there exists b; €
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BiN---NB;_1NB;+1N---N B, such that b; ¢ B;. Then g(b;+B) = ¢;(b;+ B;)
is a non-zero element of g(A/B) N ¢;(A/B;). But E.(A/B;) is minimal 7-
injective, hence ¢;(E.(A/B;)) has the same property. Then ¢;(F,.(A/B;)) is
a T-injective hull of g(A/B) N ¢;(A/B;). Hence

@ E.(A/B) EB 4 (E-(A/B))

n

= E.(P(9(A/B) Na(A/By))) = E,(9(A/B))

i=1

But E.(9(A/B) = E,(A/B). It follows that E.(A/B) = @; | E;(A/B;).
Now let B = C; N ---NC,, be another irredundant intersection of sub-
modules of A such that E.(A/C;) is a minimal 7-injective module for every

j€{1,...,m}. We have the isomorphisms

E,(A/B) =~ @ E.(A/B)) @ E.(A/C)).
i=1
Now by Lemma 3.1.2 and by Krull-Remak-Schmidt-Azumaya Theorem, we
have m = n and there exists a permutation o of the set {1,...,n} such that
E.(A/B;) =2 E.(A/Cy)) for every i € {1...,n}. O

Remark. In the context of the previous theorem, since E(A/B;) is indecom-

posable, B; is irreducible for every i € {1,...,n}.

Theorem 4.1.11 Let n be a natural number, let A be a module and B < A.
Then the following statements are equivalent:

(i) E-(A/B) = @,_, Ei, where E; is a minimal T-injective module for
every i € {1,...,n}.

(11) There exists an irredundant intersection B = By N --- N B,, of sub-

modules of A such that E.(A/B;) is a minimal T-injective module for every

ie{l,...,n}.
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Proof. (ii) = (i). This is Theorem 4.1.10.

(i) = (it). Let p: A — A/B and k : A/B — E,;(A/B) be the natural
homomorphism and the inclusion homomorphism respectively. For every
i€{l,...,n}, denote by ¢; : E.(A/B) — E; the canonical projection and by
gi + A — E; the combined homomorphism g; = ¢;kp. Also put B; = Kerg;.
Then B = B;N---N B,. Since E; N (A/B) # 0, it follows that B; # A. We
have A/B; = ¢;(A) C E;, hence E, (A/B;) = E;, because E; is a minimal
T-injective module. Suppose that the intersection B = By N --- N B, is not
irredundant. Then we can refine from it an irredundant intersection with
fewer terms by omission. By Theorem 4.1.10, E.(A/B) is isomorphic to a

direct sum of less than n minimal 7-injective modules, a contradiction. [J

Example 4.1.12 Consider the polynomial ring R = K[Xi,..., X9,
where K is a field and n > 2. Let p = (X1Xo, X1X3). If pp = (Xy)
and py = (X3, X3), then p = p; N ps is an irredundant intersection of the
prime ideals p; and p; of R. We have dimp; = n 4+ 1 and dimp, = n.
Then R/ps is T,-torsion. Since R is noetherian, it follows that R/p; is 7,-
cocritical by Corollary 1.8.4 and E,, (R/ps) = E(R/p2). Now by Corollary
3.1.6, E.,(R/p1) and E,, (R/ps) are minimal 7,-injective. Then by Theorem
4.1.10,
E. (K[Xy,..., X0l /(X1 Xs, X1 X3)) =
> F, (K[X1,...,Xn00]/(X1)) ® BE(K[X, ..., X2/ (X2, X3)) .

But we have the ring isomorphisms K[X,...,X,0]/(X;) &
K[Xa, ..., Xnso] and K[X1, ..., Xoso] /(Xo, X3) = K[X1, X4, .., Xnsa]. By

Theorem 3.2.9, it follows that we have the R-isomorphism
ETn(K[Xla s aXn+2]/(X1X27 X1X3)) =
>~ K(Xo, ..., Xpi2) ® E(K[ Xy, X4, ..., Xnyal),
where K(Xs,...,X,12) is the field of fractions of K[Xs,..., X, ol

Moreover, K(Xa,...,X,42) is 7,-torsionfree minimal 7,-injective and

E(K[Xy, X4, ..., Xni2]) is Tp-torsion minimal 7,-injective.
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4.2 71-complemented 7-injective modules

In this section we consider a subclass of the class of 7-complemented mod-
ules, that will be useful for establishing results on 7-completely decomposable
modules. Recall that a module A is called 7-complemented if every submod-

ule of A is 7-dense in a direct summand of A.

We begin with a very useful characterization of 7-complemented 7-

injective modules.

Proposition 4.2.1 The following statements are equivalent for a T-injective
module A:

(i) A is T-complemented.

(i1) Every T-injective submodule of A is a direct summand.

(i11) Every T-injective submodule of A is closed.

(iv) A has no proper essential T-injective submodule.

Proof. (i) = (ii) Suppose that A is 7-complemented and let B be a 7-
injective submodule of A. Then B is 7-dense in a direct summand D of A,
hence D/B is T-torsion. Since B is 7-injective, it is a direct summand of D
and, consequently, of A.

(71) = (1ii) Clear.

(17i) = (iv) Clear.

(iv) = (1) Suppose that A has no proper essential T-injective submodule
and let B be a submodule of A. If E (B) = A, we are done. Assume
further that E,(B) is a proper submodule of A. Then it is not essential
in A. Let D be a complement of E;(B) in A. Since E.(B)ND = 0,
we have E.(B) N E.(D) = 0, whence D = E, (D). Then E,(B) ® E,;(D) =
E.(B)®D<A. Since E,(B)®D is T-injective, it follows that E,(B)®D = A.
Thus B is 7-dense in the direct summand E,(B) of A. Therefore A is 7-

complemented. O
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In order to show that a 7-injective module is 7-complemented, Proposition

4.2.1 will be frequently used.

Remarks. (i) Note that every minimal 7-injective module is 7-complemented.
(#7) In general, a T-injective submodule of a 7-injective module is not a
direct summand and the notions of 7-injective module and 7-complemented

module are independent, as we may see in the following examples.

Example 4.2.2 Let R be a commutative noetherian domain with dim R > 2
and let p € Spec(R) be such that dimp = 1.

(1) By Corollaries 3.3.6 and 3.3.13, E,,(R/p) is a proper 7y-injective sub-
module of the indecomposable module E(R/p), hence it is not a direct sum-
mand.

(2) Since R/p is my-cocritical, it is To-complemented, but by Theorem
3.2.9 R/p is not mp-injective. On the other hand, F, (R/p) is a proper essen-
tial submodule of E(R/p) by Corollary 3.3.13. Then by Proposition 4.2.1,
E(R/p) is not 1p-complemented.

Every 7-torsionfree 7-complemented module is extending by Lemma 1.7.5.
We will see that every 7-complemented 7-injective module is even quasi-
injective. But first let us mention another subclass of the class of quasi-
injective modules. We have seen in Proposition 2.1.9 that the class of 7-
torsion 7-injective modules is contained in the class of quasi-injective mod-
ules. We will see that the class of 7-complemented 7-injective modules is
placed in between. Indeed, every 7-torsion module is clearly 7-complemented.

On the other hand we have the following lemma.
Lemma 4.2.3 FEvery T-complemented T-injective module is quasi-injective.

Proof. Let A be a 7t-complemented 7-injective module. Also, let B be a
submodule of A, f: B — A a homomorphism and 7 : B — A the inclusion.

Since E,(B)/B is T-torsion and A is T-injective, there exists a homomorphism
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g : E;.(B) — A extending f. Since A is 7-complemented 7-injective, by
Proposition 4.2.1 there exists a submodule D of A such that A = E,(B)@& D.
Ifh=g®1p: A— A, then hi = f. Thus A is quasi-injective. O

Remarks. (i) The class of 7-complemented 7-injective modules does not
coincide with the class of 7-torsion 7-injective modules. For instance, if R
is left seminoetherian, then there exist 7-cocritical 7-injective modules, i.e.
there exist 7-torsionfree minimal 7-injective modules.

(74) The class of 7-complemented 7-injective modules does not coincide
either with the class of quasi-injective modules, as we will show in a forth-

coming example (see Example 4.3.11).

It is well-known that every injective module is a direct summand of any
module which contains it. By Proposition 4.2.1, we immediately have a
similar property for 7-injective submodules of 7-complemented 7-injective

modules.

Lemma 4.2.4 Let A be a T-complemented T-injective module and let B be a
T-injective submodule of A. Then B is a direct summand of any submodule
of A which contains B.

We have seen that every minimal 7-injective module is uniform, but in
general not conversely (see Lemma 3.1.2 and Example 3.2.14). Nevertheless,

we have the following result for 7-complemented 7-injective modules.

Lemma 4.2.5 The following statements are equivalent for a T-
complemented T-injective module A:

(i) A is minimal T-injective.

(ii) A is uniform.

(111) A is non-zero indecomposable.

Proof. (i) = (ii) = (iii) Clear.
(7i1) = (i) Suppose that A is not minimal 7-injective. Then there exists

a non-zero proper submodule B of A such that E.(B) is a proper submodule
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of A. Since A is 7-complemented 7-injective, E.(B) is a non-zero proper

direct summand of A, a contradiction. O

Proposition 4.2.6 Let (A;)icr be a family of T-complemented T-injective

modules. Then E (€D, Ai) is T-complemented.

Proof. We will show that A = E.(6D
submodules. Then the result will follow by Proposition 4.2.1.

.1 Ai) has no proper essential 7-injective

Let D be an essential 7-injective submodule of A and let ¢ € I. Then
DNA; # 0and E(D) = E(A). Since D is 7-injective, it follows that
E(A)/D is t-torsionfree, hence A/D is 7-torsionfree. Then A;/(D N A;)
is T-torsionfree, being isomorphic to the submodule (D + A;)/D of A/D.
This means that D N A; is 7-closed in the 7-injective module A;. Therefore
D N A; is T-injective. Now let 0 # a; € A;. Then there exists r; € R such
that 0 # r;a; € D, hence r;a; € D N A;. Tt follows that DN A; < A;. By
Proposition 4.2.1, DN A; = A;. Then @,., A; <D < A. Hence D=A. O

We have seen in Example 1.7.7 that the class of 7-complemented mod-
ules is not closed under submodules or finite direct sums. But we have the

following proposition for 7-complemented 7-injective modules.

Proposition 4.2.7 The class of T-complemented T-injective modules s
closed under T-injective submodules, direct summands, T-closed submodules

and finite direct sums.

Proof. Let A be a 7-complemented 7-injective module and let B be a sub-
module of A. If B is 7-injective and D is a 7-injective submodule of B,
then D is a direct summand of A and, consequently, a direct summand of B.
Thus B is 7-complemented by Proposition 4.2.1. If B is a direct summand
of A, then B is 7-injective. It also follows that B is 7-complemented. If B is

T-closed in A, then B is 7-injective. Hence B is 7-complemented 7-injective.
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Now let @,.; Ai be a finite direct sum of 7-complemented 7-injective
modules. Then €,
Proposition 4.2.6. U

A; is T-injective, hence @, ; A; is T-complemented by

Remarks. (i) Similarly, it can be proved that the class of T-complemented 7-
injective modules is closed under arbitrary direct sums, provided 7 is noethe-
rian and R has ACC on 7-dense left ideals. In this case, direct sums of
T-injective modules are 7-injective by Theorem 2.3.8.

(71) We have seen that every 7-complemented 7-injective module is quasi-
injective. But the class of 7-complemented 7-injective modules and the class
of quasi-injective modules does not coincide, because the former is closed

under finite direct sums and the latter is not.

Proposition 4.2.8 The class of T-complemented modules is closed under

T-injective hulls.

Proof. Let A be a 7-complemented module. Then by Theorem 1.7.8, A =

B ® C, where B is a 7-torsionfree 7-complemented submodule of A and
C =t(A). It follows that

E,(A) = E.(B) & E,(C).

Then E.(C) is 7-complemented 7-injective. We will show that E,(B) is
r-complemented. Let D be a non-zero 7-injective submodule of E.(B). De-
noting F' = BN D, we have I' < D. Since B is T7-complemented, there exist
two submodules G and H of B such that B =G & H and F' is 7-dense in G.
But G is T-torsionfree, so that F' <G by Lemma 1.7.5. We have

E.(B) = E,(G) & E.(H).

Clearly F N H = 0, hence DN E.(H) = 0. Since F is 7-dense in G and
G is T-dense in E,(G), F is 7-dense in E.(G). Since F' < G, it follows that
E.(F) = E.(G). Then

FeH<LD®E.(H)dE,(F)&E,(H) = E.(B).
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But D & E;(H) is 7-injective. Then we must have E.(B) = D & E.(H),
ie. D is a direct summand of E.(B). Thus E.(B) is 7-complemented by
Proposition 4.2.1. Now apply Proposition 4.2.7. U

Corollary 4.2.9 If (A;)ic; is a family of T-complemented modules, then
E-(D,c; Ai) is T-complemented.

Proof. Clearly we have

whence it follows that

ET(@ Ai) = ET(@ ET(AZ')) .
el el
By Proposition 4.2.8, E.(A;) is T-complemented for every i € I. Now apply
Proposition 4.2.6. U

Corollary 4.2.10 Let A be a T-complemented module and let B be a 7-
injective submodule of A. Then B is a direct summand of A and B is T-

complemented.

Proof. By Proposition 4.2.8, E.(A) is T-complemented. Then by Proposition
4.2.1, B is a direct summand of F, (A), hence B is a direct summand of A.

By Proposition 4.2.7, B is 7-complemented. U

Remark. In general, a 7-injective submodule B of a 7-injective module A is
not 7-closed in A. For instance, let A = B @ C, where B is a 7-injective
module and C' is a non-zero 7-torsion 7-injective module. Then A/B is not

T-torsionfree, i.e. B is not 7-closed in A.

Proposition 4.2.11 Let A be a T-torsionfree T-complemented T-injective

module. Then:
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(i) Any intersection of T-injective submodules of A is T-complemented
T-1njective.
(i) If B and C are T-injective submodules of A, then B + C is T-

complemented T-injective.

Proof. (i) Let (B;)ier be a family of 7-injective submodules of A and let
B = (,¢; Bi- Then B; is 7-closed in A for every i € I by Proposition 2.1.11.
But the class of 7-closed submodules of a module is closed under arbitrary
intersections. Hence B is 7-closed in the 7-injective module A. Therefore
B is 7-injective by Proposition 2.1.11. Now by Proposition 4.2.7, B is 7-
complemented.

(71) Consider the short exact sequence of modules
0—BNC-LBoCc L BrC—0

where the homomorphisms f and g are defined by f(b) = (b, —b) for every
be BNC and g(b,c) = b+ ¢ for every (b,c) € B@® C. The modules B and
C' are T-complemented 7-injective, because A is T7-complemented T-injective.
By Proposition 4.2.7, B @& (' is 7-complemented 7-injective. Since B N C' is
T-injective, f(B N C) is a T-injective submodule of B @ C'. It follows that

BaC=f(BNC)® (B+O).

Therefore B + C' is 7-complemented 7-injective. U

In the sequel we will see that the class of T-complemented 7-injective mod-
ules is not closed under arbitrary extensions, having however some weaker
properties in this sense.

For the rest of this section we will refer to a short exact sequence of
modules

0— AL B2 0c—50

We may assume without loss of generality that A is a submodule of B and

f is the inclusion homomorphism.
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Remark. Let R be left hereditary. Let B be a non-zero 7-injective module and
let A be a proper essential 7-complemented 7-injective submodule of B such
that it does not exist any proper 7-injective submodule of B which strictly
contains A. Then B/A is 7-injective 7-cocritical, hence B/A is minimal 7-
injective, therefore B/A is 7-complemented 7-injective. But since A < B,
B is not 7-complemented. Hence the class of 7-complemented 7-injective

modules is not closed under extensions.

Proposition 4.2.12 Let A be T-injective. If one of the following two con-
ditions holds:

(1) A is not essential in B and C' is minimal T-injective;

(i1) A is closed in B and C' is T-complemented T-injective,

then the above sequence splits.

Proof. We may assume that A is a non-zero proper submodule of B. Since
the class of 7-injective modules is closed under extensions, B is T-injective.
Note that each of the two conditions assumes that A is not essential in B.

Let D be a complement of A in B. Then D # 0, AN D = 0 and
A® D <B. Since D is closed in B and B is T-injective, D is T-injective. We
have g(D) = D # 0, hence g(D) is a non-zero T-injective submodule of C.

Assume that the first condition is satisfied. Since C'is minimal 7-injective,
we have g(D) = C. Then it follows easily that B=A® D = A® C, hence
the sequence splits.

Assume now that the second condition is satisfied. We will also show
that g(D) = C. Suppose the contrary and let ¢ € C'\ g(D). Then there
exists b € B\ (A @ D) such that g(b) = ¢. Then A is a proper submodule
of Rb+ A. Since A is closed, A is maximal with the property AN D = 0.
Hence (Rb+ A) N D # 0. Then there exist r € R, a € A and a non-zero
element d € D such that d = rb+a. Hence 0 # g(d) = g(rb+a) = rg(b), i.e.
0 # rc € g(D). It follows that g(D) < C. Thus g(D) is a proper essential

submodule of the 7-complemented 7-injective module C'. By Proposition
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4.2.1, this is a contradiction. Therefore g(D) = C. As above, we have
B = A® C, hence the sequence splits. O

Corollary 4.2.13 Let A and C be T-complemented T-injective and suppose
that A is not essential in B. If either A is closed in B or C is minimal

T-injective, then B is T-complemented T-injective.

Proof. By Proposition 4.2.7, A@C' is 7-complemented 7-injective. By Propo-
sition 4.2.12, B~ A ® C, hence B is T-complemented 7-injective. U

4.3 T-completely decomposable modules ver-

sus T-complemented modules

Let us show now that the class of 7-completely decomposable modules is a

subclass of the class of 7-complemented modules.

Theorem 4.3.1 FEvery 7-completely  decomposable  module is  T-

complemented.

Proof. Let A be a T-completely decomposable module and let A J.B—0
be an exact sequence of modules with B 7-torsionfree. We will show that
the sequence splits. Then the result will follow by Proposition 1.7.3.

Let A =@,
A. We may suppose that f is a non-zero homomorphism. Denote f; = f

A;, where each A; is a minimal 7-injective submodule of

A;
for every ¢ € I.

Now let i € I. It follows that f;(A;) is T-torsionfree. Since A; is minimal
T-injective, A; is either 7-torsion or 7-torsionfree. If A; is 7-torsion or f; = 0,
then f;(A;) = 0. Suppose now that A; is 7-torsionfree and f; # 0. Then
fi(A;) =2 A;, because A; is 7-cocritical. Let J = {j € I | f(A;) # 0}. Then
B = f(A) = >_,c; f(A;). It follows that there exists a subset K C J such
that B = @, f(Ax) by Proposition 2.2.8. Now let g : B — A be the
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homomorphism defined by g = @, x fo'. Then fg = 1p, ie. the above

sequence splits. O

Corollary 4.3.2 Let A be a T-completely decomposable module and let B be
a T-injective submodule of A. Then B is a direct summand of A and B is

T-complemented.

Proof. Tt follows by Corollary 4.2.10 and Theorem 4.3.1. U

Now recall that every 7-torsionfree 7-complemented module is extending
by Lemma 1.7.5. In order to show a stronger result for 7-torsionfree -

completely decomposable modules we need first two propositions.

Proposition 4.3.3 Let A be a T-torsionfree T-completely decomposable mod-
ule and B < E(A).

(i) If B is minimal T-injective, then B is a direct summand of A.

(i1) If B is T-completely decomposable and E(B) = E(A), then B = A.

Proof. Let A =P
of A.

(7) Suppose that B is minimal 7-injective. Since F(A) is T-torsionfree, B
is T-injective 7T-cocritical. Since A < E(A), we have BN A # 0. Let = be a
non-zero element of BN A. Then there exists a finite subset J C [ such that
Rr C BN (P,.; Ai). But @, ., A; is T-injective. It follows that £ (Rx) C
P, Ai. Since Rx is 7-cocritical, E (Rx) is T-injective 7-cocritical. But
BNE.(Rx) # 0, hence B = E (Rx). Therefore B is a submodule of A. Now
by Corollary 4.3.2, B is a direct summand of A.

.1 Ai, where each A; is a minimal 7-injective submodule

(i) Let B = D, Bj, where each B; is a minimal 7-injective submodule
of B and suppose that F(B) = E(A). Then B is 7-torsionfree. Since each
B; is a minimal 7-injective submodule of EF(A) and each A; is a minimal
T-injective submodule of E(B), it follows that each B, is a submodule of A
and each A; is a submodule of B by (i). Then A = B. O
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Proposition 4.3.4 Let A and B be T-completely decomposable modules with
B t-torsionfree and let f : E(A) — E(B) be a homomorphism. Then f(A) C
B.

Proof. Let A = @
ule of A. We may suppose that f is a non-zero homomorphism. Follow-
ing the proof of Theorem 4.3.1, there exists a subset K C [ such that

f(A) =3k f(Ar), where each Ay, is T-cocritical T-injective, i.e. minimal

ser Ai, where each A; is a minimal 7-injective submod-

T-injective. By Proposition 4.3.3 it follows that each f(Ay) is a submodule
of B. Therefore f(A) C B. O

Corollary 4.3.5 FEvery t-torsionfree T-completely decomposable module is

quasi-injective.

By Theorem 1.7.8, we know that a module is 7-complemented if and
only if it is a direct sum of a 7-torsion module and a 7-torsionfree 7-
complemented module. By Theorem 4.1.5, every 7-torsion 7-injective module
is 7-completely decomposable if and only if R has ACC on 7-dense left ideals.
Therefore over a ring that satisfies ACC for 7-dense left ideals, the problem
of a 7-complete decomposition of a 7-complemented 7-injective module A

reduces to the case when A is T-torsionfree.

Theorem 4.3.6 Let A be a T-torsionfree T-complemented T-injective mod-
ule. Then A = B @& C, where B is the T-injective hull of a T-completely
decomposable module and C' is a T-injective submodule of A that does not

contain any uniform submodule.

Proof. Note that since A is 7-torsionfree, a submodule of A is minimal 7-
injective if and only if it is 7-injective 7-cocritical. If A does not contain any
minimal 7-injective submodule, then B = 0.

Suppose now that A does contain a minimal 7-injective submodule. Let
D =3"..; D;, where (D;);er is the family of all minimal 7-injective submod-

ules of A. Then there exists a subset J of I such that D = ,.; D; by
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Proposition 2.2.8. Then E.(D) is a T-injective submodule of A, hence it is a
direct summand of A. Therefore A = B @ C, where B = E (D) and C'is a
T-injective submodule of A which does not contain any minimal 7-injective,

hence uniform submodule. O

Theorem 4.3.7 Let R be T-noetherian and let A be a module. Then A
is T-complemented T-injective if and only if A = B @& C, where B is 7-
torsion T-injective and C' is the T-injective hull of a T-torsionfree T-completely

decomposable module.

Proof. Suppose that A is 7-complemented 7-injective. By Theorem 1.7.8, we
have A = B @ C, where B = t(A) and C is 7-torsionfree T-complemented
T-injective. Hence B is 7-torsion 7-injective. We may suppose that C' # 0.
The hypothesis on R allow us to write E(C) =
of indecomposable injective modules by Theorem 1.4.14. For every ¢ € I,
denote D; = C'N E;. Then for every i € I, we have 0 # D; < E;, hence

1 i as a direct sum

It follows that €, ., D; < C. By Proposition 4.2.1, C' = E.(,.; D;). Obvi-

ously, @ie ; D; is T-torsionfree. We still have to show that each D; is minimal

iel
T-injective. Let ¢ € I. Then

is 7-torsionfree. Then D; is 7-closed in FE;, hence D; is 7-injective. Now
by Proposition 4.2.7, D; is 7-complemented 7-injective. But D; is uniform,
hence by Lemma 4.2.5, D; is minimal 7-injective.

Conversely, suppose that A = B @ C, where B is 7-torsion 7-injective
and C is the T-injective hull of a 7-torsionfree 7-completely decomposable
module. Then B is 7-complemented 7-injective. Now apply Propositions
4.2.6 and 4.2.7. U
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We have seen in Theorem 1.7.10 a partial result on the structure of 7-
complemented modules. For a 7-complemented 7-injective module we have

the following important theorem.

Theorem 4.3.8 Let R be a ring that has ACC both on T-dense and T-closed
left ideals. Then a module A is T-complemented T-injective if and only if A

15 T-completely decomposable.

Proof. Suppose that A is 7-complemented 7-injective. Then by Theorem
4.3.7, A= B ® C, where B is T-torsion 7-injective and C' is the 7-injective
hull of a 7-torsionfree 7-completely decomposable module. Since R has ACC
on 7-dense left ideals, every 7-torsion 7-injective module has a 7-complete
decomposition by Theorem 4.1.5. Under both hypotheses on R, direct sums
of 7-injective modules are 7-injective by Theorem 2.3.8. Now the result
follows.

For the converse apply Theorem 4.3.1 and again Theorem 2.3.8. ]

Remark. Clearly, Theorem 4.3.8 holds for a left noetherian ring, but there
also exist non-left noetherian rings that satisfy ACC both on 7-dense and

7-closed left ideals.

Example 4.3.9 [91, Example 28] Consider
-2 (@7,
ieN*
where p; is the i-th prime number. Then R is a ring with the following

operations:
(ay....,xp .. )+ (b, iy, )=(a+b,..., 2 +y,...)

(ay...,x5 ... )0 by ysy...) = (ab, ... bx; + ay,;,...).

Let 7 be the hereditary torsion theory generated by all R-modules Z,, for
i € N*. Then R is not left noetherian, but R has ACC both on 7-dense and

T-closed left ideals.
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Let us see an example of determining the structure of T-completely de-

composable modules by using Theorem 4.3.8.

Example 4.3.10 Let R be a commutative noetherian ring with dim R > 1.
Then by Corollary 3.1.6, a module M is minimal 7y-injective if and only if
M = E. (R/p), where p € Spec(R) and dimp € {0, 1}. If p is maximal, then
R/p is 1p-torsion and we have E. (R/p) = E(R/p). If dimp = 1, then R/p is
To-cocritical. Now Theorem 4.3.8 gives the structure of mp-completely decom-
posable (7p-complemented 7p-injective) modules. Thus A is a mg-completely

decomposable if and only if

A (@ E.(R/p)) @ (@ E(S;)),

iel jed

where each p; € Spec(R) and has dimp; = 1 and each S; is a simple module.

Finally, we are now able to show that the class of 7-completely decom-
posable modules is strictly included in the class of 7-complemented modules,

as it may be seen in the following example.

Example 4.3.11 Consider the polynomial ring R = K[Xi,...,X;,] (m >
2), where K is a field and the prime ideal p = (Xi,..., X;_n_1) of R, where
n < m — 1. We have seen in Example 3.2.10 that

K Xpmn, - X KXy, .o, X0/ (X, Xoene1)

is a 7,-cocritical R-module and its 7,-injective hull is R-isomorphic to its field
of fractions K(X,—n,...,Xm). Clearly, K = K[Xy,..., Xn]/(X1, ..., Xn)
is a 7,-torsion R-module. Then by Theorem 1.7.8, it follows that K &
K[ Xpm—n, ..., X is a T,-complemented R-module. Since K[X,,_,, ..., X]
is not 7,-injective, K ® K[X,,_n,..., X,y cannot be 7,-injective. Having
noted that R is noetherian, Theorem 4.3.8 shows that K ® K[X,,_p, ..., X;]

is not a 7,-completely decomposable module.
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4.4 Direct summands of 7-completely decom-

posable modules

Previously established results on 7-completely decomposable modules will
allow us to give partial answers to a question generalizing a problem of Matlis.
Among classical questions to ask on a class of modules is the following one:

If A = @,.; Ai is a direct sum of modules of a class A, is a direct
summand B of A still a direct sum of modules of the class A?

This is apparently an open question if A is either the class of all modules
with local endomorphism rings or the class of all indecomposable injective
modules [42, p.267]|. For the former, the answer is known to be yes if each
A; is countably generated [42, Corollary 2.55]. For the latter, raised by
E. Matlis [75], the answer is known to be yes in several cases, such as: R
left noetherian [75], I finite [101], A injective [43], A quasi-injective [63], B
countably generated [43] or B injective [63].

Now consider the following condition on a module A [40, p.16]:

(Cy) Every submodule isomorphic to a direct summand of A is a direct
summand of A.

Among the modules satisfying (C3) we mention continuous modules (that
can be seen as extending modules with (C5)) and, in particular, quasi-

injective modules.

If the class A consists of all minimal 7-injective modules, that are known
to have local endomorphism rings, we will also give an affirmative answer to
the question mentioned above, provided R has ACC both on 7-dense and
7-closed left ideals, A satisfies the condition (Cy), A is 7-torsionfree, A is

T-injective, [ is finite, B is 7-injective or B is countably generated.

In the sequel, we will use some properties of 7-complemented modules in

order to give partial answers to the following question:

Is a direct summand of a T-completely decomposable module still a T-
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completely decomposable module?

Theorem 4.4.1 Let R be a ring that has ACC both on T-dense and T-closed
left ideals and let A be a T-completely decomposable module. Then any direct

summand of A is T-completely decomposable.

Proof. By Theorem 4.3.8, A is 7-complemented 7-injective. Then every
direct summand B of A is 7-complemented 7-injective. Again by Theorem

4.3.8, it follows that B is 7-completely decomposable. U

The following theorem is the main result of this section.

Theorem 4.4.2 Let A be a T-completely decomposable module that satisfies
the condition (C3). Then any direct summand of A is T-completely decom-

posable.

Proof. Let A =P

of A and let B be a non-zero proper direct summand of A. Since each A; is

uniform and B is not essential in A, there exists k € I such that BN A, =0

se1 Ai, where each A; is a minimal 7-injective submodule

[40, p.38]. By Zorn’s Lemma, there exists a maximal subset J C I such that
BN (@®;c,4;) =0. Let p: A — @, ; Ai the natural projection. Then
the restriction p|p is a monomorphism, whence p(B) = B. Since A satisfies
the condition (Cs), p(B) is a direct summand of A. Hence p(B) is a direct
summand of €,y ; Ai- Suppose that p(B) # €D,y ; Ai- Then there exists
h € I\ J such that p(B) N A, = 0 [40, p.38]. It follows that

Bn (A, e (@4)) =0,
jeJ
which contradicts the maximality of J. Therefore p(B) = €, ng Ai- Then
B is 7-completely decomposable. [l

Corollary 4.4.3 Let A be a T-completely decomposable module. If one of

the following extra conditions on A holds:
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(i) A is continuous;

(i1) A is T-torsionfree;

(111) A is T-injective;

(iv) A is finitely T-completely decomposable,

then any direct summand of A is T-completely decomposable.

Proof. 1f (i) holds, apply Theorem 4.4.2. If (ii) holds, then A is quasi-
injective by Corollary 4.3.5 and the conclusion follows by the result for (7).
If (¢4i) holds, by Theorem 4.3.1, A is 7-complemented and by Lemma 4.2.3,
A is quasi-injective. If (iv) holds, note that the class of 7-injective modules

is closed under finite direct sums and apply the result for (7). O

In the following two results we ask for some conditions on the direct

summands.

Theorem 4.4.4 (i) Every t-torsionfree direct summand of a T-completely
decomposable module is T-completely decomposable.
(i1) Every T-injective direct summand of a T-completely decomposable

module 1s T-completely decomposable.

Proof. Let A =&
a direct summand of A.

(7) Assume that B is 7-torsionfree. Let 0 # b € B. Then E,(Rb) C B and
E_.(RD) is contained in a finite sum of submodules A;. By Proposition 4.1.4,
E.(Rb) is isomorphic to a finite direct sum of submodules A;. Each E.(Rb)

is 7-torsionfree minimal 7-injective, hence 7-cocritical 7-injective. Now by

ser Ai, where each A; is minimal 7-injective, and let B be

Proposition 2.2.8, B =), 5 E-(Rb) is T-completely decomposable.

(77) Assume that B is 7-injective. As for injective modules (see [116]),
there exists J C I such that B = € ieJ A;, so that B is 7-completely decom-
posable. O

For completeness, we also mention the following theorem, whose proof is
similar with the corresponding one given for indecomposable injective mod-

ules. In order to complete the proof, Corollary 4.3.2 is needed.



4.4. DIRECT SUMMANDS 141

Theorem 4.4.5 Let A be a T-completely decomposable module. Then:

(i) If B is a direct summand of A and C' is a finitely generated submodule
of B, then B contains a finitely T-completely decomposable T-injective hull of
C.

(i1) Any countably generated direct summand of A is T-completely decom-

posable.

Proof. Let A = @,_; Ai, where each A; is a minimal 7-injective submodule
of A.

(7) Since C' is finitely generated, there exists a finite subset J C I such
that C C @,c; Aj. Then E-(C) C ;. ; A; and by Corollary 4.3.2, E.(C)

is a direct summand of €,.; A;. But €D, ; A; is finitely 7-completely de-

el

composable. Then by Corollary 4.4.3, E,(C) is finitely 7-completely decom-
posable. Now consider p : A — B the canonical projection. Then p|¢ is a
monomorphism, hence p|g, () is a monomorphism. Hence p(E;(C)) = E.(C)
is a finitely T-completely decomposable T-injective hull of C.

(i7) Let D be a countably generated direct summand of A and let
di,...,d,,... be a countable generating set of D. By (i) for each natu-
ral number n > 1, there exists a finitely 7-completely decomposable module
D,, such that dy,...,d, € D,. By Corollary 4.3.2, each D, is a direct sum-
mand of A, hence each D, is a direct summand of D. But D = J,5; Dy

Denoting Dy = 0, we have

D= @ Dn—i—l/Dn )
n>0
that is, a direct sum of finitely 7-completely decomposable modules. There-

fore D is T-completely decomposable. [l

Remark. If the Gabriel filter associated to 7 consists of all left ideals of R,
then 7-injective modules and minimal 7-injective modules become injective

and indecomposable injective modules respectively. Thus the well-known



142 CHAPTER 4. 7-COMPLETELY DECOMPOSABLE MODULES

results for indecomposable injective modules are obtained as particular cases
of Theorems 4.4.1, 4.4.5 and Corollary 4.4.3.

We have seen in Corollary 4.3.5 that every 7-torsionfree 7-completely de-

composable module is quasi-injective. More generally, we have the following

property.

Proposition 4.4.6 Fvery t-torsionfree direct summand of a T-completely

decomposable module is quasi-injective.

Proof. By Theorem 4.4.4, every t-torsionfree direct summand of a 7-

completely decomposable module is 7-completely decomposable. Then use
Corollary 4.3.5. U

We have seen that a direct summand of a 7-torsionfree 7-completely de-

composable module is 7-completely decomposable. The converse is also true.

Theorem 4.4.7 Let A be a T-torsionfree T-completely decomposable module.
Then a submodule of A is a direct summand if and only if it is T-completely

decomposable.

Proof. The "only if” part follows by Corollary 4.4.3.

Suppose now that B is a 7-completely decomposable submodule of A. By
Theorem 4.3.1 and Proposition 4.2.6, E;(A) is 7-complemented. Since E,(B)
is a 7-injective submodule of E,(A), there exists a non-zero submodule D
of E.(A) such that E,;(A) = E.(B) @ D. By Corollary 4.5.2, D = E.(C),
where C' is a T-completely decomposable submodule of D. Hence E,(A) =
E.(B® (). Since B® C' is T-completely decomposable, by Proposition 4.3.3
it follows that A = B & C. Therefore B is a direct summand of A. g

We will continue this section with a result that generalizes a correspond-
ing one given for indecomposable injective modules. We need the following

lemma.
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Lemma 4.4.8 Let A be a T-completely decomposable module, B be a direct
summand of A and C' be a T-injective submodule of A such that BN C = 0.
Then B & C is a direct summand of A.

Proof. There exists a submodule D of A such that A= B®&D. Letp: A — D
be the canonical projection. Since B N C = 0 we have p(C') = C. Hence
p(C) is a 7-injective submodule of A. By Corollary 4.3.2, p(C) is a direct
summand of A, hence p(C) is a direct summand of D. But B&C = B&p(C).
Therefore B @ C' is a direct summand of A. 0

Let us now recall an auxiliary result.

Lemma 4.4.9 [71, Lemma 2.1] Let X,Y, Z be submodules of a module such
that X @Y = X & Z. Then there exists an isomorphism f : Y — Z such
that

f(B)nC=(XaeB)NnC

for every submodule B of Y and for every submodule C' of Z.

Theorem 4.4.10 Let A be a T-completely decomposable module. Then ev-
ery non-zero direct summand B of A contains a minimal T-injective direct

summand.

Proof. Let P be the family of all finite subsets .J of I such that (B,c; 4;) N
B # 0. Note that P is non-empty, because B is a non-zero submodule of A.
Denote by k the least (finite) cardinal of the elements of P, say k = |K| and
take K = {i1,...,i}. Also write A= B & C.

Suppose first that £ = 1. Since (4;; N B)N(A4;,; NC) =0, A, "B #0
and A;, is uniform, we have A;; N C' = 0. Then by Lemma 4.4.8, it follows
that A;, @ C' is a direct summand of A, say A = A;, ® C @& D. But we also
have A = B®C. Then there exists an isomorphism f : A;, & D — B. Hence
B = f(A, & D)= f(A;) ® f(D). Therefore f(A;,) is a minimal 7-injective

direct summand of B.
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Suppose now that £ > 1. Denote

M:Ail@"‘@A

Tp—1

L= & A

d€I\{i1,vik 1}
Clearly, M N B = 0 by the choice of k. By Lemma 4.4.8, since M is 7-
injective, M @& B is a direct summand of A, say A = M @& B @& N. On the
other hand, we have A = M @ L. By Lemma 4.4.9, it follows that there
exists an isomorphism g : L — B @& N such that

g(A,)NB=MaA;,)NB.

But since
(9(As) N B) N (g(A4;,) NN) =0,
g(Ai )N B = (@Az) NB#0
€K
and g(A;,) is uniform, we have g(A; ) N N = 0. Now repeat the argument
used for k = 1. Then B will contain a minimal 7-injective direct summand
of B isomorphic to g(4;,). O

4.5 Essential extensions of 7-completely de-

composable modules

Now we are able to characterize the 7-injective hull of a 7-completely decom-

posable module.

Theorem 4.5.1 A module A is the T-injective hull of a T-completely de-
composable module if and only if A is T-complemented T-injective and the
T-1njective hull of every non-zero cyclic submodule of A contains a uniform

submodule.
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Proof. Suppose first that A = E (6D

T-injective module. By Proposition 4.2.6, A is 7-complemented. Let C' be

.1 Bi), where each B; is a minimal
a non-zero cyclic submodule of A = E (D,.; B;). Then there exists a non-
zero element x € C' N (P,.; B;). It follows that there exists a finite subset
J C [ such that Rz C @jej B;. But @jg B, is T-complemented 7-injective.
Hence E,(Rz) is a direct summand of the 7-completely decomposable module
&P ies Bj- By Corollary 4.4.3, E.(Rx) is T-completely decomposable, hence
there exists a minimal 7-injective, hence uniform submodule D C E_(Rx) C
C.

Suppose now that A is 7-complemented 7-injective and the 7-injective
hull of every non-zero cyclic submodule of A contains a uniform submodule.
Let B be the family of all minimal 7-injective submodules of A. Since A is
T-injective, there exists a uniform submodule B of A. Then E.(B) is minimal
T-injective by Proposition 4.2.7 and Lemma 4.2.5. Hence E.(B) € B, i.e. B
is non-empty. Then there exists a maximal collection (B;);c; of members of
B whose sum is direct [101, Proposition 1.7].

We will show that ®i€ ; Bi < A. Let C be a non-zero submodule of A.
Suppose that (,.; B;) N C = 0. But A is 7-injective, hence E.(C) C A.
It follows that (,.; Bi;) N E-(C) = 0. As above, E.(C) contains a minimal
T-injective submodule D. Then (,.; B;) ® D C A, which contradicts the
maximality of the family (B;)ic;. Therefore @, ., B; < A. It follows that
E.(B,c; Bi) < A. By Proposition 4.2.1, A = E.(,.,; Bi). O
Corollary 4.5.2 Let A be the T-injective hull of a T-completely decomposable
module. Then any T-injective submodule of A is the T-injective hull of a T-
completely decomposable module.

Proof. Let A = E.(@,.; B;), where each B; is a minimal 7-injective module
and let C be a non-zero 7-injective submodule of A. By Theorem 4.5.1, the 7-
injective hull of every non-zero cyclic submodule of A, hence of C, contains

a uniform submodule. But C is 7-complemented 7-injective. Then again
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by Theorem 4.5.1, C' is the 7-injective hull of a 7-completely decomposable

module. O
In what follows we will deal with the following two problems:

Problem 1. For some particular torsion theories T, characterize the rings
with the property that every T-injective module is an essential extension of a

T-injective T-completely decomposable module.

Problem 2. For some particular classes of rings, characterize the torsion
theories with the property that every T-injective module is an essential exten-

siton of a T-injective T-completely decomposable module.

Concerning Problem 1 we have the following result.

Theorem 4.5.3 Let 7 be a noetherian torsion theory. The following condi-
tions are equivalent:

(i) Every T-injective module is an essential extension of a T-injective -
completely decomposable module.

(i1) R has ACC on T-dense left ideals and R is T-semiartinian.

Proof. (i) = (ii) Let A be a 7-torsion 7-injective module. Then every
T-injective submodule of A is a direct summand. It follows that A has an
essential T-injective submodule B of A, that is 7-completely decomposable.
Since B is 7-dense in A, we have B = A, that is, A is 7-completely decom-
posable. Now by Theorem 4.1.5, R has ACC on 7-dense left ideals.

Since every T-torsionfree minimal 7-injective module is T-cocritical, every
T-injective module has essential 7-socle. Hence every module has an essential
T-socle, that is, R is 7-semiartinian.

(11) = (i) Let A be a 7-injective module. Then t(A) is 7-injective as a
7-closed submodule of A. By Theorem 4.1.5, ¢(A) is 7-completely decompos-
able. We may assume that it is not essential in A. Then let B be a closed
submodule of A such that BNt(A) =0 and B@t(A) < A. It follows that B
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is 7-injective. Then there is a family (B;);e; of minimal 7-injective submod-
ules of B such that Soc.(B) = E,.(,.; B;). Then Soc.(B) < B, because

R is 7-semiartinian. Since 7 is noetherian, it follows by Theorem 2.3.7 that

il

,c; Bi is 7-injective. Then A is an essential extension of the 7-injective
T-completely decomposable module t(A) @ (P,.; Bi). O

As a consequence of Theorem 4.5.3, we can characterize the situation

when every 7-injective module is 7-completely decomposable.

Theorem 4.5.4 The following statements are equivalent:

(i) R is left noetherian, T-semisimple and T is stable.

(ii) R has ACC both on T-dense and T-closed left ideals, R is T-semisimple
and T 18 stable.

(11i) Every T-injective module is T-completely decomposable.

Proof. (i) = (ii) Clear.

(i) = (vit) Let A be a 7-injective module. Since R is T-noetherian, it
follows that 7 is noetherian. Since R is 7-semisimple, R is 7-semiartinian
by Corollary 1.6.10. Hence by Theorem 4.5.3, A is an essential extension of
ser Ai. Denote
J={iel| A isrt-torsion} and K = {i € I | A; is 7-torsionfree}. Then
I'=JUK. Denote C = P,.; Aj and D = P Ax. Then C Jt(A), but C
is also 7-injective and 7-dense in ¢(A), hence C' = ¢(A). By the stability of
7 it follows that (C'@® D)/C < A/C = A/t(A). Since R is T-semisimple, by
Proposition 1.6.8 the lattice C.(R) is complemented. Again by Proposition
1.6.8, (C' @ D)/C is T-dense in A/t(A). But (C' @ D)/C' is also T-injective,
so that we have (C @ D)/C = A/t(A), whence A = C & D. Thus A is

T-completely decomposable.

a T-injective T-completely decomposable module, say B = €

(14i1) = (i) By hypothesis, every injective module A is 7-completely

decomposable, say A = @,_; A;. But then each A; is uniform and injective.

iel
Therefore R is left noetherian. By Theorem 4.1.8, R is 7-semisimple. By

hypothesis, it follows that every indecomposable injective module is minimal
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T-injective, that is, it is either 7-torsion or 7-torsionfree by Lemma 3.1.2.
Now by Proposition 1.2.10, 7 is stable. U

Remark. Note that by Example 4.3.9, there exist rings R that have ACC

both on 7-dense and 7-closed left ideals, without being left noetherian.

Let us now deal with Problem 2. Thus we will determine those torsion
theories on R-Mod, where R is a commutative noetherian ring that is not
a domain, having the property that every 7-injective module is an essential
extension of a 7-complemented 7-injective module or equivalently of a 7-

completely decomposable module (see Theorem 4.3.8).
For the rest of this section we will assume the ring R to be commutative.

Let P be a non-empty set of minimal prime ideals of R. Denote by Ap
the class of all modules isomorphic to factor modules U/V, where U and V/
are ideals of R containing a non-zero prime ideal ¢ ¢ P. Denote by 7p the

hereditary torsion theory generated by Ap.

Proposition 4.5.5 Let R be noetherian, let T be the torsion theory mp de-
fined above and let 0 # p € Spec(R). Then R/p is T-cocritical if and only if

peP.

Proof. Suppose first that R/p is 7-cocritical. Then by Theorem 1.5.12,
p € Spec(R). If p ¢ P, then R/p is 7-torsion by the definition of 7, a
contradiction. Hence p € P.

Suppose now that p € P. Assume that R/p is 7-torsion. Then R/p
contains a non-zero submodule A isomorphic to U/V, where U and V are
ideals of R containing a non-zero prime ideal ¢ ¢ P. Let 0 # a € A. Since
p € Spec(R), Annga = p. Let r € ¢\ p. Then ra = 0, whence r € p, a
contradiction. Therefore R/p is not 7-torsion. Now by Lemma 1.4.7, R/p is
T-torsionfree. Clearly R/p is a noetherian R-module, hence by Proposition

1.5.8 there exists an ideal ¢ of R such that p C ¢ and R/q is T-cocritical. By
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Theorem 1.5.12, ¢ = Anng(R/q) € Spec(R). If ¢ # p, then ¢ ¢ P, hence

R/q is T-torsion, a contradiction. Therefore ¢ = p and R/p is T-cocritical. [

Theorem 4.5.6 Let R be commutative noetherian that is not a domain.
Then the following statements are equivalent:

(i) Every T-injective module is an essential extension of a T-complemented
T-1njective module.

(i) T is the improper torsion theory x or T = Tp for some non-empty set

P of minimal prime ideals of R.

Proof. By the hypotheses and Theorem 4.3.8, 7-completely decomposable
modules and 7-complemented T-injective modules coincide.

(1) = (4i) Suppose that 7 is proper. Then there exists a 7-cocritical
module A by Example 1.5.7. By Theorem 3.1.4, E.(A) = E.(R/p), where
p € Spec(R). Since R is not a domain, p # 0.

We show first that p is a minimal prime ideal. Suppose the contrary. Then
there exists ¢ € Spec(R) such that ¢ C p. Since R/p is T-torsionfree, R/q
is T-torsionfree. Moreover, R/q cannot be T-cocritical, because otherwise
R/p = (R/q)/(p/q) would be 7-torsion. On the other hand, E.(R/q) is
an essential extension of a 7-complemented 7-injective module B. Since
E.(R/q) is uniform, B is uniform. Now by Lemma 4.2.5, B is minimal 7-
injective. Furthermore, B is also 7-torsionfree and, consequently, T-cocritical
T-injective. Since B I E,(R/q), there exists a non-zero element b € BN R/q.
We have AnngB = Anngb = ¢ and R/q is T-cocritical, a contradiction.
Therefore p is minimal.

Denote by P the set of all minimal prime ideals s of R such that E,(R/s)
is T-cocritical. Note that P is non-empty, since p € P.

Let us now show that 7-torsion and 7p-torsion modules coincide.

Let M be a 7-torsion module. By the hypotheses on R, every torsion
theory is stable, hence we have

E(M) = E(M) =@ E(R/p)

i€l
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where each p; ¢ P is a (non-zero) prime ideal of R. Then R/p; € Ap, whence
it follows immediately that M is Tp-torsion. Hence every 7-torsion module
is Tp-torsion.

Now let N € Ap. Then N =2 U/V, where U and V are ideals of R con-
taining a (non-zero) prime ideal ¢’ ¢ P. Suppose that R/q’ is T-torsionfree.
By hypothesis, E,(R/q) is an essential extension of a 7-complemented 7-
injective module C. Repeating the above arguments, it follows that R/¢’
is T-cocritical, which contradicts the choice of ¢’. Then R/q is T-torsion.
Hence R/V and, consequently, N = U/V is 7-torsion. Thus every 7p-torsion
module is 7-torsion. Therefore 7 = 7p.

(11) = (i) Suppose first that 7 = y, i.e. every module is 7-torsion. Then
every module is 7-complemented and the result follows.

Suppose now that 7 = 7p, for some non-empty set P of minimal prime
ideals of R. Let A be a 7-injective module. By the stability of 7 and by
Proposition 2.1.8, we may write A = t(A) & C, where C' is 7-torsionfree
T-injective. Clearly, t(A) is T-complemented 7-injective, hence T-completely
decomposable. By the hypotheses on R, we have E(C) = @,.; E(R/p:),
where each p; is a (non-zero) prime ideal of R. Then E(R/p;) is T-torsionfree,
hence p; € P for every i € I. Now let ¢« € I. By Proposition 4.5.5, R/p; is
T-cocritical, whence E(R/p;) is minimal 7-injective. Thus @, , E-(R/p;) is
T-completely decomposable.

We have C N E,(R/p;) # 0. Then
E-(R/pi) /(€0 E-(R/p:)
is both 7-torsion, because E.(R/p;) is T-cocritical, and 7-torsionfree, because
E-(R/pi)/(CNE(R/p))) = (C+ E-(R/p;))/C € E(C)/C.

Hence E(R/p;) € C and thus €, , E-(R/p;)) 9 C. Now A is an es-

sential extension of a 7T-completely decomposable module, namely t(A) @

(Dics E-(B/pi))- O
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Remark. 'The hypothesis on R not to be a domain is essential in Theo-
rem 4.5.6. Indeed, suppose that R is a domain and consider 7 = 7p for
some non-empty set P of minimal prime ideals of R. Clearly E,(R) is 7-
torsionfree and Anngx = 0 for every 0 # x € E.(R). Suppose that E.(R)
is an essential extension of a 7-completely decomposable (or equivalently 7-
complemented 7-injective) module A. Then, since A is uniform, A has to be
minimal 7-injective, hence 7-cocritical. It follows that AnngkA = p, where
p € P, because R/p is T-cocritical by Proposition 4.5.5. Hence AnngA # 0,
a contradiction. Thus E,(R) is a T-injective module that is not an essential

extension of any T-completely decomposable module.

Corollary 4.5.7 Let R be commutative noetherian that is not a domain.
Consider the set P of all minimal prime ideals of R and put 7 = mp. Then

every T-injective module A is isomorphic to an essential extension of

(D E-(R/p)) & (D E(R/gy).

il jeJ

where each p;, q; € Spec(R). Moreover, each p; € P and each q; ¢ P.

Proof. By Theorem 4.5.6, A is an essential extension of a 7-complemented
T-injective module B. By Theorem 4.3.8, B is T-completely decomposable,
i.e. B is a direct sum of minimal 7-injective modules. By Theorem 3.1.3,
a T-torsion minimal 7T-injective module A is of the form A = E,(B), where
B € Ap and B is uniform. Since R is commutative noetherian, 7 is stable and
thus E.(B) = E(B) by Proposition 2.1.9. Since B is uniform, A = FE(B)
is isomorphic to E(R/p) for some p € Spec(R). By Theorem 3.1.4, a 7-
torsionfree minimal 7-injective module is isomorphic to E,(R/q) for some
q € Spec(R). Therefore every t-injective module A is isomorphic to an

essential extension of

(D E-(R/p)) & (D E(R/)).

iel jeJ
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where each p; and each ¢; € Spec(R). Moreover, each E.(R/p;)) is 7-
cocritical, hence each R/p; is T-cocritical. Then by Proposition 4.5.5 and
by Lemma 1.4.7, each p; € P and each ¢; ¢ P. O

References: J.L. Bueso, P. Jara, B. Torrecillas [15], [16], S. Crivei [33],
[34], K. Masaike, T. Horigome [74], S. Mohamed, B. Miiller, S. Singh [78§],
S. Mohamed, S. Singh [79], P.F. Smith, A.M. Viola-Prioli, J.E. Viola-Prioli
[104], [105], A.M. Viola-Prioli, J.E. Viola-Prioli [114], J. Zelmanowitz [119].

Notes on Chapter 4

The name of 7-completely decomposable module was coined by K. Ma-
saike and T. Horigome (1980), overtaking the terminology of completely de-
composable module, used by C. Faith and E. Walker [43] for a direct sum
of indecomposable injective modules. They characterized the rings for which
every 7-torsion 7-injective module is 7-completely decomposable and first
studied direct summands and extensions of 7-completely decomposable mod-
ules. J.L. Bueso, P. Jara and B. Torrecillas (1985) characterized the rings for
which every 7-torsionfree 7-injective module is 7-completely decomposable
and refined the result of K. Masaike and T. Horigome (1980) on when ev-
ery T-injective module is an essential extension of a 7-injective 7-completely
decomposable module. S. Mohamed and S. Singh (1981) established a de-
composition theorem of the 7-injective hull of a finitely generated module
into a direct sum of uniform submodules. The author’s contribution is the
use of 7-complemented modules in order to give a solution in several cases
to a generalized Matlis’ problem on the 7-complete decomposability of direct
summands of 7-completely decomposable modules, and to determine torsion
theories such that every 7-injective module is an essential extension of a

T-injective 7-completely decomposable module.



Chapter 5
T-quasi-injective modules

T-quasi-injective modules generalize quasi-injective modules in the relative
case of a torsion theory. Several properties similar to the case of quasi-
injective modules can be established, including the existence and uniqueness
up to an isomorphism of the 7-quasi-injective hull. In the final part, we will
use some of their properties to discuss relationships between certain condi-
tions on 7-injectivity and 7-quasi-injectivity for modules in the context of
T-natural classes, that is, classes of modules closed under isomorphic copies,

submodules, direct sums and 7-injective hulls.

5.1 General properties

Definition 5.1.1 A module A is said to be T-quasi-injective if whenever B
is a 7-dense submodule of A, every homomorphism B — A extends to an

endomorphism of A.

Lemma 5.1.2 (i) A module A is T-quasi-injective if and only if
Extr(A/B, A) =0 for every T-dense submodule B of A.
(11) FEvery quasi-injective module and every T-injective module is T-quasi-

mjective.

153
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(7i1) R is T-quasi-injective if and only if it is T-injective.

(1v) Every T-torsion T-quasi-injective module is quasi-injective.

Proof. Immediate. U

Now let us give a characterization of 7-quasi-injective modules similar
to the well-known characterization of quasi-injective modules, that are fully

invariant submodules of their injective hulls.

Theorem 5.1.3 Let A be a module. Then A is T-quasi-injective if and only
if A is a fully invariant submodule of E,(A).

Proof. We may suppose that A # 0. Denote K = Endg(E,(A)).
Assume first that A is 7-quasi-injective and let f € K. Denote g = f|a

and B = g~1(A). Consider the following commutative diagram

0 T L A B (A) —— E,(A)/A
”
E-(A)

where 7, j, k are inclusion homomorphisms and v : B — A is defined by
u(b) = g(b) for every b € B.

We will show that B is a 7-dense submodule of A. The homomorphism
¢ induces a monomorphism w : A/B — E (A)/A, defined by w(a + B) =
g(a) + A for every a € A. Then A/B is 7-torsion, because E,(A)/A is
T-torsion. Hence B is a 7-dense submodule of A.

Since A is T-quasi-injective, there exists v € Endg(A) such that vi =
u. By the t-injectivity of E,(A), there exists h € K such that hj = kv.
Thus h(A) € A. Assume (h — f)(A) # 0. Then (h — f)(A)NA # 0
and there exist x,y € A, y # 0 such that y = (h — f)(z). It follows that
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(h— f)(z) = v(z) — f(x) =y, hence f(x) = v(x) —y € A. Then z € B
and y = v(z) — f(z) = 0, contradiction. Therefore (h — f)(A) = 0, i.e.
f(A) = h(A) C A. Hence A is a fully invariant submodule of E.(A).
Suppose now that A is a fully invariant submodule of E.(A). Let B
be a 7-dense submodule of A and let ¢ : B — A be a homomorphism. The
module E.(A)/B is T-torsion because E,(A)/A and A/B are T-torsion. Then
g extends to h € K because E,(A) is 7-injective. Since h(A) C A, g extends

to an endomorphism of A. Therefore A is T-quasi-injective. O

The proof of the following corollary is immediate by Theorem 5.1.3. It

might be also obtained as a particular case of a forthcoming theorem.

Corollary 5.1.4 If every T-injective module is injective, then every T-quasi-

injective module is quasi-injective.

Another relationship between 7-injective and 7-quasi-injective modules

can be given.

Proposition 5.1.5 The following statements are equivalent:
(i) Every module is T-injective.

(11) Every module is T-quasi-injective.

Proof. (i) = (ii) Obvious.

(11) = (i) Let A be a module. Also, let I be a 7-dense left ideal of R and
let f: I — A bea homomorphism. Then A ® [ is 7-dense in A & R. Thus
the homomorphism g : A® I — A® R defined by g(a,r) = (f(r),0) can be
extended to a homomorphism h : A @ R — A by the T-quasi-injectivity of
A. Now h|g extends f and thus A is 7-injective. O

By Theorem 5.1.3 and in a similar way as for quasi-injective modules, one

may prove immediately the following proposition.

Proposition 5.1.6 The class of T-quasi-injective modules is closed under

direct summands and finite direct sums of copies.
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Proposition 5.1.7 Let 0 — A J. B 4 ¢ — 0 be a short evact
sequence of modules and let h : B — A & D be a monomorphism, where
D is a module. If (hf)(A) is a T-dense submodule of A® D and A® D is

T-quasi-injective, then the above sequence splits.

Proof. Let a: A — A@® D be the canonical injection. Since (A& D)/(hf)(A)
is 7-torsion and A ® D is 7-quasi-injective, there exists an endomorphism
0: A D — AP D such that Ohf = «a. Let p: A® D — A be the canonical
projection and define v : B — A by v = pfh. Then clearly vf = 14, hence

the above sequence splits. Il

Corollary 5.1.8 Let f : A — B be a monomorphism of modules. If B is
T-torsion and A & B is T-quasi-injective, then A & B is T-injective if and

only if B is T-injective.

Proof. The "only if” part is obvious. For the ”if” part, in the Proposition
5.1.7, let h : B — A @ B be the canonical injection. Since B is 7-torsion,
A and B/f(A) are 7-torsion. Hence (A ® B)/(hf)(A) = (A® B)/f(A) is
T-torsion. By Proposition 5.1.7, f(A) is a direct summand of B, hence A is

T-injective. Therefore A & B is 7-injective. U

Proposition 5.1.9 A module A is T-injective if and only if A ® E (A) is

T-quasi-injective.

Proof. The ”only if” part is obvious. Suppose now that A® F,(A) is T-quasi-
injective. Also assume that A is not 7-injective. Consider the exact sequence

of modules:
0—= A—"> E(A) —> E-(A)JA—=0 (1)

where i is the inclusion homomorphism and p is the natural homomorphism.
Let oy : A — A® E.(A) be the canonical injection, f: A — A @ A defined
by f(a) = (0,a) for every a € A, j = 14®i: A A — Ad E.(A) and
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oc:A®A— A E.(A) defined by o(ay,as) = (ag,a1). Now consider the

following diagram:

A—L s Ae A—2 As E.(A)
o
A@ B, (A)

Since A@ A is 7-dense in E,(A® A) = E,(A) @ E.(A), it follows that A® A
is 7-dense in A ® E,(A). But A @ E.(A) is T-quasi-injective, hence there
exists a homomorphism v : A® E.(A) — A® E(A) such that vj = 0. Then
vjB =00 = ;. Let ay : E.(A) — A® E.(A) be the canonical injection and
let m: A® E,(A) — A be the canonical projection. Note that agi = j3. Now
take 6 = myas. Then we have §i = myasi = 7yj3 = wa; = 14, hence the
sequence (1) splits. But this contradicts the fact that A < E_(A). Therefore

A is T-injective. O

Lemma 5.1.10 Let A be a T-quasi-injective module. If (E;(A))Y) is 7-

injective, then AD s T-quasi-injective for every set I.

Proof. 1t is known that if B is a fully invariant submodule of a module A,
then BY) is a fully invariant submodule of AY for every set I. Now apply
Theorem 5.1.3. U

We have seen that every quasi-injective module is 7-quasi-injective. The

converse does not hold, as the following example shows.

Example 5.1.11 Let R be a unique factorization domain such that every
maximal ideal of R is not principal. Then by Proposition 2.4.8 we know that
R is a non-injective Tp-injective R-module. Hence R is 7p-quasi-injective.
Since R is quasi-injective if and only if R is injective, it follows that R is not

quasi-injective.

In what follows let us discuss some further properties on 7-quasi-

injectivity for some particular torsion theories, namely 7,,.
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Clearly, if R is left 7-cocritical, then every 7-quasi-injective module is
quasi-injective. For the torsion theories 7, we will see a couple of cases when

quasi-injectivity and 7,-quasi-injectivity are the same.

Proposition 5.1.12 Let R be commutative. Then every 7,-quasi-injective
module is quasi-injective provided R has one of the following properties:

(1) R is semiartinian.

(i1) R is a noetherian domain with dim R < n + 1.

Proof. If (i) holds, clearly every 7,-injective module is injective.
If (i) holds, then by Proposition 2.4.4, every 7,-injective module is injec-

tive. Now the result follows again by Corollary 5.1.4. U

We will end this section with a few results on quasi-injective modules
with respect to the Dickson torsion theory.

In the sequel, starting with a 7p-quasi-injective module that is not 7p-
injective, we will construct some other such modules. We need here the

Loewy series of a module (see Example 2.5.2).

Proposition 5.1.13 Let A be a Tp-quasi-injective module which is not Tp-
injective and denote M = E,_ (A). Consider the Loewy series of M /A

0 = So(M/A) C S1(M/A) C -+ C Sa(M[A) C Sayr(M/A) C
where, for each ordinal o > 0,
St (M/A)/Sa(M/A) = Soc(M/A)/S4(M/A))
and if a is a limit ordinal, then

Sa(M/A) = ] Ss(M/A).

<8<«

For every ordinal a > 0, let M, < M be such that

Sa(M/A) = M, /A.
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Then every non-zero proper submodule M, of M is Tp-quasi-injective, but

not Tp-injective.

Proof. Let @ > 1 be an ordinal such that M, is a proper submodule of
M and let f € Endg(M). Since A is 7p-quasi-injective, f(A) C A by
Theorem 5.1.3. Then f induces an endomorphism f* € Endg(M/A). Since
M,/A = S,(M/A) is fully invariant [40, 3.11, p.25], f*(M./A) C M,/A,
therefore f(M,) C M,, i.e. M, is Tp-quasi-injective. On the other hand,
M, is a proper submodule of E. (A) = M, hence M, is not 7p-injective. O]

Proposition 5.1.14 Let S be a simple module which is not Tp-injective and
denote M = E.(S). Consider the Loewy series of M

0=So(M) C Si(M) C -+ CSa(M) C Sana(M) C...

where, for each ordinal o > 0,
Sat1(M)/Sa(M) = Soc(M/Sa(M))
and if a 1s a limit ordinal, then

Sa(M) = | Sa(M).
0<fB<«
Then every non-zero proper submodule S, (M) of M is quasi-injective,

but not Tp-injective.

Proof. Let a > 1 be an ordinal such that S,(M) is a proper submodule
of M. Then S,(M) is a fully invariant submodule of M [40, 3.11, p.25],
therefore 7p-quasi-injective by Theorem 5.1.3. Also S, (M) is semiartinian
as a submodule of the semiartinian module M. It follows that S,(M) is
quasi-injective. Since M = FE,_(S) is minimal 7p-injective, S, (M) is not

Tp-injective. U
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5.2 T7-quasi-injective hulls

In this section, we introduce the notion of 7-quasi-injective hull and show

that every module has such a hull, unique up to an isomorphism.

Definition 5.2.1 A 7-quasi-injective hull of a module A is defined as a 7-
quasi-injective module () such that A is a 7-dense essential submodule of @
and is denoted by Q,(A).

Throughout this section, for every module A, we denote S =
Endg(E;(A)) and

SA={) fila)|fi€S,a€Aie{l,...,n},neN}.
=1

Proposition 5.2.2 Let A be a module. Then:
(i) A is T-quasi-injective if and only if SA = A.
(ii) SA is a T-quasi-injective module.
(111) SA is the intersection of all T-quasi-injective submodules of E.(A)

containing A.

Proof. (i) Suppose first that A is T-quasi-injective. Then by Theorem 5.1.3,
for every f € S, we have f(A) C A. Then SA C A and consequently
SA=A.

Conversely, suppose that SA = A. Let B a 7-dense submodule of A
and let f : B — A a homomorphism. Then f extends to a homomorphism
g:A— E.(A)and g extends to an endomorphism h € S. Since SA = A, we
have h(A) C A, so that h|4 : A — A extends f. Thus A is 7-quasi-injective.

(7i) We have A C SA C E,(A), hence A is a T-dense essential submodule
of SA. Then E;(A) = E.(SA), whence

S = Endgp(E, (A)) = Endp(E,(SA)).

It follows that S(SA) = SA. By (i), SA is T-quasi-injective.
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(77i) Denote by B the set of all 7-quasi-injective submodules of E.(A)
containing A. For every B € B, we have A C B C E.(A), whence it follows
that A is a 7-dense essential submodule of B. But then E,(A) = E.(B), so
that S = Endgr(E,(A)) = Endg(E,(B)).

Since A C (\gep B, we have SA C S((\zs B). Let f(b) be a generator of
S(Npeg B) for some f € Sand b € (g B. Then f(b) € SB for every B €
B. But B is T-quasi-injective, hence by (i) it follows that f(b) € (g5 B-
Thus S((ges B) € (peg B, whence SA C (5 B.

For the converse inclusion, we know by (i7) that SA is T-quasi-injective,
hence SA € B. It follows that ()55 B C SA. O

Lemma 5.2.3 Let A be a module, i : A — Q-(A) be the inclusion homomor-
phism and f : A — @Q be a T-quasi-injective T-dense extension of A. Then

there exists a monomorphism o : Q- (A) — Q such that ai = f.

Proof. There exists a monomorphism ¢ : E,(A) — E(Q) such that

f(A) € 9(Q-(4)) C g(E-(4)) C E-(Q).

Denote T' = Endg(g(E;(A))) and U = Endg(E-(Q)). Since g(E.(A)) is a 7-
injective hull of the T-quasi-injective module (@, (A)), we have T'g(Q,(A)) C
9(Q-(A)) (see the notation preceding Proposition 5.2.2). Since f(A) C Q C
E.(Q), f(A) is 7-dense in Q). But f(A) C g(E.(A)), whence it follows that
g(E,(A)) is 7-dense in E,(Q). Hence every homomorphism h € T extends
to a homomorphism A" € U. Since UQ C @, we have h(Q) = W (Q) C Q,
whence TQ) C (). Then

T(9(Q-(A))NQ) S g(Q-(A)NQ.
Since
f(A) € 9(Q-(A)) N Q < g(E-(A)),
g(E;(A)) is a 7-injective hull of g(Q,(A)) N @, so that g(Q-(A)) N Q is 7-

quasi-injective. It follows that

AC g (9(@Q:(4)NQ) C E(A)
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and g7 (g(Q,(A)) is T-quasi-injective. Also,

9 ' (9(Q-(A)NQ) C g ' (9(Q-(A))) = Q-(A),

whence we have
9 (9(Q-(A) N Q) = Q-(A4),

because @) (A) is the least T-quasi-injective submodule of E,(A) containing
A. Then ¢g(Q-(A)) NQ = g(Q-(A)), that is, g(Q-(A)) C Q. It follows that
a = glg, ) : Q-(A) — Q is a monomorphism such that ai = f. OJ

We have seen that every module has a 7-injective hull, unique up to an

isomorphism. Now we give the following result.

Theorem 5.2.4 FEvery module A has a T-quasi-injective hull unique up to
an isomorphism.
Moreover, Q,(A) = SA, that is, the intersection of all T-quasi-injective

submodules of E.(A) containing A.

Proof. We have A C SA C E,(A), hence A is a 7-dense essential submodule
of SA. By Proposition 5.2.2, SA is 7-quasi-injective. Hence S'A is a 7-quasi-
injective hull of A.

Denote Q,(A) = SA and let i : A — Q,(A) be the inclusion homomor-
phism. Suppose that there exists another 7-quasi-injective hull of A, say Q.
Let 7 : A — @ be the inclusion homomorphism. Then by Lemma 5.2.3, there
exist homomorphisms « : Q,(A) — @ and (5 : Q — Q,(A) such that ai = j
and (85 = 1.

We claim that fa = 1¢,(4). If not, since A < Q-(A), we have

(Ba—1g, a)(Q-(A) NAF#0,

say it contains an element a # 0. Since fa = Bai = 3j = i and Sa — 1, (4
is injective, it follows that a = 0, a contradiction. Hence Sa = 1g ().

Similarly, a3 = 1g. Therefore @;(A) is unique up to an isomorphism. U



5.3. DIRECT SUMS AND 7-NATURAL CLASSES OF MODULES 163

5.3 Direct sums and 7-natural classes of mod-

ules

Throughout this section, we will denote by IC a class of modules closed under
isomorphic copies.

Recall that a class K is called a natural class if IC is closed under submod-
ules, direct sums and injective hulls. For instance, R-Mod, any hereditary
torsionfree class of modules and any stable hereditary torsion class of modules
are examples of natural classes.

In the context of torsion theories, we introduce the following definition.

Definition 5.3.1 The class K is called a T-natural class if K is closed under

submodules, direct sums and T-injective hulls.

Remark. Clearly, every natural class is a 7-natural class. If 7 is the improper

torsion theory, then every 7-natural class becomes a natural class.

Example 5.3.2 (1) R-Mod, any hereditary torsionfree class of modules and
any stable hereditary torsion class of modules are natural classes, hence 7-
natural classes.

(2) Let o be a hereditary torsion theory such that 7 < o. Then the class
of all o-torsion modules is a 7-natural class, that is a natural class if and

only if o is stable.

Following [90], denote by Hy(R) the set of left ideals I of R such that
R/I € K and consider the following generalized conditions, where K is a

natural class or a 7-natural class:

C1(K): Every direct sum of 7-injective modules in K is 7-injective.

Co(K): Every ascending chain I; C I, C ... of 7-dense left ideals of R
such that each [;;1/1; € K terminates.

C5(K): Hx(R) has ACC on 7-dense left ideals.
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C4(K): Every direct sum of 7-quasi-injective modules in K is 7-quasi-
injective.
. Every 7-quasi-injective module in K is T-injective.
: Every 7-injective module in K is ) -7-injective.

)
)
C7(K): Every T-quasi-injective module in K is > -7-quasi-injective.
): Every 7-injective module in K is injective.

)

: Every T-quasi-injective module in K is quasi-injective.

They have been extensively studied when 7 is the improper torsion theory
on R-Mod and K is the o-torsionfree class for a hereditary torsion theory o
or the o-torsion class for a stable hereditary torsion theory o.

We intend to establish here certain connections between the above con-

ditions for an arbitrary hereditary torsion theory 7.
Theorem 5.3.3 Let K be a T-natural class. Then C2(K) = C3(K).

Proof. Let I; C I, C ... an ascending chain of 7-dense left ideals in Hy(R).
Then each R/I; € K. Since K is closed under 7-dense submodules, each
I;+1/1; € K. By hypothesis, the above chain terminates, hence C3(KC) holds.
O

Theorem 5.3.4 Let K be a T-natural class. Then C;(K) = C2(K).

Proof. Suppose that I; C I, C ... is a strictly ascending chain of 7-dense
left ideals of R such that each I;,,/1; € K. By hypothesis,

E=@E. /L) ek
J

is T-injective. Let [ = (J;Z, I}, let p; : Ijy1 — Ijy1/1; be the natural homo-
morphism and let o; : [j11/1; — E;(I;+1/1;) be the inclusion homomorphism

for each j. By the 7-injectivity of E;(1;41/1;), it follows that there exists a
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homomorphism §; : R — E;(I;41/1;) that extends «;p,;. Hence we have the

following commutative diagram
0 I R

I
pjl \ﬁj
\i
L/l —5 Ex (L /1)

We may define
frI—=E, [f(x)=(5));.
It is easy to check that f is a well-defined homomorphism. Since [ is 7-dense

and E is T-injective, there exists a homomorphism g that extends f. Since
9(1) C€ 375, Ex(Ij41/1;) for some n, we have

F1) = 4(1) € 3" Bollpa /1),

It follows that 3;(x) = 0 for every « € I and every j > n. If z € I,,11, then
0 = Bu1(x) = x + I,,. Hence I,,41 = I, a contradiction. Therefore Co(K)
holds. U

Remark. Note that in the proof of Theorem 5.3.4 each 1;;4/1; is T-torsion.
Hence we used only the fact that every direct sum of 7-torsion 7-injective

modules in K is T-injective.

Proposition 5.3.5 Let K be a T-natural class. Suppose that every ascending
chain I C Iy C ... of left ideals of R whose union is T-dense in R such that
each 1;11/1; € K terminates. Then Cy(KC) holds.

Proof. Tt is sufficient to prove that every countable direct sum of 7-injective
modules in K is T-injective (see Theorem 2.3.8). Let A = ;2 A; be a direct
sum of 7-injective modules in IC. Also let I be a 7-dense left ideal of R and

f I — A ahomomorphism. For each n denote

In:{xel\f(:c)e@fli}.
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Clearly I; C I, C ... and U;O:1 I; = I. We may consider the monomorphism

n+1

o i1 /1, — (@ Ai)/(@ A)

defined by
an(z + 1) = flz) + (@ A).

Since the codomain of «,, is isomorphic to A, € K, we have [,,.1/I, €
K. By hypothesis, there exists k such that Ij,; = I for each j. Then
f(I) C @le A;. Since @le A; is T-injective, there exists a homomorphism
g:R— @le A; C A that extends f. Then A is 7-injective and thus C;(K)
holds. U

Corollary 5.3.6 Let K be a 7-natural class. If T is noetherian, then

Proof. The direct implication follows by Theorem 5.3.4. For the converse,
let Iy € I, C ... be an ascending chain of left ideals of R whose union
is 7-dense in R such that each I;;;/I; € K. Since 7 is noetherian, there
exists k such that [ is 7-dense in R. Then I, is 7-dense in R for every
n > k. By Cy(K), the chain I C I;,; C ... terminates, hence the chain
L CLL,C...[; Clp C... terminates. Now use Proposition 5.3.5. O

Theorem 5.3.7 Let K be a T-natural class. Then C4(K) < C1(K)+C5(K).

Proof. Suppose first that C4(K) holds. Let A € K be a 7-quasi-injective
module. Since K is a 7-natural class, E,(A) € K. By hypothesis, A& E.(A)
is 7-quasi-injective. Now by Proposition 5.1.9, A is 7-injective. Therefore
Cs5(K) holds. Now let A = P

in K. Hence each A; is a 7-quasi-injective module in . By C4(K), A is a

ser Ai, where each A; is a 7-injective module

T-quasi-injective module in IC. Since C5(K) holds as well, A is a 7-injective
module in K. Therefore C;(K) holds.



5.3. DIRECT SUMS AND 7-NATURAL CLASSES OF MODULES 167

Conversely, suppose that C;(K) and C5(KC) hold. Let A =

each A; is a T-quasi-injective module in K. By C5(K), each A; is a 7-injective

ser Ai, where
module in K. Now by C;(K), A is 7-injective module in C, hence A is 7-
quasi-injective module in IC. Therefore C4(K) holds. O

We need the following lemma.

Lemma 5.3.8 [90, Lemma 7] Let A be a module and ay,...,a, € A. If all
homomorphic images of Ray, ..., Ra, which are submodules of E(A) have
finite uniform dimension, then E(Ray) + --- 4+ E(Ra,) has finite uniform

dimension.

Recall the following definition, motivated by torsion theory context. For
a natural class I, a non-zero module A is said to be K-cocritical if A € K
and for every non-zero proper submodule B of A, A/B ¢ K.

For instance, if K is a torsionfree class for a hereditary torsion theory 7,
then a K-cocritical module means a 7-cocritical module. We will consider

the same definition for a 7-natural class as well.

The next two lemmas on K-cocritical modules will be useful.

Lemma 5.3.9 Let A be a K-cocritical module. Then A is uniform and
any non-zero homomorphism from a submodule of A to a module of K is
a monomorphism. In particular, the class of KC-cocritical modules is closed

under non-zero submodules.

Proof. Let B be a non-zero submodule of A. There exists a submodule C' of
A maximal with respect to the property BN C = 0. Then C' is closed in A
and B is isomorphic to an essential submodule of A/C. But B € K, so that
A/C € K. Since A is K-cocritical, we have C' = 0. Thus B < A and A is
uniform. Now let f : B — D be a non-zero homomorphism for some D € K.
Suppose that f is not a monomorphism. Then we have 0 # B/Kerf € K. Let
B'/Kerf be a submodule of A/Kerf maximal with respect to the property
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(B/Kerf) N (B'/Kerf) = 0. Then B/Kerf is isomorphic to an essential
submodule of A/B’, whence A/B’ € K. But then we have B’ =0 or B’ = A,

a contradiction. O

Denote by Hy(R) the set of left ideals I of R such that R/I € K and
consider the following condition:
() For every ascending chain Iy C I, C ... of left ideals in Hi(R),

1 € He(R).
j=1

Lemma 5.3.10 If the condition (x) holds, then every cyclic module in K

has a K-cocritical homomorphic image.

Proof. Let A € K be a cyclic module. We may assume that A = R/I for
some I € Hi(R). Let A be the set of all left ideals J of R that contain I and
0# R/J € K. By Zorn’s Lemma, A has a maximal element, say J. Then
R/J is a K-cocritical homomorphic image of A. 0

Now we are able to prove the following theorem, connecting the conditions
Cs5(K) and C3(K), but only for a natural class K.

Theorem 5.3.11 Let K be a natural class. If the condition (x) holds, then
C5(K) = C5(K).

Proof. Suppose that I; C I, C ... is a strictly ascending chain of 7-dense
left ideals of Hx(R). Then I;1,/I; € K for each j. By Lemma 5.3.10, there
exist U; and V44 such that I; C U; C Vjiy C I;4; and Vjy1/U; is a cyclic
K-cocritical module. Since [; is 7-dense in R, V4, is 7-dense in R, so that
Vi41/U; is 7-dense in R/U;. Now let oy : Vii1/U; — E.(Vj41/U;) be the
inclusion homomorphism for each j. By the 7-injectivity of E.(Vj41/U;),
there exists a homomorphism g; : R/U; — E;(V;41/U;) that extends «.
Denote I = {J;2, I; and A = @, E-(Vj11/Uj). Since E (Vjy1/U;) € K, we
have A € K. We may define

fol—=A, f(z)= (8 +U;));-
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It is easy to check that f is a well-defined homomorphism. Let

Q= Q-(A) = {h(A)| h € Endp(E-(A))}

be the T-quasi-injective hull of A (see Theorem 5.2.4). We have E,(A) € K,
hence @) € K. It follows that () is T-injective. Since I is 7-dense in R, there
exists a homomorphism g : R — @ such that the following diagram, where

the unspecified homomorphisms are inclusions, is commutative:
0——I1—R
|
fi g
v
A—=Q
Then we have

g(1) €N = (B (Vi /U;))

k=1 j=1
for some ¢ and s. It follows that for every x € I, f(z) = g(z) = g(1)x € N,
hence f(I) € N. By Lemma 5.3.9, hy(Vj11/U;) = Vii1/U; is a cyclic K-

cocritical module. Moreover,
Er(hy,(Vi1/Uj)) = hi(Er (Vi1 /Uj)) -

By Lemma 5.3.8 and again by Lemma 5.3.9, N has finite uniform dimension.
On the other hand, E.(f(V2)) = E.(V,/U;) and

f(Va) C f(V5) C E-(Va/Ur) @ V3/Us.
Since f(V3) € E,(f(V3)) and all Vj,1/U; are uniform, it follows that
E(f(V3)) = E-(Va/Ur) @ E.(V3/Us).
Similarly, for each n we have
E (f(Va)) = B-(Va/Uh) @ Er(V3/Us) ® -+ @ Er (Vi1 /Un) -

But this means that E(f(I)) and thus f(/) has infinite uniform dimension,
a contradiction. Therefore C3(/C) holds. 0
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Proposition 5.3.12 Let o be a hereditary torsion theory such that 7 < o
and let IC be the class of all o-torsion modules. Then C5(K) = C5(K).

Proof. Clearly, K is a 7-natural class. Note also that the set of all o-dense
left ideals of R is exactly Hi(R), hence the condition (x) holds for K. Let A
be a K-cocritical module. If there exists a non-zero submodule B of A, then
A/B is o-torsion, i.e. A/B € K, a contradiction. Hence A is simple and thus
uniform. Therefore every IC-cocritical module is simple.

We mention that Lemma 5.3.10 holds for this particular 7-natural class
IC, the proofs being identical. Note also that since every 7-torsion module is
o-torsion, the set of 7-dense left ideals of R is contained in H(R). Now the

result follows by the same arguments as in the proof of Theorem 5.3.11. [
Theorem 5.3.13 Let K be a T-natural class. Then Cz(K) = C3(K).

Proof. Let I; C I, C ... be an ascending chain of 7-dense left ideals of R such
that each I; € Hi(R). Denote Ej = E.(R/l;) and A = @2, E;. Clearly
each E; € K, hence A € K. Let p; : A — E; be the canonical projection
and consider the following diagram where the unspecified homomorphisms

are inclusions:

Since A is 7-dense in E (A) and E; is T-injective, there exists a homomor-
phism ¢; : E,(A) — Ej; that extends p;. It follows immediately that E; is a
direct summand of E.(A), hence E,(A) = E; @ C; for some submodule C;
of E.(A). We have

(E(A)) = @(Ej ®Cj) = (@ E;) @ (@ Cj)=Aa (@ Cj).
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By C/(K), (E;(A))™ is 7-quasi-injective, hence A is 7-quasi-injective. De-

note [ = Uj‘;l I;. For each j define a homomorphism
fji]/[1—>Ej, f]($+]1):l‘+1]
for every x € I. Then we may define a homomorphism

[l — A, flr+ L) = (fi(x));

for every x € I. It is easy to check that f is well-defined. Consider the

following diagram, where the unspecified homomorphisms are inclusions:

04>I/[1HR/114>E1

Note that I is 7-dense in R, hence I/l is 7-dense in R/I;. Clearly, R/I;
is 7-dense in E;. Further, A/F; = @;‘;Q E; is T-torsion because each E; =
E.(R/I;) is T-torsion. Hence Ej is 7-dense in A. It follows that I/I; is 7-
dense in A. Now since A is 7-quasi-injective, there exists a homomorphism
g : A — A that extends f. It follows that f(I/I) C g(R/I;) C A. Since
a=g(l+1;) € A, we have

F(I/I) € Ra C éEj

J=1

for some n. Then I,,.1 = I,,;2 = --- = I. Therefore C3(K) holds. O
Theorem 5.3.14 Let K be a T-natural class. Then Cs(K) = C7(K).

Proof. Let A be a 7T-quasi-injective module in K and let I be a set. By
hypothesis (E,(A))Y) is 7-injective. Then by Lemma 5.1.10, AY) is 7-quasi-
injective. Hence A is Y -7-quasi-injective. Therefore C;(K) holds. O

Theorem 5.3.15 Let K be a natural class. Then Cs(K) <= Cy(K).
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Proof. Suppose that Cs(K) holds and let A be a T-quasi-injective module
in . By Theorem 5.1.3, A is a fully invariant submodule of E.(A). But
E.(A) = E(A). Hence A is a fully invariant submodule of E(A), i.e. A is
quasi-injective. Therefore Cy(K) holds.

Suppose that Co(KC) holds and let A be a 7-injective module in K. Then A
is a 7-quasi-injective module in K, hence A is quasi-injective by hypothesis.
Clearly, A® E(A) € K. Moreover, A @ E(A) is T-injective, hence T-quasi-
injective. By hypothesis, A @ F(A) is quasi-injective. Now by Proposition
5.1.9 applied for the improper torsion theory, it follows that A is injective.
Therefore Cs(K) holds. O

References: P. Bland [12], [13], S. Crivei [29], [35], J. Dauns [37], S.S. Page,
Y. Zhou [90], [91].

Notes on Chapter 5

The literature on T-quasi-injective modules seems to be rather poor, some
basic properties appearing only in the work of P. Bland (1990, 1998). He
showed that every module has a 7-quasi-injective hull, which is unique up
to an isomorphism. Some other properties of quasi-injective modules have
torsion-theoretic versions. The concept of natural class of modules originates
into the work of J. Dauns on saturated classes from the early 1990’s. After-
wards, this was developed by S.S. Page and Y. Zhou (1994), who coined the
terminology of natural class. Later on, Y. Zhou continued their study, es-
tablishing results especially on the lattice of natural classes (1996). We have
used here the more general context of a 7-natural class in the study of some

injectivity-related properties.
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