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EDITURA FUNDAŢIEI PENTRU STUDII EUROPENE

Cluj–Napoca 2004



“The European Idea” Foundation

EFES Publishing House

Str. Emanuel de Martone Nr. 1

400090 Cluj–Napoca, Romania

c© 2004 Septimiu Crivei

ISBN 973-8254-51-5



To my family





Contents

Preface vii

Notations x

1 Introduction to torsion theories 1

1.1 Radicals and Gabriel filters . . . . . . . . . . . . . . . . . . . 1

1.2 Torsion theories. Basic facts . . . . . . . . . . . . . . . . . . . 4

1.3 Some bijective correspondences . . . . . . . . . . . . . . . . . 14

1.4 τ -dense and τ -closed submodules . . . . . . . . . . . . . . . . 20

1.5 τ -cocritical modules and a generalization . . . . . . . . . . . . 28

1.6 τ -simple and τ -semisimple modules . . . . . . . . . . . . . . . 37

1.7 τ -complemented modules . . . . . . . . . . . . . . . . . . . . . 42

1.8 The torsion theories τn . . . . . . . . . . . . . . . . . . . . . . 46

2 τ-injective modules 51

2.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 τ -injective hulls . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 The class of τ -injective modules . . . . . . . . . . . . . . . . . 67

2.4 τ -injectivity versus injectivity . . . . . . . . . . . . . . . . . . 77

2.5 A relative injectivity . . . . . . . . . . . . . . . . . . . . . . . 82

3 Minimal τ-injective modules 87

3.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . 87

v



vi CONTENTS

3.2 τ -injective hulls versus injective hulls . . . . . . . . . . . . . . 94

3.3 τ -injective submodules of indecomposable injective modules . 102

3.4 Change of ring and τ -injective modules . . . . . . . . . . . . . 109

4 τ-completely decomposable modules 115

4.1 Some τ -complete decompositions . . . . . . . . . . . . . . . . 115

4.2 τ -complemented τ -injective modules . . . . . . . . . . . . . . . 124

4.3 τ -completely decomposable modules versus τ -complemented

modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4 Direct summands of τ -completely decomposable modules . . . 138

4.5 Essential extensions of τ -completely decomposable modules . . 144

5 τ-quasi-injective modules 153

5.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 τ -quasi-injective hulls . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Direct sums and τ -natural classes of modules . . . . . . . . . . 163

Bibliography 173

Index 185



Preface

Torsion theories for abelian categories have been introduced in the 1960’s

with the motivation and purpose of unifying a common behavior observed

for abelian groups, modules over certain domains or even modules in general.

Thus the work of P. Gabriel [45], J.-M. Maranda [73] or S.E. Dickson [39]

set the base for an extensive study of torsion theories for the years to come,

with significant contributions by many authors. Of special interest are the

hereditary torsion theories on the category R-Mod of left R-modules, in the

view of the bijective correspondence between them and the localized subcat-

egories of R-Mod, fact that shows the importance of the former in the study

of the category R-Mod. The concept of non-commutative localization and

Gabriel-Popescu Theorem have become important tools and a lot of results

have gained a more natural interpretation in this torsion-theoretic language.

Injectivity and its various generalizations have been intensively studied

throughout the years, especially in the attempt to characterize rings by their

modules. Many types of injectivity may be characterized by a Baer-type

criterion by restricting to a subset of left ideals of the ring, but valuable

information may be obtained if that subset of left ideals is a Gabriel filter.

The bijection between the Gabriel filters on R-Mod and the hereditary torsion

theories on R-Mod suggests that the latter ones are a good framework for

studying injectivity, not only as an instrument for localization, but also for its

intrinsic properties. Thus results on torsion-theoretic injectivity have been

present in the general study of torsion theories right from the beginning.

vii



viii PREFACE

The purpose of the present work is to offer a presentation of injectivity

relative to a hereditary torsion theory τ , with emphasis on the concepts of

minimal τ -injective module and τ -completely decomposable module. The

core of the book is the author’s Ph.D. thesis on this topic.

Since the intention was to make it self-contained from the torsion-

theoretic point of view, the book begins with a general chapter on torsion

theories. This gathers in the first part some of the most important properties

of arbitrary torsion theories and afterwards continues with results in the set-

ting of hereditary torsion theories, insisting on the topics needed in the next

stages. Chapter 2 introduces injectivity relative to a hereditary torsion the-

ory τ and the notion of relative injective hull of a module and studies the class

of τ -injective modules as well as connections between this relative injectivity

and the usual injectivity. The next two chapters contain the main results of

the book. Thus Chapter 3 deals with minimal τ -injective modules, that are

the torsion-theoretic analogues of indecomposable injective modules. They

are used to get information on (the structure of) τ -injective hulls of mod-

ules. Throughout Chapter 4 we study some direct sum decompositions and

especially τ -completely decomposable modules, that is, direct sums of mini-

mal τ -injective modules. Thus we obtain some (τ -complete) decompositions

for τ -injective hulls of modules and we deal with a few important problems

on direct summands or essential extensions of τ -completely decomposable

modules. The final chapter presents results on τ -quasi-injective modules and

generalizes connections between conditions involving τ(-quasi)-injectivity to

the setting of a τ -natural class.

The prerequisites of the reader should be some general Ring and Module

Theory and basic Homological Algebra, completed with just few notions from

Theory of Categories, since I have tried to avoid a categorical language. The

book have been thought as an introduction to the concept of torsion-theoretic

injectivity, but hopefully some parts may also be useful for the interested

researcher.
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Notations

Throughout the text we denote by R an associative ring with non-zero iden-

tity and by τ a hereditary torsion theory on the category R-Mod of left

R-modules, except for the first chapter, where τ may be an arbitrary tor-

sion theory on R-Mod. All modules are left unital R-modules, unless stated

otherwise. By a homomorphism we understand an R-homomorphism. By a

class of modules we mean a non-empty class of modules.

ACC the ascending chain condition

AnnRB the left annihilator in R of a subset B 6= ∅ of a module A,

that is, AnnRB = {r ∈ R | rb = 0 ,∀b ∈ B}
AnnAI the left annihilator in a module A of a subset I 6= ∅ of R,

that is, AnnAI = {a ∈ A | ra = 0 ,∀r ∈ I}
(A : a) the set {r ∈ R | ra ∈ A} for some element a of a module A

Spec(R) the set of all prime ideals of a commutative ring R

dim R the (Krull) dimension of a commutative ring R

dim p the dimension of p ∈ Spec(R), that is, dim R/p

B ≤ A B is a submodule of a module A

B � A B is an essential submodule of a module A

Soc(A) the socle of a module A

Rad(A) the (Jacobson) radical of a module A

EndR(A) the set of endomorphisms of a module A

HomR the Hom functor

xi



xii NOTATIONS

Exti
R the i-th Ext functor

TorR
i the i-th Tor functor

E(A) the injective hull of a module A

t(A) the (unique) maximal τ -torsion submodule of a module A

Eτ (A) the τ -injective hull of a module A

Qτ (A) the τ -quasi-injective hull of a module A

N, Z, Q the sets of natural numbers, integers, rational numbers

N∗, Z∗, Q∗ the sets N \ {0}, Z \ {0}, Q \ {0}



Chapter 1

Introduction to torsion theories

This introductory chapter briefly presents the context of torsion theories,

with emphasis on the definitions and properties that will be used later on.

For additional information on torsion theories the reader is referred to

[49] and [107].

1.1 Radicals and Gabriel filters

In this first section we introduce some important notions that are closely

connected to torsion theories.

Definition 1.1.1 A functor r : R-Mod → R-Mod is called a preradical on

R-Mod if:

(i) For every module A, r(A) ≤ A.

(ii) For every homomorphism f : A → B, r(f) : r(A) → r(B) is the

restriction of f to r(A).

Throughout the text all the preradicals will be on R-Mod.

Definition 1.1.2 Let r1 and r2 be preradicals. Define two functors r1 ◦ r2,

(r1 : r2) : R-Mod → R-Mod, on objects by

(r1 ◦ r2)(A) = r1(r2(A)) ,

1



2 CHAPTER 1. INTRODUCTION TO TORSION THEORIES

(r1 : r2)(A)/r1(A) = r2(A/r1(A)) ,

for every module A, and on morphisms by taking the corresponding restric-

tions.

Definition 1.1.3 A preradical r is called:

(i) idempotent if r ◦ r = r.

(ii) radical if (r : r) = r.

The following two results are immediate.

Lemma 1.1.4 Let r1 and r2 be preradicals. Then r1 ◦ r2 and (r1 : r2) are

preradicals.

Lemma 1.1.5 Let r be a preradical. Then:

(i) r is idempotent if and only if r(r(A)) = r(A) for every module A.

(ii) r is a radical if and only if r(A/r(A)) = 0 for every module A.

(iii) r is left exact if and only if r(A) = A∩ r(B) for every module A and

every submodule B of A.

(iv) If r is a left exact functor, then r is idempotent.

Proposition 1.1.6 Let r be a radical, A be a module and B ≤ r(A). Then

r(A/B) = r(A)/B.

Proof. Denote by p : A → A/B and q : A/B → A/r(A) the natural ho-

momorphisms. Then we have p(r(A)) ⊆ r(A/B) and since B ⊆ r(A), we

deduce that r(A)/B ⊆ r(A/B). We also have q(r(A/B)) ⊆ r(A/r(A)) = 0,

whence r(A/B) ⊆ r(A)/B. Therefore r(A/B) = r(A)/B. �

Corollary 1.1.7 Let r1 and r2 be radicals. Then r1 ◦ r2 is a radical.

Proof. Let A be a module. We have (r1 ◦ r2)(A) ⊆ r2(A), whence we get

r2(A/(r1 ◦ r2)(A)) = r2(A)/(r1 ◦ r2)(A) by Proposition 1.1.6. Then

(r1 ◦ r2)(A/(r1 ◦ r2)(A)) = r1(r2(A)/(r1(r2(A))) = 0 .

Thus r1 ◦ r2 is a radical. �
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Example 1.1.8 (1) For every abelian group G, let t(G) be the set of el-

ements of G having finite order (torsion elements). Then t is a left exact

radical on Z-Mod.

(2) For every abelian group G, let d(G) be the sum of its divisible sub-

groups. Then d is an idempotent radical on Z-Mod, that in general is not

left exact.

(3) For every module A, let Soc(A) be its socle, that is, the sum of its

simple submodules. Then Soc is a left exact preradical, that in general is not

a radical.

(4) For every module A, let Rad(A) be its Jacobson radical, that is, the

intersection of its maximal submodules. Then Rad is a preradical, that in

general is not idempotent or a radical.

(5) For every module A, let Z(A) be the singular submodule of A, that

is,

Z(A) = {x ∈ A | AnnRx � R} ,

and let Z2(A) be such that

Z2(A)/Z(A) = Z(A/Z(A)) ,

that is,

Z2(A) = {x ∈ A | x + Z(A) ∈ Z(A/Z(A))} .

Then Z is a left exact preradical, that in general is not a radical. But Z2 is

a left exact radical, called the singular radical of A.

(6) A left ideal I of R is called dense if the right annihilator of (I : r) in

R is zero for every r ∈ R. For every module A, let

D(A) = {x ∈ A | AnnRx dense in R} .

Then D is a left exact radical.

Definition 1.1.9 A non-empty set F (R) of left ideals of R is called a Gabriel

filter if:
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(i) For every I ∈ F (R) and every a ∈ R, we have (I : a) ∈ F (R).

(ii) For every J ∈ F (R) and every left ideal I of R with (I : a) ∈ F (R)

for each a ∈ J , we have I ∈ F (R).

Remark. If F (R) is a Gabriel filter, then R ∈ F (R). Indeed, if I ∈ F (R)

and a ∈ I, then R = (I : a) ∈ F (R).

Proposition 1.1.10 Let F (R) be a Gabriel filter. Then:

(i) For every J ∈ F (R) and every left ideal I of R with J ⊆ I, we have

I ∈ F (R).

(ii) For every I, J ∈ F (R), we have I ∩ J ∈ F (R).

(iii) For every I, J ∈ F (R), we have IJ ∈ F (R).

Proof. (i) Let J ∈ F (R) and let I be a left ideal of R such that J ⊆ I. Then

for every a ∈ J , we have (I : a) = R ∈ F (R). Thus I ∈ F (R) by Definition

1.1.9 (ii).

(ii) Let I, J ∈ F (R). Then for every a ∈ J , ((I∩J) : a) = (J : a) ∈ F (R).

Thus I ∩ J ∈ F (R) by Definition 1.1.9 (ii).

(iii) Let I, J ∈ F (R). Then for every a ∈ J , we have J ⊆ (IJ : a).

Hence by (i) we have (IJ : a) ∈ F (R) for every a ∈ J . Then IJ ∈ F (R) by

Definition 1.1.9 (ii). �

Remark. A non-empty set of left ideals of R satisfying the first two conditions

of Proposition 1.1.10 is called a filter.

1.2 Torsion theories. Basic facts

Definition 1.2.1 A pair τ = (T ,F) of classes of modules is called a torsion

theory if the following conditions hold:

(i) HomR(A, B) = 0 for every A ∈ T and every B ∈ F .

(ii) If HomR(A, B) = 0 for every B ∈ F , then A ∈ T .

(iii) If HomR(A, B) = 0 for every A ∈ T , then B ∈ F .
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The class T is called the torsion class of τ and its members are called

τ -torsion modules, whereas the class F is called the torsionfree class of τ

and its members are called τ -torsionfree modules.

Every class of modules A generates and cogenerates a torsion theory in

the following sense.

Definition 1.2.2 Let A be a class of modules.

Consider the classes of modules

F1 = {Y | HomR(A, Y ) = 0 ,∀A ∈ A} ,

T1 = {X | HomR(X, F ) = 0 ,∀F ∈ F1} .

Then (T1,F1) is a torsion theory called the torsion theory generated by A.

Consider the classes of modules

T2 = {X | HomR(X, A) = 0 ,∀A ∈ A} ,

F2 = {Y | HomR(T, Y ) = 0 ,∀T ∈ T2} .

Then (T2,F2) is a torsion theory called the torsion theory cogenerated by A.

Remark. T1 is the least torsion class containing A, whereas F2 is the least

torsionfree class containing A.

Let us set now some terminology on a class of modules.

Definition 1.2.3 A class A of modules is called:

(i) closed under submodules if for every A ∈ A and every submodule B

of A, we have B ∈ A.

(ii) closed under homomorphic images (respectively isomorphic copies) if

for every A ∈ A and every epimorphism (respectively isomorphism) f : A →
B, we have B ∈ A.

(iii) closed under direct sums (respectively direct products) if
⊕

i∈I Ai ∈ A
(respectively

∏
i∈I Ai ∈ A) for every Ai ∈ A (i ∈ I).
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(iv) closed under extensions if for every exact sequence 0 → A′ → A →
A′′ → 0 with A′, A′′ ∈ A, we have A ∈ A.

(v) closed under injective hulls if for every A ∈ A, we have E(A) ∈ A.

Remark. We have mentioned only the most used closedness conditions, the

others being defined in a similar way.

Lemma 1.2.4 Let τ = (T ,F) be a torsion theory. Then T is closed under

direct sums and F is closed under direct products.

Proof. Clear by the properties HomR(
⊕

i∈I Ai, B) ∼=
∏

i∈I HomR(Ai, B) and

HomR(A,
∏

i∈I Bi) ∼=
∏

i∈I HomR(A, Bi). �

Theorem 1.2.5 Let T and F be classes of modules. Then τ = (T ,F) is a

torsion theory if and only if

(i) T ∩ F = {0}.
(ii) T is closed under homomorphic images.

(iii) F is closed under submodules.

(iv) Every module A has a submodule t(A) such that t(A) ∈ T and

A/t(A) ∈ F .

Proof. Assume first that τ = (T ,F) is a torsion theory. Then clearly (i)

holds. Let 0 → A′ → A → A′′ → 0 be an exact sequence. Then it induces for

every F ∈ F the exact sequence 0 → HomR(A′′, F ) → HomR(A, F ). Hence if

A ∈ T , then A′′ ∈ T . The initial exact sequence also induces for every T ∈ T
the exact sequence 0 → HomR(T,A′) → HomR(T, A). Hence if A ∈ F , then

A′ ∈ F .

For the fourth condition, take a module A and let

t(A) =
∑
i∈I

{Bi ≤ A | Bi ∈ T } .

Since there exists a natural epimorphism f :
⊕

i∈I Bi → t(A), it follows by

(ii) and Lemma 1.2.4 that t(A) ∈ T .
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Suppose that A/t(A) /∈ F . Then there exists T ∈ T and a non-zero

homomorphism g : T → A/t(A). It follows that B/t(A) = Img ∈ T . On the

other hand, the exact sequence

0 → t(A) → B → B/t(A) → 0

induces for every F ∈ F the exact sequence

HomR(B/t(A), F ) → HomR(B, F ) → HomR(t(A), F )

Since the first and the last term are zero, we have HomR(B, F ) = 0 for every

F ∈ F , whence B ∈ T . But then B = t(A) and g = 0, a contradiction.

Conversely, suppose now that the classes T and F satisfy the conditions

(i)-(iv).

First, let T ∈ T and suppose that there exists F ∈ F such that

HomR(T, F ) 6= 0, say 0 6= f : T → F . Then Imf ∈ T by (ii) and Imf ∈ F
by (iii), whence Imf = 0 by (i), a contradiction.

Secondly, let A be a module such that HomR(A, F ) = 0 for every F ∈ F .

By (iv) there exists a submodule t(A) of A such that t(A) ∈ T and A/t(A) ∈
F . Then HomR(A, A/t(A)) = 0, whence A = t(A) ∈ T .

Thus the pair (T ,F) satisfies the second condition from the definition of

a torsion theory. Similarly, one shows that it fulfils the third one. �

Theorem 1.2.6 Let T and F be classes of modules. Then:

(i) T is a torsion class for some torsion theory if and only if it is closed

under homomorphic images, direct sums and extensions.

(ii) F is a torsionfree class for some torsion theory if and only if it is

closed under submodules, direct products and extensions.

Proof. (i) First suppose that T is a torsion class for some torsion theory τ .

Then it is closed under homomorphic images and direct sums by Theorem

1.2.5 and Lemma 1.2.4. Now let 0 → A′ → A → A′′ → 0 be an exact
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sequence with A′, A′′ ∈ T . Then it induces for every τ -torsionfree module F

the exact sequence

HomR(A′′, F ) → HomR(A, F ) → HomR(A′, F )

where the first and the last term are zero because A′, A′′ ∈ T . Hence

HomR(A, F ) = 0 and thus A ∈ T .

Conversely, suppose that T is closed under homomorphic images, direct

sums and extensions. Consider the torsion theory (T1,F1) generated by T .

We will show that T = T1. Let A ∈ T1. Then we have HomR(A, F ) = 0 for

every F ∈ F1. Since T is closed under homomorphic images and direct sums,

there exists a largest submodule T of A that belongs to T , namely the sum

of all submodules of A belonging to T . We will prove that T = A and to this

end it is enough to show that A/T ∈ F . Let f ∈ HomR(U,A/T ) 6= 0 for some

U ∈ T . Suppose that f 6= 0. Then Imf = B/T ∈ T for some submodule B

such that T ⊂ B ⊆ A. Since T is closed under extensions, we have B ∈ T .

But this contradicts the maximality of T . Hence HomR(U,A/T ) = 0 for

every U ∈ T , so that A/T ∈ F , whence T = A, that finishes the proof.

(ii) First suppose that F is a torsionfree class for some torsion theory τ .

Then it is closed under submodules and direct products by Theorem 1.2.5

and Lemma 1.2.4. Now let 0 → A′ → A → A′′ → 0 be an exact sequence

with A′, A′′ ∈ F . Then it induces for every τ -torsion module T the exact

sequence

HomR(T,A′) → HomR(T, A) → HomR(T,A′′)

where the first and the last term are zero because A′, A′′ ∈ F . Hence

HomR(T,A) = 0 and thus A ∈ F .

Conversely, suppose that F is closed under submodules, direct products

and extensions. Consider the torsion theory (T2,F2) cogenerated by F and

show, dually to (i), that F = F2. �

Remark. A torsion class (or a torsionfree class) uniquely determines a torsion

theory.
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We define some types of torsion theories that will be of special interest.

Definition 1.2.7 A torsion theory τ = (T ,F) is called:

(i) stable if T is closed under injective hulls.

(ii) hereditary if T is closed under submodules.

We will see in Proposition 1.4.8 that every torsion theory on R-Mod is

stable provided R is commutative noetherian. But for the moment, we can

give the following properties on stable torsion theories.

Proposition 1.2.8 A torsion theory τ is stable if and only if t(A) is a direct

summand of every injective module A.

Proof. First, let A be an injective module. By the stability of τ , E(t(A)) is

τ -torsion, hence E(t(A)) = t(A). Now A is a direct summand of t(A).

Conversely, let A be a τ -torsion module. Then t(E(A)) is a direct

summand of E(A). Since A ⊆ t(E(A)) and A E E(A), we must have

t(E(A)) = E(A). Hence E(A) is τ -torsion and, consequently, τ is stable. �

Proposition 1.2.9 Let τ be a stable torsion theory and let A be a module.

Then E(A/t(A)) = E(A)/E(t(A)) and E(A) ∼= E(t(A))⊕ E(A/t(A)).

Proof. Consider the commutative diagram

0

��

0

��

0

��
0 // t(A) //

��

A //

��

A/t(A) //

��

0

0 // E(t(A)) //

��

E(A) //

p

��

E(A)/E(t(A)) //

q

��

0

0 // E(t(A))/t(A) //

��

E(A)/A //

��

C //

��

0

0 0 0
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Since the middle row clearly splits, we have E(A) ∼= E(t(A))⊕E(A)/E(t(A)),

hence E(A)/E(t(A)) is injective. Let us show that A/t(A) � E(A)/E(t(A)).

In general, for a module M and N ≤ M , we have

N � M ⇐⇒ ∀0 6= x ∈ M , ∃r ∈ R : 0 6= rx ∈ N

⇐⇒ ∀ 0 6= x ∈ M , AnnRx 6= AnnR(x + N) .

Now suppose that A/t(A) is not essential in E(A)/E(t(A)). Since τ is

stable, we have E(t(A)) = t(E(A)), hence E(A)/E(t(A)) is τ -torsionfree.

Then there exists 0 6= x ∈ E(A)/E(t(A)) such that AnnRx = AnnRq(x).

Also there exists y ∈ E(A) such that

AnnRy = AnnRx = AnnRq(x) = AnnRp(y) ,

contradiction with the fact that A�E(A). Therefore A/t(A)�E(A)/E(t(A))

and consequently E(A/t(A)) = E(A)/E(t(A)). Now we also have E(A) ∼=
E(t(A))⊕ E(A/t(A)). �

Proposition 1.2.10 Let τ be a torsion theory.

(i) If τ is stable, then every indecomposable injective module is either

τ -torsion or τ -torsionfree.

(ii) If R is left noetherian and every indecomposable injective module is

either τ -torsion or τ -torsionfree, then τ is stable.

Proof. (i) Let A be an indecomposable injective module. If A is not τ -

torsionfree, we have t(A) � A, whence t(A) = A, because τ is stable. Thus

A is τ -torsion.

(ii) Let A be a τ -torsion module. Since R is left noetherian, we have

E(A) =
⊕

i∈I Ei for some indecomposable injective modules Ei. For each i

we clearly have A ∩ Ei 6= 0. Then each Ei cannot be τ -torsionfree, hence

each Ei is τ -torsion. Thus E(A) is τ -torsion and consequently τ is stable. �

Hereditary torsion theories can be also characterized in terms of some

closedness property of the torsionfree class.
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Proposition 1.2.11 Let τ = (T ,F) be a torsion theory. Then τ is heredi-

tary if and only if F is closed under injective hulls.

Proof. Assume that τ is hereditary. Let A ∈ F . Then t(E(A)) ∩ A ∈ T ,

whence t(E(A)) ∩ A ⊆ t(A) = 0. It follows that t(E(A)) = 0, that is,

E(A) ∈ F .

Conversely, assume that F is closed under injective hulls. Let A ∈ T and

let B ≤ A. The exact sequence 0 → B → A → A/B → 0 induces the exact

sequence

HomR(A, E(B/t(B))) → HomR(B, E(B/t(B))) → Ext1
R(A/B, E(B/t(B)))

The first term is zero because A ∈ T and E(B/t(B)) ∈ F by hypoth-

esis, whereas the last term is zero by the injectivity of E(B/t(B)). Hence

HomR(B, E(B/t(B))) = 0. But then we must have t(B) = B. Consequently,

τ is hereditary. �

Corollary 1.2.12 Let A be a class of modules closed under submodules and

homomorphic images. Then the torsion theory τ generated by A is hereditary.

Proof. Let F be a τ -torsionfree module. Suppose that t(E(F )) 6= 0. Since

A is closed under homomorphic images, it follows that t(E(F )) contains

a non-zero submodule A ∈ A. Then F ∩ A 6= 0. Since A is closed under

submodules, we have F∩A ∈ A, whence t(F ) 6= 0, a contradiction. Therefore

t(E(F )) = 0, that is, E(F ) is τ -torsionfree. Now by Proposition 1.2.11, τ is

hereditary. �

For a hereditary torsion theory τ , τ -torsion and τ -torsionfree modules

can be characterized as follows.

Proposition 1.2.13 Let τ be a hereditary torsion theory.

(i) A module A is τ -torsion if and only if HomR(A, E(B)) = 0 for every

τ -torsionfree module B.

(ii) A module B is τ -torsionfree if and only if HomR(A, E(B)) = 0 for

every τ -torsion module A.
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Proof. (i) If A is τ -torsion, then HomR(A, E(B)) = 0 for every τ -torsionfree

module B by Proposition 1.2.11.

Conversely, the exact sequence 0 → t(A) → A → A/t(A) → 0 induces

for every τ -torsionfree module B the exact sequence

0 → HomR(A/t(A), E(B)) → HomR(A, E(B)) → HomR(t(A), E(B)) → 0

with the middle term zero by hypothesis. Hence HomR(A/t(A), E(B)) = 0

for every τ -torsionfree B. In particular, HomR(A/t(A), E(A/t(A))) = 0,

whence we get t(A) = A.

(ii) If B is τ -torsionfree, then HomR(A, E(B)) = 0 for every τ -torsion

module A by Proposition 1.2.11.

Conversely, the exact sequence 0 → B → E(B) → E(B)/B → 0 induces

for every τ -torsion module A the exact sequence

0 → HomR(A, B) → HomR(A, E(B)) → HomR(A, E(B)/B)

with the third term zero by hypothesis. Hence HomR(A, B) = 0 for every

τ -torsion module A, that is, B is τ -torsionfree. �

In the following two results, we will see how a hereditary torsion theory

can be generated or cogenerated.

Theorem 1.2.14 Every hereditary torsion theory τ is generated by the class

A of cyclic modules R/I which are torsion modules.

Proof. Note that a module F is τ -torsionfree if and only if HomR(R/I, F ) = 0

for every R/I ∈ A. �

Theorem 1.2.15 A torsion theory τ is hereditary if and only if it is cogen-

erated by a (τ -torsionfree) injective module.

Proof. Let τ = (T ,F) be a hereditary torsion theory. Denote

E =
∏
{E(R/I) | I ≤R R such that R/I ∈ F} .



1.2. TORSION THEORIES. BASIC FACTS 13

Clearly, E is injective and E ∈ F , hence we have HomR(M, E) = 0 for every

M ∈ T . Moreover, if M /∈ T , then there exists a non-zero homomorphism f :

C → F for some cyclic submodule C of M and some F ∈ F . Since Imf ∈ F
is cyclic, f induces a homomorphism C → E that can be extended to a non-

zero homomorphism M → E. Hence M ∈ T if and only if HomR(M, E) = 0,

that is, τ is cogenerated by E. �

Example 1.2.16 (1) Denote by 0 the class consisting only of the zero mod-

ule. The pairs χ = (R−Mod, 0) and ξ = (0, R−Mod) are hereditary torsion

theories, called the improper and the trivial torsion theory on R-Mod respec-

tively.

(2) Let (G, +) be an abelian group. Denote by t(G) the set of elements

of G having finite order (torsion elements). Let T and F be the classes

of all abelian groups G such that t(G) = G (torsion groups) and t(G) = 0

(torsionfree groups) respectively. Then the pair (T ,F) is a hereditary torsion

theory on Z-Mod.

(3) Let D be the class of all divisible (injective) abelian groups and let

R be the class of all reduced abelian groups, that is, abelian groups without

a non-trivial divisible direct summand. Then the pair (D,R) is a torsion

theory on Z-Mod, which is not hereditary, because the class D is not closed

under subgroups (for instance, Q is divisible, whereas Z is not).

(4) A module A is called semiartinian if every non-zero homomorphic

image of A contains a simple submodule. Let τD be the torsion theory gen-

erated by the class of semisimple (or even simple) modules. Then τD is a

hereditary torsion theory, called the Dickson torsion theory. Its torsion and

torsionfree classes are respectively

TD = {A | A is semiartinian} ,

FD = {A | Soc(A) = 0} .

(5) A module A is called singular if Z(A) = A and nonsingular if Z(A) =

0. Let τG be the torsion theory generated by all modules of the form A/B,
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where B �A. Then τG is a stable hereditary torsion theory, called the Goldie

torsion theory. Its torsion and torsionfree classes are respectively

TG = {A | Z2(A) = A} ,

FG = {A | A is nonsingular} .

If R is nonsingular, then Z(A) = Z2(A) for every module A, hence TG

consists of all singular modules.

(6) Let τL be the torsion theory cogenerated by E(R). Then τL is a

hereditary torsion theory, called the Lambek torsion theory. Its torsion class

is

TL = {A | AnnRx dense in R , ∀x ∈ A} .

(7) A finite strictly increasing sequence p0 ⊂ p1 ⊂ · · · ⊂ pn of prime ideals

of a commutative ring R is said to be a chain of length n. The supremum of

the lengths of all chains of prime ideals of R is called the (Krull) dimension

of R and it is denoted by dim R [8, p.89]. If that supremum does not exist,

then the dimension of R is considered to be infinite. For a commutative ring

R and p ∈ Spec(R), dim R/p is called the dimension of p and it is denoted

by dim p [41, p.227].

Let n be a positive integer and let R be a commutative ring with

dim R ≥ n. Let τn be the torsion theory generated by the class of all modules

isomorphic to factor modules U/V , where U and V are ideals of R containing

an ideal p ∈ Spec(R) with dim p ≤ n (or equivalently, the torsion theory gen-

erated by all modules of Krull dimension at most n). Then τn is a hereditary

torsion theory. Note that τ0 is the hereditary torsion theory generated by

the class of all simple modules, i.e. the Dickson torsion theory τD.

1.3 Some bijective correspondences

In this section we will show how torsion theories are connected to radicals

and to Gabriel filters.
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Theorem 1.3.1 There is a bijective correspondence between:

(i) torsion theories in R-Mod.

(ii) idempotent radicals on R-Mod.

Proof. Let τ = (T ,F) be a torsion theory in R-Mod. For every module A,

let tτ (A) be the sum of all τ -torsion submodules of A. Clearly, t = tτ is a

preradical on R-Mod. Moreover, t(t(A)) = t(A) and, since A/t(A) ∈ F , we

have t(A/t(A)) = 0. Thus t is an idempotent radical by Lemma 1.1.5.

Conversely, let r be an idempotent radical on R-Mod. Denote

Tr = {A | r(A) = A} ,

Fr = {A | r(A) = 0} .

We claim that τr = (Tr,Fr) is a torsion theory in R-Mod. To this end, apply

Theorem 1.2.5.

Now denote by F the correspondence τ 7→ tτ and by G the correspondence

r 7→ τr. We will show that F and G are inverses one to the other.

For every torsion theory τ = (T ,F), we have

G(F (τ)) = (Ttτ ,Ftτ ) = (T ,F) = τ ,

because

A ∈ T ⇐⇒ tτ (A) = A ⇐⇒ A ∈ Ttτ

and a torsion theory is determined by its torsion class. Hence G ◦ F = 1.

For every idempotent radical r, we show that

F (G(r)) = tτr = r .

Denote t = tτr and let A be a module. Since r(r(A)) = r(A), we have r(A) ∈
Tr, hence r(A) ≤ t(A). Moreover, r(A/r(A)) = 0, hence A/r(A) ∈ Fr. But

r(A) ≤ t(A), so that it follows by Proposition 1.1.6 that 0 = t(A/r(A)) =

t(A)/r(A), whence r(A) = t(A). Thus r = t and consequently F ◦G = 1. �
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Hence for any torsion theory τ , there is an associated idempotent radical

tτ (usually denoted simply by t), called the torsion radical associated to τ .

For every module A, t(A) will be the unique maximal τ -torsion submodule

of A.

Throughout the text, t will denote the idempotent radical corresponding

to a torsion theory τ .

Proposition 1.3.2 A torsion theory τ = (T ,F) is hereditary if and only if

the corresponding torsion radical t is left exact.

Proof. Assume that τ is hereditary. Let A be a module and B ≤ A. Since

t(A) ∈ T , we have t(A) ∩ B ∈ T , whence t(A) ∩ B ∈ t(B). But t(B) ⊆
t(A) ∩ B, so that we have t(A) ∩ B = t(B). Now by Lemma 1.1.5, t is left

exact.

Conversely, assume that t is left exact. Let A ∈ F . Using Lemma 1.1.5,

we have 0 = t(A) = t(E(A)) ∩ A, whence t(E(A)) = 0, that is, E(A) ∈ F .

Now by Proposition 1.2.11, τ is hereditary. �

Theorem 1.3.3 There is a bijective correspondence between:

(i) hereditary torsion theories in R-Mod.

(ii) left exact radicals on R-Mod.

(iii) Gabriel filters of left ideals of R.

Proof. (i) ⇐⇒ (ii) By Proposition 1.3.2 and Theorem 1.3.1.

(i) ⇐⇒ (iii) Let τ = (T ,F) be a hereditary torsion theory in R-Mod.

Define

F (R) = {I ≤R R | R/I ∈ T } .

We will prove that F (R) is a Gabriel filter.

First, let I ∈ F (R) and a ∈ R. Define a monomorphism

f : R/(I : a) → R/I , f(r + (I : a)) = ra + I .
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Since R/I ∈ T and τ is hereditary, it follows that R/(I : a) ∈ T , whence

(I : a) ∈ F (R).

Secondly, let J ∈ F (R) and let I be a left ideal of R such that (I : a) ∈
F (R) for every a ∈ J . Consider the exact sequence

0 → (I + J)/I → R/I → R/(I + J) → 0 .

Since R/J ∈ T and there is a natural epimorphism R/J → R/(I + J), it

follows that R/(I + J) ∈ T . On the other hand, (I + J)/I ∼= J/(I ∩ J). But

J/(I∩J) ∈ T , because for every a ∈ J we have ((I∩J) : a) = (I : a) ∈ F (R).

Since T is closed under extensions, it follows that R/I ∈ T .

Conversely, let F (R) be a Gabriel filter of left ideals of R. Define

T = {A | (0 : x) ∈ F (R) for every x ∈ A} .

We will prove that T is a hereditary torsion class, that is, it is closed under

submodules, homomorphic images, direct sums and extensions.

Clearly, T is closed under submodules.

Let A ∈ T and let f : A → B be an epimorphism. For every y ∈ B, there

exists x ∈ A such that f(x) = y. Then clearly, (0 : x) ⊆ (0 : y) and since

(0 : x) ∈ F (R), it follows that (0 : y) ∈ F (R). Hence B ∈ T .

Let (Ai)i∈I be a family of modules, where each Ai ∈ T . Let (ai)i∈I ∈⊕
i∈I Ai. Then

(0 : (ai)i∈I) =
⋂
i∈I

(0 : ai) =
⋂
i∈K

(0 : ai)

for some finite K ⊆ I, whence (0 : (ai)i∈I) ∈ F (R). Hence
⊕

i∈I Ai ∈ T .

Let 0 → A′ → A → A′′ → 0 be an exact sequence with A′, A′′ ∈ T .

Assume for simplicity that A′′ = A/A′. Let x ∈ A. Then (A′ : x) =

(0 : x + A′) ∈ F (R). For every r ∈ (A′ : x), we have rx ∈ A′, whence

((0 : x) : r) = (0 : rx) ∈ F (R). But then (0 : x) ∈ F (R), hence A ∈ T .

Therefore T is a hereditary torsion class.
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Finally, let us show that we have a bijective correspondence. If we start

with a hereditary torsion class T , then we have

F (R) = {I ≤R R | R/I ∈ T } .

Since (0 : x) ∈ F (R) for some x ∈ A implies Rx ∼= R/(0 : x) ∈ T , we use the

properties of T to get

{A | (0 : x) ∈ F (R) ,∀x ∈ A} =

= {A | every cyclic submodule of A is in T } = T .

Now if we start with a Gabriel filter F (R), then we have

T = {A | (0 : x) ∈ F (R) for every x ∈ A} .

By the properties of F (R), we get

{I ≤R R | R/I ∈ T } = {I ≤R R | (I : r) ∈ F (R) ,∀r ∈ R} = F (R) .

Hence the correspondence is bijective. �

We have seen that a torsion theory is completely determined by its tor-

sion class or by its torsionfree class. Now by Theorem 1.3.3, a hereditary

torsion theory τ is also completely determined by the associated left exact

radical or by the associated Gabriel filter, that consists of the τ -dense left

ideals of R. Even if some of the results to be given hold for an arbitrary

torsion theory, we are going to use the better framework of hereditary tor-

sion theories, hence of left exact radicals and of Gabriel filters. So, from now

on, we will consider only hereditary torsion theories and τ will always denote

such a torsion theory.

Example 1.3.4 (1) The Gabriel filter associated to the improper torsion

theory χ = (R−Mod, 0) consists of all left ideals of R, whereas the Gabriel

filter associated to the trivial torsion theory ξ = (0, R −Mod) consists only

of R.
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(2) If (T ,F) is the usual torsion theory for abelian groups (see Example

1.2.16 (2)), then its associated Gabriel filter consists of all non-zero ideals of

Z, that is, nZ for each n ∈ N∗.

Let us now see how to compare torsion theories.

Proposition 1.3.5 The following statements are equivalent for two torsion

theories τ and σ:

(i) Every τ -torsion module is σ-torsion.

(ii) Every σ-torsionfree module is τ -torsionfree.

Proof. Denote by tτ and tσ the idempotent radicals associated to the torsion

theories τ and σ respectively.

(i) =⇒ (ii) Clear.

(ii) =⇒ (i) Let A be a τ -torsion module. Since A/tσ(A) is σ-torsionfree,

we have tτ (A/tσ(A)) = 0. By Proposition 1.1.6 it follows that tτ (A)/tσ(A) =

0, whence tσ(A) = tτ (A) = A. �

Definition 1.3.6 If τ and σ are two torsion theories for which the equivalent

conditions of Proposition 1.3.5 hold, it is said that σ is a generalization of τ

and it is denoted by τ ≤ σ.

Example 1.3.7 (1) Clearly, we have ξ ≤ τ ≤ χ for every torsion theory τ .

(2) Consider the Lambek torsion theory τL and the Goldie torsion theory

τG. Since every dense left ideal of R is essential in R [82, p.246], we have

τL ≤ τG.

(3) Let R be commutative. Consider the Dickson torsion theory τD and

the torsion theories τn (n ∈ N). Then

τD = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ . . .
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1.4 τ-dense and τ-closed submodules

Recall that τ is a hereditary torsion theory on R-Mod and t is its associated

left exact radical.

Two special types of submodules play a key part in the context of torsion

theories.

Definition 1.4.1 A submodule B of a module A is called τ -dense (respec-

tively τ -closed) in A if A/B is τ -torsion (respectively τ -torsionfree).

Proposition 1.4.2 Let A be a module and B, B′ ≤ A.

(i) If B ⊆ B′, then B is τ -dense in A if and only if B is τ -dense in B′

and B′ is τ -dense in A.

(ii) If B, B′ are τ -dense in A, then B ∩B′ is τ -dense in A.

(iii) If A is τ -torsionfree and B is τ -dense in A, then B � A.

Proof. (i) and (ii) Straightforward.

(iii) Let a ∈ A\B. Then Ra/(Ra∩B) ∼= (Ra+B)/B is τ -torsion, because

B is τ -dense in A and, consequently, τ -dense in Ra + B. Then Ra ∩B 6= 0,

because Ra ⊆ A is τ -torsionfree. Hence B is essential in A. �

Proposition 1.4.3 Let A be a module and B, B′ ≤ A.

(i) t(A) is a τ -closed submodule of A.

(ii) If B is τ -closed in A, then t(A) ⊆ B and t(B) = t(A).

(iii) If B ⊆ B′ and B is τ -closed in A, then B is τ -closed in B′.

(iv) If B ⊆ B′, B is τ -closed in B′ and B′ is τ -closed in A, then B is

τ -closed in A.

(v) The class of τ -closed submodules of A is closed under intersections.

(vi) t(A) coincides with the intersection of all τ -closed submodules of A.

Proof. (i), (iii) and (iv) Clear.

(ii) If t(A) * B, then (t(A) + B)/B ∼= t(A)/(t(A) ∩B) ⊆ A/B would be

τ -torsion. Hence t(A) ⊆ B and then t(B) = t(A).
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(v) Let (Bi)i∈I be a family of τ -closed submodules of A. Since there is

a canonical monomorphism A/
⋂

i∈I Bi
∼=
∏

i∈I A/Bi, it follows by Theorem

1.2.6 that
⋂

i∈I Bi is τ -closed in A.

(vi) Since t(A) is τ -closed in A, it belongs to the above intersection.

Conversely, if B is τ -closed in A and x ∈ t(A), then (0 : x) ⊆ (0 : x + B)

implies that x + B is a τ -torsion element of A/B. Then x ∈ B, so that

t(A) ⊆ B. �

Definition 1.4.4 Let A be a module and B ≤ A. The unique minimal

τ -closed submodule of A containing B is called the τ -closure of B in A.

Remark. Note that the intersection of all τ -closed submodules of A containing

B is τ -closed in A by Proposition 1.4.3.

Proposition 1.4.5 Let A be a module, B ≤ A and let B′ be the τ -closure

of B in A. Then B′/B = t(A/B).

Proof. If t(A/B) = C/B for some C ≤ A, then C/B is τ -closed in A/B.

Thus C is τ -closed in A and contains B, hence B ⊆ C. If B′ 6= C, then

C/B′ ⊆ A/B′ is τ -torsionfree. But it is also τ -torsion as a homomorphic

image of C/B, a contradiction. Hence B′ = C and consequently, B′/B =

t(A/B). �

Let us denote by Cτ (A) the set of all τ -closed submodules of a module A.

Proposition 1.4.6 Let A be a module and B ≤ A. Then:

(i) Cτ (A) is a complete lattice.

(ii) There exists a canonical embedding of Cτ (B) into Cτ (A).

(iii) There exists a canonical embedding of Cτ (A/B) into Cτ (A).

(iv) The lattices Cτ (A) and Cτ (A/t(A)) are isomorphic.

Proof. (i) For a family of τ -closed submodules of a module A, the infimum is

their intersection and the supremum is the τ -closure of their sum. Note that

Cτ (A) has a least element, namely t(A), and a greatest element, namely A.
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(ii) We claim that the canonical embedding is given by taking the τ -

closure in A. Indeed, let X, Y be τ -closed submodules of B having the same

τ -closure in A, say X ′. Since B/X and B/Y are τ -torsionfree and X ′/X and

X ′/Y are τ -torsion, it follows that X = X ′ ∩B = Y .

(iii) Note that if C/B is a τ -closed submodule of A/B, then C is τ -closed

in A.

(iv) Define

F : Cτ (A/t(A)) → Cτ (A) , F (B/t(A)) = B .

Then F is injective by (iii) and it is easy to check that F is a lattice homomor-

phism. Now let B be a τ -closed submodule of A. Since t(A)/(B ∩ t(A)) ∼=
(B + t(A))/B ⊆ A/B is both τ -torsion and τ -torsionfree, we must have

t(A) ⊆ B. Then B/t(A) is τ -closed in A/t(A) and F (B/t(A)) = B. Thus F

is surjective. Therefore F is a lattice isomorphism. �

The following easy lemma will be frequently used.

Lemma 1.4.7 Let R be commutative and p ∈ Spec(R). Then p is is either

τ -dense or τ -closed in R.

Proof. Assume that p is not τ -dense in R. Suppose that t(R/p) 6= 0. Let

0 6= a ∈ t(R/p). Then Ra ⊆ t(R/p) is τ -torsion. But Ra ∼= R/AnnRa = R/p,

a contradiction. �

Proposition 1.4.8 If R is commutative noetherian, then every hereditary

torsion theory on R-Mod is stable.

Proof. Let A be a τ -torsion module. By hypothesis, every injective module

is a direct sum of indecomposable injective modules, that is, a direct sum of

modules of the form E(R/p) for p ∈ Spec(R). So we may assume without

loss of generality that E(A) ∼= E(R/p) for some p ∈ Spec(R). It follows that

R/p cannot be τ -torsionfree, hence it is τ -torsion by Lemma 1.4.7. Now let
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0 6= x ∈ E(A) ∼= E(R/p). Then there exists a natural power n such that

AnnRx = pn [101, Proposition 4.23]. We have

Rx ∼= R/AnnRx = R/pn .

Since p is τ -dense in R, it follows by Proposition 1.1.10 that pn is τ -dense

in R. Hence Rx is τ -torsion for every x ∈ E(A) and consequently, E(A) is

τ -torsion. �

The following noetherian-type notions related to τ -dense and τ -closed

submodules will be needed.

Definition 1.4.9 A torsion theory τ is called noetherian if for every ascend-

ing chain I1 ⊆ I2 ⊆ . . . of left ideals of R the union of which is τ -dense in R,

there exists a positive integer k such that Ik is τ -dense in R.

Definition 1.4.10 A module is called τ -noetherian if it has ACC on τ -closed

submodules.

Example 1.4.11 Every τ -torsion and every τ -cocritical module is τ -

noetherian.

Proposition 1.4.12 Let A be a module and B ≤ A. Then A is τ -noetherian

if and only if B and A/B are τ -noetherian.

Proof. If A is τ -noetherian, then B and A/B are both τ -noetherian by

Proposition 1.4.6 (ii) and (iii).

Conversely, suppose that both B and A/B are τ -noetherian. Let A1 ⊆
A2 ⊆ . . . be an ascending chain of τ -closed submodules of A. We have

(B + Ai)/Ai
∼= B/(B ∩ Ai), hence B ∩ Ai is τ -closed in B for each i. Thus

we have the ascending chain B ∩A1 ⊆ B ∩A2 ⊆ . . . of τ -closed submodules

of B. Then there exists j ∈ N∗ such that B ∩ Ai = B ∩ Aj for each i ≥ j.

For each i, denote by Ci the τ -closure of B + Ai in Ai.
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We claim that the correspondence Ai 7→ Ci is injective. Supposing the

contrary, we have Ci = Ck for some i > k. Consider the natural epimorphism

g : Ai/Ak → (B + Ai)/(B + Ak). Then

Kerg ∼= (Ai ∩ (B + Ak))/Ak
∼= (Ak + (B ∩ Ai))/Ak = Ak/Ak = 0 ,

hence g is an isomorphism. It follows that

Ai/Ak
∼= (B + Ai)/(B + Ak) ⊆ Ci/(B + Ak)

is τ -torsion, that contradicts the fact that Ak is τ -closed in A.

Now Ci/B is τ -closed in A/B for each i, hence there exists l ∈ N∗ such

that Ci = Cl for each i ≥ l. Therefore Ai = Al for each i ≥ l. Thus A is

τ -noetherian. �

Recall that a module A is said to have finite uniform (Goldie) dimension

if A does not contain an infinite direct sum of non-zero submodules or equiv-

alently if there exists a natural number n such that A contains an essential

submodule U1 ⊕ · · · ⊕ Un for some uniform submodules Ui of A [40, p.40].

Proposition 1.4.13 Every τ -torsionfree τ -noetherian module has finite uni-

form dimension.

Proof. Let A be a τ -torsionfree τ -noetherian module. Suppose that there

is an infinite set (Aj)j∈N∗ of non-zero submodules of A whose sum is direct.

For each j, let Bj be the τ -closure of A1 ⊕ · · · ⊕ Aj in A. Clearly, each

Bj is a τ -closed submodule of A and Bj ⊆ Bj+1 for each j. Since A is τ -

noetherian, there exists k ∈ N∗ such that Bk = Bk+1. Now if a ∈ Ak+1, then

a ∈ Bk+1 = Bk, hence we have Ia ⊆ A1 ⊕ · · · ⊕ Ak for some τ -dense left

ideal I of R. Since Ia ⊆ Ak+1 and the sum A1 + · · · + Ak+1 is direct, we

must have Ia = 0. But A is τ -torsionfree, hence a = 0, so that Ak+1 = 0, a

contradiction. �
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Theorem 1.4.14 The following statements are equivalent:

(i) R is τ -noetherian.

(ii) If I1 ⊂ I2 ⊂ . . . is a strictly ascending chain of left ideals of R having

union I, then there exists k ∈ N∗ such that Ik is τ -dense in I.

(iii) If t(R) ⊂ I1 ⊂ I2 ⊂ . . . is a strictly ascending chain of left ideals of

R having union I, then there exists k ∈ N∗ such that Ik is τ -dense in I.

(iv) Every direct sum of τ -torsionfree injective modules is injective.

Proof. (i) =⇒ (ii) Let I1 ⊂ I2 ⊂ . . . be a strictly ascending chain of left

ideals of R having union I. For each Ij denote by I ′j the τ -closure of Ij in R.

Then I ′1 ⊂ I ′2 ⊂ . . . is an ascending chain of τ -closed left ideals of R. Since R

is τ -noetherian, there exists k ∈ N∗ such that I ′j = I ′k for every j ≥ k. Then

I =
⋃

j∈N∗
Ij ⊆

⋃
j∈N∗

I ′j = I ′k ,

whence it follows that

I/Ik ⊆ I ′k/Ik = t(R/Ik) .

Thus Ik is τ -dense in I.

(ii) =⇒ (iii) Clear.

(iii) =⇒ (iv) Let (Al)l∈L be a family of τ -torsionfree injective module

and denote A =
⊕

l∈L Al. Let I be a left ideal of R and let f : I → A be

a homomorphism. Since A is τ -torsionfree, we have t(I) ⊆ Kerf , hence f

can be extended to a homomorphism g : I + t(R) → A by taking g(r) = 0

for every r ∈ t(R). Therefore without loss of generality we may assume that

t(R) ⊆ I.

Let us define a transfinite sequence (Jα)α of left ideals of R that contain

I in the following way:

• J0 = t(R);

• if α is not a limit ordinal and I/Jα−1 is finitely generated, then take

Jα = I;
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• if α is not a limit ordinal and I/Jα−1 is not finitely generated, then take

some elements rαs ∈ I such that

Jα−1 ⊂ Jα−1 + Rrα1 ⊂ Jα−1 + Rrα1 + Rrα2 ⊂ . . .

and take

Jα = Jα−1 +
∑
s∈N∗

Rrαs ;

• if α is a limit ordinal, then take

Jα =
⋃
β<α

Jβ .

We use transfinite induction on the least ordinal γ such that Jγ = I. For

γ = 0, we have I = J0 = t(R), hence f = 0, that trivially extends to a

homomorphism g : R → A.

First, suppose that γ is not a limit ordinal. By the induction hypothesis,

there exist a finite subset Fα ⊆ L and a homomorphism fα : R →
⊕

l∈Fα−1
Al

that extends f |Jα−1 .

If I/Jα−1 is finitely generated, Imf ⊆
⊕

l∈Fα
Al for some finite subset Fα

such that Fα−1 ⊆ Fα ⊆ L. Thus f extends to a homomorphism g : R → A.

If I/Jα is not finitely generated, then by the definition of Jα, there exists

a strictly ascending chain

t(R) ⊂ Jα−1 = I1 ⊂ I2 ⊂ · · · ⊆ I

of left ideals of R such that I is their union and each Il/I1 is finitely generated.

By hypothesis, there exists k ∈ N∗ such that Ik is τ -dense in I. Since Ik/Jα−1

is finitely generated, we use the above case to get a homomorphism g : R → A

that extends f |Ik
. Since Ik ⊆ Ker(f − g|I), f − g|I induces a homomorphism

I/Ik → A, which must be zero because Ik is τ -dense in I. Thus g extends f .

Secondly, suppose that α is a limit ordinal. It is enough to show that Imf

is contained in a finite direct sum of Al’s. Suppose the contrary. Then we

construct a sequence (αn)n∈N∗ such that for every n ∈ N∗ we have: αn < α,
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n < m implies αn < αm and f(Jαn) is not contained in any direct sum

consisting of n elements of the family (Al)l∈L. Then
⋃

n∈N∗ Jαn = I, because

otherwise there exists an ordinal β < α such that
⋃

n∈N∗ Jαn ⊆ Jβ, that

contradicts the induction hypothesis. Now proceed as above to deduce that

f extends to a homomorphism g : R → A. But this is a contradiction.

(iv) =⇒ (i) Suppose that we have a strictly ascending chain I1 ⊂ I2 ⊂
· · · ⊂ of τ -closed left ideals of R and denote by I their union. Note that

I(1 + Ij) 6= 0 for each j ∈ N∗. Now consider the homomorphism

f : I →
⊕
j∈N∗

E(R/Ij) , f(r) = (r + Ij)j∈N∗ .

By hypothesis,
⊕

j∈N∗ E(R/Ij) is injective, hence there exists x ∈⊕
j∈N∗ E(R/Ij) such that f(r) = rx for every r ∈ I. Then f(I) is con-

tained in a finite direct sum of E(R/Ij). But this contradicts the fact that

I(1 + Ij) 6= 0 for each j ∈ N∗. Thus R is τ -noetherian. �

We can show now that the condition on R to be τ -noetherian assures a

direct sum decomposition for any τ -torsionfree injective module.

Theorem 1.4.15 Let R be τ -noetherian. Then every τ -torsionfree injective

module is a direct sum of indecomposable injective modules.

Proof. Let A be a τ -torsionfree injective module. If 0 6= x ∈ A, then

Rx is clearly τ -torsionfree and τ -noetherian by Proposition 1.4.12. Hence by

Proposition 1.4.13, Rx has finite uniform dimension, so that Rx has a uniform

submodule, hence A has a uniform submodule. Now by Zorn’s Lemma, there

exists a maximal independent family (Ai)i∈I of uniform submodules of A.

By the injectivity of A, we have E(Ai) ⊆ A for each i and, by the fact

that each Ai is indecomposable, it follows that the sum
∑

i∈I E(Ai) is direct.

By Theorem 1.4.14,
⊕

i∈I E(Ai) is injective, hence it is a direct summand

of A. On the other hand, we have
⊕

i∈I E(Ai) � A. Hence we must have

A =
⊕

i∈I E(Ai). �
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1.5 τ-cocritical modules and a generalization

A certain subclass of the class of τ -torsionfree modules is of particular im-

portance. That is the class of τ -cocritical modules.

Definition 1.5.1 A non-zero module A is called τ -cocritical if A is τ -

torsionfree and every non-zero submodule of A is τ -dense in A.

Proposition 1.5.2 Let A be a non-zero module. Then the following state-

ments are equivalent:

(i) A is either τ -torsion or τ -cocritical.

(ii) Every non-zero proper submodule B of A is not τ -closed in A.

Proof. (i) =⇒ (ii) This is clear.

(ii) =⇒ (i) Suppose that A is not τ -torsion, that is, t(A) 6= A. If t(A) 6=
0, then by hypothesis A/t(A) is not τ -torsionfree, a contradiction. Hence

t(A) = 0, i.e. A is τ -torsionfree. Now let B be a non-zero proper submodule

of A. Then A/B is not τ -torsionfree, hence t(A/B) 6= 0. Let t(A/B) = C/B.

Then A/C ∼= (A/B)/t(A/B) is τ -torsionfree, whence A = C by hypothesis.

Hence A/B is τ -torsion and thus A is τ -cocritical. �

Recall that a non-zero module A is said to be uniform in case each of its

non-zero submodules is essential in A.

Proposition 1.5.3 The following statements are equivalent for a module A:

(i) A is τ -cocritical.

(ii) A is uniform and A contains a τ -dense τ -cocritical submodule.

(iii) A is τ -torsionfree and A contains a τ -dense τ -cocritical submodule.

(iv) Every non-zero cyclic submodule of A is τ -cocritical.

Proof. (i) =⇒ (ii) Every proper submodule of A is τ -dense and, consequently,

essential by Proposition 1.4.2. Hence A is uniform. Trivially, A is a τ -dense

τ -cocritical submodule of itself.
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(ii) =⇒ (iii) Denote B = t(A) and let C be a τ -dense τ -cocritical sub-

module of A. Then we have C E A. It follows that if B 6= 0, then B∩C 6= 0.

So, if B 6= 0, then the τ -cocritical module C would have a τ -torsion submod-

ule, a contradiction. Hence t(A) = B = 0.

(iii) =⇒ (i) Let B be a non-zero submodule of A and let C be a τ -dense

τ -cocritical submodule of A. Then C E A and B ∩ C is a non-zero τ -dense

submodule of A. Now consider the exact sequence

0 → (B + C)/B → A/B → A/(B + C) → 0

Here (B + C)/B ∼= C/(B ∩ C) is τ -torsion and A/(B + C) is τ -torsion as a

homomorphic image of A/C. Then B is τ -dense in A. Thus A is τ -cocritical.

(i) =⇒ (iv) Let B be a non-zero submodule of A. Then B is τ -torsionfree.

Also, every non-zero submodule of B is τ -dense in A and, consequently, τ -

dense in B. Hence B is τ -cocritical.

(iv) =⇒ (i) Since every non-zero cyclic submodule of A is τ -torsionfree, A

is also τ -torsionfree. Now assume that A is not τ -cocritical. Then there exists

a proper τ -closed submodule B of A. Let a ∈ A \ B. Then Ra/(Ra ∩ B) ∼=
(Ra + B)/B ⊆ A/B is τ -torsionfree. But Ra∩B 6= 0, because A is uniform,

contradicting the fact that Ra is τ -cocritical. Thus A is τ -cocritical. �

Proposition 1.5.4 Let A be a uniform module having a τ -cocritical sub-

module. Then A has a unique maximal τ -cocritical submodule.

Proof. Since A is uniform and has a τ -cocritical submodule, A must be τ -

torsionfree. Denote by Ai the τ -cocritical submodules of A, where 1 ≤ i ≤ ω

and ω is some ordinal. Then M =
∑

i≤ω Ai is clearly τ -torsionfree. We claim

that M is the unique maximal τ -cocritical submodule of A and we prove it

by transfinite induction on ω. If ω = 1, the assertion holds. Now take ω > 1

and suppose that C =
∑

i<ω Ai is τ -cocritical. If Aω ⊆ C, then M = C

and we are done. So, assume further that Aω * C. Let B be a non-zero

submodule of M and consider the exact sequence

0 → (B + C)/B → M/B → M/(B + C) → 0
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Since A is uniform, we have B ∩ C 6= 0 and (B + C) ∩Aω 6= 0. Since C and

Aω are τ -cocritical, it follows that (B + C)/B ∼= C/(B ∩ C) and

M/(B + C) = (B + C + Aω)/(B + C) ∼= Aω/((B + C) ∩ Aω)

are τ -torsion. Then B is τ -dense in M . Thus M is τ -cocritical. �

Proposition 1.5.5 Let (Ai)i∈I be a set of τ -cocritical submodules of a mod-

ule A such that
∑

i∈I Ai is τ -dense in A and let B be a τ -closed submodule

of A. Then there exists J ⊆ I such that the sum
∑

j∈J Aj is direct and

B ⊕ (
⊕

j∈J Aj) is τ -dense in A.

Proof. We may suppose that B 6= A. Let M be the family of all subsets

K ⊆ I such that the sum
∑

k∈K Ak is direct and B ∩ (
∑

k∈K Ak) = 0. Then

M 6= ∅, because ∅ ∈ M. Every chain of elements in (M,⊆) has the union in

M. Then by Zorn’s Lemma, M has a maximal element, say J , that clearly

has the requested properties. �

We should note that there are torsion theories τ and rings R such that

there is no τ -cocritical module and rings R such that for every proper torsion

theory τ there is a τ -cocritical module.

Definition 1.5.6 A ring R is said to be left seminoetherian if for every

proper torsion theory τ on R-Mod there exists a τ -cocritical module.

Example 1.5.7 (1) There is no χ-cocritical module.

Alternatively, if R is an infinite direct product of copies of a field, then

there is no τD-cocritical module [3].

(2) [94] Every left noetherian ring is left seminoetherian. Indeed, if τ is

a proper torsion theory and A is a non-zero τ -torsionfree module, then the

set of all submodules of A that are not τ -dense in A has a maximal element

B and then A/B is τ -cocritical.
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Proposition 1.5.8 Let A be a noetherian module which is not τ -torsion.

Then there exists a submodule B of A such that A/B is τ -cocritical.

Proof. Since A is not τ -torsion, there exists a proper submodule D of A such

that A/D is τ -torsionfree. Denote F = A/D. Let F be the set of all proper

submodules G of F such that F/G is not τ -torsion. Then F is non-empty,

containing the submodule 0 of F . Since F is noetherian, the set F has a

maximal element Q. Let H/Q be a non-zero proper submodule of F/Q. By

the maximality of Q, (F/Q)/(H/Q) ∼= F/H is τ -torsion. But F/Q is not

τ -torsion. Then F/Q is τ -torsionfree, because otherwise t(F/Q) 6= 0 and

(F/Q)/t(F/Q) would be τ -torsion. It follows that F/Q is τ -cocritical. Now

let Q = B/D. Then A/B ∼= F/Q is τ -cocritical. �

Now let us establish a connection between cocritical modules with respect

to different hereditary torsion theories.

Proposition 1.5.9 Let τ and σ be hereditary torsion theories such that τ ≤
σ. If A is a τ -cocritical module that is not σ-torsion, then A is σ-cocritical.

Proof. Let F = A/tσ(A). Then F is σ-torsionfree, hence τ -torsionfree. Since

A is τ -cocritical, we have either F = 0 or F = A. Since A is not σ-torsion,

F 6= 0. Then A is σ-torsionfree. Moreover, every proper τ -closed submodule

of A is τ -closed, hence it must be zero. Thus A is σ-cocritical. �

The following particular characterization of cocritical rings with respect

to the Dickson torsion theory will be used later on.

Proposition 1.5.10 Let R be a τD-torsionfree ring such that every maximal

left ideal of R is of the form Rp = pR for some p ∈ R. Then:

(i) R/(
⋂∞

n=1 Mn) is τD-torsionfree for each maximal left ideal M of R.

(ii) R is τD-cocritical if and only if
⋂∞

n=1 Mn = 0 for each maximal left

ideal M of R.
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Proof. If M is a maximal left ideal of R, denote I =
⋂∞

n=1 Mn.

(i) Assume the contrary and let 0 6= a+I ∈ Soc(R/I). Then there exists a

maximal left ideal Rq of R such that qa ∈ I. Suppose that q /∈ Rp = M . We

claim that Rq+Rpn = R for every n ∈ N. Indeed, if Rq+Rpn ⊂ R for some n,

then there exists a maximal left ideal N of R such that Rq +Rpn ⊆ N 6= M .

Thus pn ∈ N , whence p ∈ N and then N = M , a contradiction. It follows

that 1 = rq + spn for some r, s ∈ R, whence a = rqa + spna. Since qa ∈ I,

we have qa = bpn for some b ∈ R. Then

a = rqa + spna = rbpn + spna = (rb + sc)pn

for some c ∈ R, hence a ∈ I, a contradiction. Therefore q ∈ Rp, whence we

have q = p. Then for every n ∈ N, pa = pn+1c ∈ I. Since R is τD-torsionfree,

we have a = pnc ∈ I, a contradiction. Consequently, Soc(R/I) = 0, that is,

R/I is τD-torsionfree.

(ii) For the direct implication apply (i).

Conversely, suppose that I = 0 for each maximal left ideal M of R.

Let 0 6= J ⊂ R be a left ideal of R. Then J ⊆ M for some maximal left

ideal M of R. It follows that J ∩ Mk+1 ⊂ J ∩ Mk for some k ∈ N. Let

a ∈ (J ∩Mk)\ (J ∩Mk+1). Then a = pkc for some c ∈ R\M . It follows that

there exists 1 ≤ l ≤ k such that plb = a for some b /∈ J and pb ∈ J . Then

(J : b) = M and the set of all b’s modulo J is a simple submodule of R/J .

Hence R is τD-cocritical. �

In the sequel we consider a class of modules including the class of simple

modules as well as the class of τ -cocritical modules. But first let us give

another property of τ -cocritical modules.

Lemma 1.5.11 Let f : A → B be a non-zero homomorphism from a τ -

cocritical module A to a τ -torsionfree module B. Then f is a monomorphism.

Proof. If Kerf 6= 0, then A/Kerf ∼= Imf ⊆ B is τ -torsionfree. But this

contradicts the fact that A is τ -cocritical. �
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Throughout the rest of this section we denote by N the class of non-zero

modules having the following property: a non-zero module A belongs to N if

and only if every non-zero endomorphism f ∈ EndR(A) is a monomorphism.

It is clear by Lemma 1.5.11 that every τ -cocritical module is in N .

For the rest of this section we will suppose the ring R to be commutative.

Recall that a module A is said to be faithful if AnnRA = 0.

Theorem 1.5.12 Let A ∈ N . Then:

(i) AnnRa = AnnRA for every 0 6= a ∈ A.

(ii) AnnRA ∈ Spec(R).

(iii) If A is faithful, then R is a commutative domain.

(iv) A is a torsionfree R/AnnRA-module.

(v) If A is uniform, then A is isomorphic to a submodule of the module

AnnE(R/AnnRA)(AnnRA).

Proof. (i) Let r ∈ R be such that r /∈ AnnRA and let 0 6= a ∈ A. Thus there

exists b ∈ A such that rb 6= 0. Then the endomorphism g : A → A defined

by g(x) = rx is a monomorphism. Thus g(a) = ra 6= 0, i.e. r /∈ AnnRa.

Hence AnnRa ⊆ AnnRA. Clearly AnnRA ⊆ AnnRa. Thus AnnRA = AnnRa.

(ii) Let r, s ∈ R be such that rs ∈ AnnRA and let 0 6= a ∈ A. If

s /∈ AnnRA = AnnRa, we have sa 6= 0. But then r ∈ AnnR(sa) = AnnRA.

Hence AnnRA ∈ Spec(R).

(iii) By (i), 0 = AnnRA ∈ Spec(R), hence R is a domain.

(iv) Since AnnRA ∈ Spec(R), R/AnnRA is a commutative domain. Also

A has a natural structure of R/AnnRA-module. Denote r = r + AnnRA for

every r ∈ R. Let 0 6= a ∈ A and 0 6= r ∈ R/AnnRA. If ra = 0, then ra = 0,

hence r ∈ AnnRa = AnnRA, i.e. r = 0, a contradiction. Therefore ra 6= 0.

Thus A is a torsionfree R/AnnRA-module.

(v) Denote p = AnnRA = AnnRa for every a ∈ A. Then Ra ∼= R/p for

every a ∈ A. Since A is uniform, we have E(A) ∼= E(Ra) ∼= E(R/p). Hence

A is isomorphic to a submodule of AnnE(R/AnnRA)p. �
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Remark. Theorem 1.5.12 will be frequently used for a τ -cocritical module A.

Corollary 1.5.13 Let A be a τ -cocritical module and p = AnnRA. Then:

(i) R/p is τ -cocritical.

(ii) If 0 6= B ≤ AnnE(A)p, then B is τ -cocritical.

Proof. (i) If 0 6= a ∈ A, then R/AnnRA = R/AnnRa ∼= Ra by Theorem

1.5.12. Since A is τ -cocritical, it follows by Proposition 1.5.3 that R/AnnRA

is τ -cocritical.

(ii) Clearly, B ⊆ E(A) is τ -torsionfree. Now let D be a non-zero proper

submodule of B. Let b ∈ B \D. Since AnnRb = p, we have Rb ∼= R/p, hence

by (i), Rb is τ -cocritical. Since Rb ∩D 6= 0, it follows that Rb/(Rb ∩D) ∼=
(Rb + D)/D is τ -torsion, whence B/D cannot be τ -torsionfree. Now by

Proposition 1.5.2, B is τ -cocritical. �

We return now to the context of the class N and give a characterization

of uniform modules in N . But first let us recall the following lemma.

Lemma 1.5.14 [101, Lemma 2.31] Let R be commutative and let p ∈
Spec(R). Then the collection of all annihilators of non-zero elements of the

module E(R/p) has a unique maximal member, namely p itself.

Theorem 1.5.15 Let A be a non-zero module. Then the following state-

ments are equivalent:

(i) A is uniform and A ∈ N .

(ii) There exist p ∈ Spec(R) and 0 6= B � AnnE(R/p)p such that A ∼= B.

Proof. (i) =⇒ (ii) Let p = AnnRA and apply Theorem 1.5.12.

(ii) =⇒ (i) For every 0 6= a ∈ E(R/p) we have AnnRa ⊆ p by Lemma

1.5.14. Hence AnnRa = p for every 0 6= a ∈ AnnE(R/p)p. Then we have

AnnRB = AnnRa = p for every 0 6= a ∈ B. Since E(R/p) is indecomposable

injective, B is uniform. Let 0 6= f ∈ EndR(B). Then there exists 0 6= a ∈ B

such that f(a) 6= 0. Suppose that f is not a monomorphism. Then there
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exists 0 6= b ∈ B such that f(b) = 0. Since B is uniform, there exist r, s ∈ R

such that 0 6= ra = sb ∈ Ra ∩ Rb. Then rf(a) = f(ra) = f(sb) = sf(b) =

0, i.e. r ∈ AnnRf(a) = p. Hence ra = 0, a contradiction. Now f is a

monomorphism, so that B ∈ N . Thus A is uniform and A ∈ N . �

Corollary 1.5.16 (i) For every p ∈ Spec(R), R/p ∈ N .

(ii) Every non-zero cyclic submodule of a module in N belongs to N .

Let us see some properties of the endomorphism ring of a module in N .

Theorem 1.5.17 Let A ∈ N . Then:

(i) A is indecomposable, EndR(A) is a domain and A is a torsionfree right

EndR(A)-module.

(ii) If A is injective, then A ∼= E(R/AnnRA) and EndR(A) is a division

ring.

(iii) If A is faithful and not injective, then EndR(A) is not a division ring.

Proof. (i) Suppose that A is not indecomposable, say A = B ⊕ C for some

non-zero submodules B and C of A. Let p : A → B be the canonical

projection and i : B → A the canonical injection. Then ip is a non-zero

endomorphism of A that is not a monomorphism, hence A /∈ N , a contradic-

tion. Therefore A is indecomposable. Now let 0 6= f, g ∈ EndR(A). Then f

and g are monomorphisms, hence fg 6= 0. Therefore EndR(A) is a domain.

Finally, if 0 6= f ∈ EndR(A) and 0 6= a ∈ A, then af = f(a) 6= 0, because f

is a monomorphism. Hence A is a torsionfree right EndR(A)-module.

(ii) Let 0 6= a ∈ A. By Theorem 1.5.12, p = AnnRA = AnnRa ∈ Spec(R).

But Ra ∼= R/AnnRa = R/p, hence E(R/p) ∼= E(Ra) ⊆ A. By (i), A is

indecomposable, hence A ∼= E(R/p). Let 0 6= f ∈ EndR(A). Then f is a

monomorphism. Since A is indecomposable injective, f is an isomorphism.

Therefore EndR(A) is a division ring.

(iii) Suppose that every non-zero f ∈ EndR(A) is an isomorphism. By

Theorem 1.5.12, R is a commutative domain and A is a torsionfree module.
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It follows that R is isomorphic to a subring of the ring EndR(A), hence

rA = A for every non-zero element r ∈ R. Therefore A is torsionfree and

divisible. It follows that A is injective, a contradiction. Hence there exists

0 6= f ∈ EndR(A) which is not an isomorphism. �

Example 1.5.18 Let R be a commutative domain. Then AnnRE(R) = 0 ∈
Spec(R). By Theorem 1.5.15, every non-zero submodule of E(R) belongs

to the class N . Hence E(R) ∈ N . Since E(R) is indecomposable injective,

every non-zero endomorphism f ∈ EndR(E(R)) is an isomorphism. If A is a

non-zero proper submodule of E(R), then A is not injective because E(R) is

indecomposable. By Theorem 1.5.17, EndR(A) is not a division ring.

Proposition 1.5.19 Let A ∈ N be quasi-injective.

(i) If 0 6= B ≤ A, then B ∈ N .

(ii) If p = AnnRA and A ≤ B ≤ AnnE(A)p, then B ∈ N .

Proof. (i) Denote by i : B → A the inclusion homomorphism and let 0 6=
f ∈ EndR(B). Since A is quasi-injective, there exists h ∈ EndR(A) such that

hi = if . It follows that h 6= 0 and thus h is a monomorphism. Therefore f

is a monomorphism. Hence B ∈ N .

(ii) We have AnnRa = p for every 0 6= a ∈ AnnE(A)p. Let 0 6= f ∈
EndR(B). Then there exists 0 6= b ∈ B such that f(b) 6= 0. Since A E B,

there exists r ∈ R such that 0 6= rb ∈ A ∩ Rb. Therefore r /∈ p and

f(rb) = rf(b) 6= 0, i.e. f |A 6= 0. But f extends to an endomorphism

g ∈ EndR(E(A)). Since A is quasi-injective, we have g(A) ⊆ A, hence

f(A) ⊆ A. Let h ∈ EndR(A) be defined by h(a) = f(a) for every a ∈ A.

Since h(b) = f(b) 6= 0, it follows that h is a monomorphism. Suppose now

that f is not a monomorphism. Then there exists 0 6= c ∈ B such that

f(c) = 0. Also there exists s ∈ R such that 0 6= sc ∈ A ∩ Rc. We have

h(sc) = f(sc) = sf(c) = 0, a contradiction. Hence f is a monomorphism. �

Remark. Clearly, Theorem 1.5.17 (i) and Proposition 1.5.19 (i) hold for an

arbitrary ring R.
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1.6 τ-simple and τ-semisimple modules

We introduce now the torsion-theoretic generalizations of the notions of sim-

ple and semisimple module.

Definition 1.6.1 A non-zero module A is called τ -simple if it is not τ -

torsion and its only τ -closed submodules are t(A) and A.

The connections between τ -simple and τ -cocritical modules are given in

the following lemma, whose proof is immediate.

Lemma 1.6.2 Let A be a non-zero module. Then:

(i) A is τ -cocritical if and only if A is τ -simple and τ -torsionfree.

(ii) A is τ -simple if and only if A/t(A) is τ -cocritical.

Note that there are τ -simple modules that are not τ -cocritical and there

are torsion theories τ and rings R such that there is no τ -simple module.

Example 1.6.3 (1) [65] Let p be a prime and let n ∈ N∗. Then Zpn is clearly

a τG-simple Z-module that is not τG-cocritical.

(2) [3] Let R be an infinite direct product of copies of a field. Then there

is no τD-simple module.

Proposition 1.6.4 Let A be a module and B ≤ A. Then:

(i) B is τ -simple if and only if the τ -closure B′ of B in A is τ -simple.

(ii) If A is τ -torsionfree, then B is τ -cocritical if and only if its τ -closure

in A is τ -cocritical.

Proof. (i) First assume that B is τ -simple. Then it is not τ -torsion, hence

B′ is not τ -torsion. Let C be a proper submodule of B′. Since C/(B ∩C) ∼=
(B + C)/B ⊆ B′/B, B ∩ C is τ -dense in C.

If B ∩ C is τ -torsion, then C is τ -torsion as an extension of B ∩ C by

C/(B ∩ C), hence C ⊆ t(B′). Now by Proposition 1.4.3, C is τ -closed in B′

if and only if C = t(B′).
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If B ∩ C is not τ -torsion, then B ∩ C is not τ -closed in B because B is

τ -simple. Hence B ∩C has to be τ -dense in B, that implies that (B + C)/C

is τ -torsion. Also, B′/(B +C) is τ -torsion as a homomorphic image of B′/B.

Then B′/C is τ -torsion as an extension of (B +C)/C by B′/(B +C). Hence

C is τ -dense in B′.

Therefore B′ is τ -simple.

Conversely, assume that B′ is τ -simple. Then it is not τ -torsion, hence

B is not τ -torsion, because otherwise, since B and B′/B are both τ -torsion,

one deduces that B′ is τ -torsion. Now let C be a proper submodule of B.

If C ⊆ t(B), then by Proposition 1.4.3 C is τ -closed in B if and only if

C = t(B). If C is not τ -torsion, then B′/C is τ -torsion because B′ is τ -

simple. It follows that C is τ -dense in B. Therefore B is τ -simple.

(ii) It follows by Lemma 1.6.2 and by (i). �

Proposition 1.6.5 Let A be a module, let B be a τ -simple submodule of A

and let C be a τ -closed submodule of A. Then either B ∩ C is τ -torsion or

B ⊆ C.

Proof. Suppose that B ∩ C is not τ -torsion. Since B is τ -simple, it follows

that B ∩ C is τ -dense in C. Then C is τ -dense in B + C. But C is τ -closed

in A, so C is τ -closed in B +C. It follows that B +C = C, hence B ⊆ C. �

Let us introduce now some notions related to τ -simple modules.

Definition 1.6.6 The τ -socle of a module A, denoted by Socτ (A), is defined

as the τ -closure of the sum of all τ -simple submodules of A.

A module A is called τ -semisimple if Socτ (A) = A.

A module A is called τ -semiartinian if every non-zero factor module of

A has a non-zero τ -socle.

We collect in the following lemma some basic properties of the above

notions.
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Lemma 1.6.7 (i) The sum of all τ -simple submodules of a module equals

the sum of all its τ -closed τ -simple submodules.

(ii) If A is a τ -torsionfree module, then there exists a maximal indepen-

dent family (Ai)i∈I of τ -cocritical submodules of A such that Socτ (A) is the

τ -closure of
⊕

i∈I Ai in A.

(iii) If (Si)i∈I is the family of all τ -simple submodules of a module A,

then

t(A) ⊆
∑
i∈I

Si ⊆ Socτ (A) .

(iv) Every τ -torsion module is τ -semisimple.

(v) A module A is τ -semisimple if and only if A/t(A) is τ -semisimple.

(vi) R is τ -semiartinian if and only if Socτ (A) � A for every module A.

Proof. (i) By Proposition 1.6.4.

(ii) By Proposition 1.5.5.

(iii)− (vi) Straightforward. �

Proposition 1.6.8 Let A be a module. Then the following statements are

equivalent:

(i) A is τ -semisimple.

(ii) The lattice of τ -closed submodules of A is complemented and every

τ -closed submodule of A that is not τ -torsion contains a τ -simple submodule.

(iii) For every proper τ -closed submodule B of A, there exists a τ -simple

submodule S of A such that B ∩ S = t(S).

Proof. (i) =⇒ (ii) Let B be a τ -closed submodule of A. We may assume

without loss of generality that B 6= t(A), because otherwise a complement of

B in A is exactly A.

Denote by U the sum of all τ -simple submodules of A. Then by Lemma

1.6.7, U =
∑

i∈I Ai, where each Ai is a τ -closed τ -simple submodule of A. For

every ∅ 6= J ⊆ I, denote AJ =
∑

j∈J Aj and if J = ∅, then put A∅ = t(A).

For each AJ , denote by A′
J its τ -closure in A. Consider the family M of all
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subsets J ⊆ I such that B ∩ A′
J = t(A). Then M 6= ∅, because ∅ ∈ M.

Now take a chain (Jk)k∈K of elements of M and in what follows denote

J =
⋃

k∈K Jk. We have to show that AJ ∈ M. Since B and AJ are τ -closed

in A, we have t(A) ⊆ B ∩ A′
J . Now let a ∈ B ∩ A′

J . Then (AJ : a) is

τ -dense in R. For every r ∈ (AJ : a), ra ∈ AJ , hence ra ∈ AF for some finite

subset F ⊆ J . It follows that ra ∈ B ∩ A′
Jk

= t(A) for some k ∈ K, hence

(AJ : a)a ⊆ t(A). Then a ∈ t(A) and consequently we have B ∩ A′
J = t(A).

Thus AJ ∈M. Now by Zorn’s Lemma, M has a maximal element, say L.

We are going to prove that A′
L is a τ -closed complement of B. We have

just seen that the first condition for that holds, namely B ∩ A′
L = t(A). Let

us suppose that the second condition does not hold, that is, we assume that

B + A′
L is not τ -dense in A. Then U * B + A′

L, so that Ai * B + A′
L for

some i ∈ I. Denote W = L ∪ {i}. We will show that AW ∈ M. Since Ai is

τ -closed in A, we have t(Ai) = t(A). By Proposition 1.6.5, it follows that

Ai ∩ (B + A′
J) = t(Ai) = t(A) .

We have t(A) ⊆ B ∩ A′
W . Now let a ∈ B ∩ A′

W . Then (AW : a) is a τ -dense

left ideal of R. For every r ∈ (AW : a), we have ra ∈ AW , so that ra = ai +x

for some ai ∈ Ai and x ∈ AL, whence ai ∈ Ai ∩ (B + A′
L) = t(A) ⊆ AL. It

follows that ra ∈ AL, so that ra ∈ B ∩ AL = t(A). As above, this means

that a ∈ t(A) and consequently B ∩ A′
W = t(A). But this contradicts the

maximality of L. Therefore B + A′
L is τ -dense in A and consequently the

lattice of τ -closed submodules of A is complemented.

For the second part, let B be a τ -closed submodule of A that is not τ -

torsion. Then B has a τ -closed complement C, hence we have B ∩C = t(A)

and B + C is τ -dense in A. It follows that Ai ∩ C = t(A) for some i ∈ I,

because otherwise the inclusions Ai ⊆ C for each i imply A ⊆ C and B =

t(A), a contradiction. Then (Ai + C)/C ∼= Ai/t(Ai) is a τ -closed τ -cocritical

submodule of A/C. Also, (B ∩ (Ai + C))/C is a τ -cocritical submodule of

B/C. Now it follows that B ∩ (Ai + C) is a τ -simple submodule of B.
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(ii) =⇒ (iii) Let B be a proper τ -closed submodule of A. Then B has a

τ -closed complement C, hence we have B ∩ C = t(A) and B + C is τ -dense

in A. Note that C is not τ -torsion, because otherwise C ⊆ B. Hence C has

a τ -simple submodule S. Then we have B ∩ S ⊆ B ∩ C = t(A), whence

t(S) ⊆ B ∩ S ⊆ S ∩ t(A) = t(S) .

Thus B ∩ S = t(S).

(iii) =⇒ (i) Suppose that A is not τ -semisimple. Then there exists a

τ -simple submodule S such that S ∩Socτ (A) = t(S). Since S ⊆ Socτ (A), we

deduce that S = t(S), a contradiction. �

It is well-known that semisimple rings are characterized by the fact that

every module is semisimple. Also, every semisimple module is semiartinian.

The torsion-theoretic versions of these properties hold as well.

Theorem 1.6.9 The following statements are equivalent:

(i) R is τ -semisimple.

(ii) Every module is τ -semisimple.

Proof. (i) =⇒ (ii) Let (Si)i∈I be the family of all τ -simple left ideals of R.

Then
∑

i∈I Si is τ -dense in R. Now let A be a module. We may suppose that

A is not τ -torsion, because otherwise it is clearly τ -semisimple. Let B be a

proper τ -closed submodule of A and let a ∈ A \ B. Then (B : a) is not τ -

dense in A, hence Si * (B : a), that is, Sia * B. Then Sia is not τ -torsion,

so that Sia ∼= Si and thus Sia is τ -simple. It follows that Sia ∩ B = 0,

because otherwise Sia/(Sia∩B) would be τ -torsion and (Sia + B)/B would

be τ -torsionfree. Now A is τ -semisimple by Proposition 1.6.8.

(ii) =⇒ (i) Obvious. �

Corollary 1.6.10 If R is τ -semisimple, then R is τ -semiartinian.

Proof. If R is τ -semisimple, then by Theorem 1.6.9 every module A is τ -

semisimple, that is, we have Socτ (A) = A for every module A. Now by

Lemma 1.6.7, R is clearly τ -semiartinian. �
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1.7 τ-complemented modules

This section contains some essential properties of τ -complemented modules,

that will be useful in the later stages.

Definition 1.7.1 A module A is called τ -complemented if every submodule

of A is τ -dense in a direct summand of A.

Example 1.7.2 Every semisimple, uniform, τ -torsion or τ -cocritical module

is clearly τ -complemented.

We have the following basic characterization of τ -complemented modules.

Proposition 1.7.3 A module A is τ -complemented if and only if every τ -

closed submodule of A is a direct summand of A.

Proof. Suppose first that A is τ -complemented. Let B be a τ -closed submod-

ule of A. By hypothesis, B is τ -dense in a direct summand C of A. Then

C/B ⊆ A/B is τ -torsionfree, whence B = C.

Conversely, assume that every τ -closed submodule of A is a direct sum-

mand of A. Let B be a submodule of A. Also, let C/B = t(A/B). Since

C is τ -closed in A, C is a direct summand of A. Thus B is τ -dense in the

direct summand C of A, showing that A is τ -complemented. �

Let us now recall the definition of an extending module and see some

similarities between τ -complemented modules and extending modules. A

module A is called extending if every submodule of A is essential in a direct

summand of A. For instance, every uniform or quasi-injective module is

extending.

We have an immediate characterization of extending modules, similar to

the one for τ -complemented modules. Recall that a submodule of a module

A is called closed if it does not have any proper essential extension in A.
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Proposition 1.7.4 [40, p.55] A module A is extending if and only if every

closed submodule of A is a direct summand.

Extending modules and τ -complemented modules are also connected in

the sense of the following proposition.

Lemma 1.7.5 (i) Every τ -torsionfree τ -complemented module is extending.

(ii) Every extending module is τG-complemented.

Proof. (i) This is immediate noting that every τ -dense submodule of a τ -

torsionfree module is essential (see Proposition 1.4.2).

(ii) Clear, since every essential submodule is τG-dense. �

Other examples of τ -complemented modules can be obtain as follows.

Proposition 1.7.6 (i) The class of τ -complemented modules is closed under

homomorphic images and direct summands.

(ii) Let A be a τ -complemented module and let S be a semisimple module.

Then A⊕ S is τ -complemented.

(iii) Let A be a τ -complemented module and let T be a τ -torsion module.

Then A⊕ T is τ -complemented.

Proof. (i) Let A be a τ -complemented module and let B ≤ A. Also let

C/B ≤ A/B. Since A is τ -complemented, C is τ -dense in a direct summand

D of A. Then C/B is clearly τ -dense in the direct summand D/B of A/B.

The last part is now clear.

(ii) Let B ≤ A⊕ S. Then we have

A + B = A⊕ (S ∩ (A + B))

and, since S ∩ (A + B) is a direct summand of S, it follows that A + B is a

direct summand of A⊕S. Now since A is τ -complemented, A∩B is τ -dense

in direct summand C of A. Also write A = C ⊕D for some D ≤ A. Then

(B + C)/B ∼= C/(B ∩ C) = C/(A ∩B ∩ C) = C/(A ∩B) ,
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hence B is τ -dense in B + C. Moreover, we have

(B + C) ∩D = (B + C) ∩ A ∩D = ((A ∩B) + C) ∩D = C ∩D = 0 ,

whence A + B = (B + C) ⊕ D. It follows that B is τ -dense in the direct

summand B + C of A⊕ S. Therefore A⊕ S is τ -complemented.

(iii) We may assume that A is τ -complemented τ -torsionfree. Let D be a

τ -closed submodule of A⊕T . Then by Proposition 1.4.3, t(D) = t(A⊕T ) =

T . We also have D = (A∩D)⊕T . Since A/(A∩D) ∼= (D+A)/D = (A⊕T )/D

is τ -torsionfree, the τ -closed submodule A ∩ D is a direct summand of the

τ -complemented module A, say A = (A ∩D)⊕ C. But then

A⊕ T = (A ∩D)⊕ C ⊕ T = D ⊕ C ,

hence D is a direct summand of A⊕ T . Thus A⊕ T is τ -complemented. �

In general, the class of τ -complemented modules is not closed under sub-

modules or direct sums, as we can see in the next example.

Example 1.7.7 [104] Denote by Q(2) the localization of Z at the prime ideal

2Z. Then Q(2) ⊕ Q(2) is a τG-torsionfree abelian group. It is also extend-

ing [64], hence it is τG-complemented by Lemma 1.7.5. But its submodule

Q(2) ⊕ Z is not extending [64], hence it is not τG-complemented by Lemma

1.7.5. Furthermore, Z and Q(2) are uniform abelian groups, so that they

are clearly τG-complemented, whereas we have just seen that Q(2)⊕Z is not

τG-complemented.

Theorem 1.7.8 The following statements are equivalent for a module A:

(i) A is τ -complemented.

(ii) A = t(A)⊕B, where B is a (τ -torsionfree) τ -complemented submodule

of A.

Proof. (i) =⇒ (ii) Since A is τ -complemented, t(A) is τ -dense in a direct

summand D of A. Then we must have t(A) = D, whence A = t(A)⊕ B for
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some τ -torsionfree submodule B of A. Moreover, B is τ -complemented by

Proposition 1.7.6 (i).

(ii) =⇒ (i) By Proposition 1.7.6 (iii). �

The following result will be useful in the process of establishing direct

sum decompositions for τ -complemented modules.

Proposition 1.7.9 Let A be a τ -complemented module with finite uniform

dimension. Then every submodule of A has ACC on τ -closed submodules.

Proof. Denote by n the uniform dimension of A, let B ≤ A and consider

a properly ascending chain B1 ⊂ B2 ⊂ . . . of τ -closed submodules of B.

Since A is τ -complemented, Bn+1 is τ -dense in a direct summand C1 of A.

Write A = C1 ⊕ D1 for some submodule D1 of A. If D1 = 0, then Bn+1 is

τ -dense in A, hence Bn+1 is τ -dense in B, whence it follows that Bn+1 = B,

a contradiction. Thus D1 6= 0. By Proposition 1.7.6, C1 is τ -complemented,

hence Bn is τ -dense in a direct summand C2 of C1. Write C1 = C2 ⊕ D2

for some submodule D2 of C1. If D2 = 0, then Bn is τ -dense in C1, whence

Bn+1 = Bn, a contradiction. Hence D2 6= 0. Continuing the procedure,

we get a direct sum D1 ⊕ D2 ⊕ · · · ⊕ Dn+1 of non-zero submodules of A, a

contradiction. �

Theorem 1.7.10 The following statements are equivalent for a τ -

complemented module A:

(i) A is a direct sum of a τ -torsion and τ -cocritical modules.

(ii) R has ACC on left ideals of the form AnnRx, where x ∈ A/t(A).

Proof. (i) =⇒ (ii) Suppose that A = T ⊕ (
⊕

j∈J Cj) for some τ -torsion

module T and some τ -cocritical modules Cj (j ∈ J). Then C =
⊕

j∈J Cj

is τ -torsionfree and T = t(A). Now consider a properly ascending chain

AnnR(c1) ⊂ AnnR(c2) ⊂ . . . of left ideals, where each ci ∈ C ∼= A/t(A).

Since

Rc1/AnnR(ci)c1
∼= R/AnnR(ci) ∼= Rci ⊆ C ,
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it follows that AnnR(c2)c1 ⊂ AnnR(c3)c1 ⊂ . . . is a properly ascending

chain of τ -closed submodules of Rc1. Also, there exists a finite set K ⊆ J

such that Rc1 ⊆
⊕

j∈K Cj. But each Cj is uniform, hence
⊕

j∈K Cj is a

τ -complemented module with finite uniform dimension, which is a contradic-

tion by Proposition 1.7.9.

(ii) =⇒ (i) Assume (ii). By Theorem 1.7.8 and Lemma 1.7.5, we can

write A = t(A)⊕B for some extending submodule B of A. Then B =
⊕

i∈I Bi

for some uniform submodules Bi of B [89, Lemma 3]. By Proposition 1.7.6,

each Bi is τ -complemented, hence τ -cocritical. �

1.8 The torsion theories τn

In this section we come back to the torsion theories τn previously defined, in

order to establish a few properties that will be used later on. These torsion

theories will be the usual framework to detail results on τ -injectivity.

Throughout this section we will assume the ring R to be commutative.

Let us recall the definition of the torsion theories τn. For a positive integer

n, let An be the class consisting of all modules isomorphic to factor modules

U/V , where U and V are ideals of R containing an ideal p ∈ Spec(R) with

dim p ≤ n. In order to ensure that our study is not vacuous, we assume

that dim R ≥ n. The class An is closed under submodules and homomorphic

images, hence the torsion theory generated by the class An is hereditary.

Denote by τn this hereditary torsion theory, which can be also seen as being

generated by all modules of Krull dimension at most n. Also denote by Tn

and Fn the τn-torsion class, respectively the τn-torsionfree class of τn.

Note that:

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ . . .

T0 ⊆ T1 ⊆ · · · ⊆ Tn ⊆ . . .

F0 ⊇ F1 ⊇ · · · ⊇ Fn ⊇ . . .
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Therefore we have

τ0 ≤ τ1 ≤ · · · ≤ τn ≤ . . .

If dim R = m, then the above sequences end for n = m.

Note also that τ0 is the hereditary torsion theory generated by the class

A0 consisting of all simple modules, i.e. the Dickson torsion theory τD. Recall

that this torsion theory is defined for a noncommutative ring R as well.

Recall now that every p ∈ Spec(R) is either τ -dense or τ -closed in R. For

the torsion theories τn we may analyze this by the dimension of the ideal p.

Proposition 1.8.1 Let p ∈ Spec(R). Then:

(i) p is τn-dense in R if and only if dim p ≤ n.

(ii) p is τn-closed in R if and only if dim p ≥ n + 1.

Proof. (i) Obvious.

(ii) If p is τn-closed in R, then by (i) we have dim p ≥ n + 1. Now

let dim p ≥ n + 1. In order to prove that R/p is τn-torsionfree, we will

show that HomR(A, R/p) = 0 for every A ∈ An. Let A ∈ An and let f ∈
HomR(A, R/p). Without loss of generality, we may assume that A = U/V ,

where U, V are ideals of R containing an ideal q ∈ Spec(R) with dim q ≤ n.

Suppose that f 6= 0. Then there exist r ∈ U \ V and s ∈ R \ p such

that f(r + V ) = s + p. If V \ p = ∅, then V ⊆ p, hence q ⊆ p, so that

dim p ≤ dim q, a contradiction. Now let v ∈ V \ p. Then vf(r +V ) = vs+ p,

hence f(V ) = vs + p. Since f(V ) = p, it follows that vs ∈ p, whence v ∈ p

or s ∈ p, a contradiction. Hence f = 0 and thus R/p is τn-torsionfree. �

The next proposition answers the question whether and when τn equals

the extreme torsion theories, namely the trivial one and the improper one.

Proposition 1.8.2 (i) τn cannot be the trivial torsion theory ξ on R-Mod.

(ii) Let R be a domain. Then τn coincides with the improper torsion

theory χ on R-Mod if and only if dim R = n.
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Proof. (i) Note that An contains at least all modules isomorphic to R/M for

some maximal ideal M of R.

(ii) Suppose first that τn = χ. If dim R ≥ n + 1, then R is τn-torsionfree

by Proposition 1.8.1, a contradiction. Hence dim R = n.

Suppose now that dim R = n. Since 0 ∈ Spec(R), τn is generated by the

class An consisting of all modules isomorphic to factor modules U/V , where

U and V are ideals of R containing an ideal p ∈ Spec(R) with dim p ≤ n.

Let A be a non-zero module and let 0 6= a ∈ A. Then Ra ∼= R/AnnRa, hence

A contains the submodule Ra ∈ An. Hence A is τn-torsion. Thus τn = χ. �

We continue with a couple of results on τn-cocritical modules.

Proposition 1.8.3 Let A be a τn-cocritical module. Then:

(i) AnnRA ∈ Spec(R) and dim AnnRA = n + 1.

(ii) For every natural number k 6= n, A is not τk-cocritical.

Proof. (i) Denote p = AnnRA. By Theorem 1.5.12 and Corollary 1.5.13, p ∈
Spec(R) and R/p is τn-cocritical, hence R/p is τn-torsionfree. By Proposition

1.8.1, dim p ≥ n + 1. Suppose that dim p > n + 1. Then there exists

q ∈ Spec(R) with dim q = n + 1 and p ⊂ q. Moreover, again by Proposition

1.8.1, R/q is τn-torsionfree. On the other hand, R/q ∼= (R/p)/(q/p) is τn-

torsion, a contradiction. Hence dim p = n + 1.

(ii) If A is τn-cocritical and τk-cocritical, then by (i) we have p =

AnnRA ∈ Spec(R) and dim p = n + 1 = k + 1, hence k = n. �

Throughout we will prove a few results under the hypothesis on p ∈
Spec(R) to be N-prime, i.e. R/p to be noetherian.

Corollary 1.8.4 Let p be an N-prime ideal of R. Then R/p is τn-cocritical

if and only if dim p = n + 1.

Proof. The ”only if” part follows by Proposition 1.8.3. Suppose now that

dim p = n + 1. Then R/p is τn-torsionfree. Since the R-module R/p is
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noetherian, by Proposition 1.5.8 there exists an ideal q of R such that p ⊆ q

and R/q is τn-cocritical. By Proposition 1.8.3, q = AnnR(R/q) ∈ Spec(R)

and dim q = n + 1. Then p = q, hence R/p is τn-cocritical. �

Example 1.8.5 (1) Let R be a principal ideal domain. Then R is noethe-

rian, dim R ≤ 1 and 0 ∈ Spec(R). By Corollary 1.8.4, R is τ0-cocritical. In

particular, the ring Z is τ0-cocritical.

(2) Let R = K[X1, . . . , Xm] be the polynomial ring over a field K, where

m ≥ 2. Let p = (X1, . . . , Xm−n−1), where n < m− 1. Then p ∈ Spec(R) and

dim p = n + 1. By Corollary 1.8.4, R/p ∼= K[Xm−n, . . . , Xm] is τn-cocritical.

References: T. Albu [3], T. Albu, C. Năstăsescu [4], K. Aoyama [7], L. Bi-

can, L. Salce [10], P. Bland [13], J.L. Bueso, P. Jara [14], M.-C. Chamard [17],

S. Crivei [23], [31], S.E. Dickson [39], N.V. Dung, D.V. Huynh, P.F. Smith,

R. Wisbauer [40], P. Gabriel [45], J.L. Garćıa [47], J.S. Golan [48], [49],

A. Goldie [52], [53], O. Goldman [54], A. Hudry [57], J.P. Jans [62],

H. Katayama [65], J. Lambek [68], [69], W.G. Lau [70], J. N. Manocha

[72], J.-M. Maranda [73], A.P. Mishina, L.A. Skornjakov [76], K. Morita

[80], C. Năstăsescu [81], [82], C. Năstăsescu, C. Niţă [86], Z. Papp [92],

N. Popescu [94], [95], P.F. Smith, A.M. Viola-Prioli, J.E. Viola-Prioli [104],

[105], B. Stenström [107], M. Teply [110], [112], C.L. Walker, E.A. Walker

[115], J. Zelmanowitz [119].

Notes on Chapter 1

This chapter mainly contains standard material on torsion theories. Their

study began in early 1960’s, often in the context of an abelian category and

not only R-Mod. Out of an extensive literature, we should mention the

influential work of P. Gabriel (1962), J.-M. Maranda (1964), S.E. Dickson

(1966), and C.L. Walker and E.A. Walker (1972), that has been completed
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and followed by many other important papers. Since we need only selected

topics in torsion theories, we are far from presenting a complete picture

of them, so that we do not insist on their general history. Nevertheless,

out of the special notions that we will use, τ -noetherian modules and τ -

semisimple modules were first studied by C. Năstăsescu and C. Niţă (1965)

and respectively by W.G. Lau (1980). Also, τ -complemented modules were

introduced by J.S. Golan (1986) under the name of τ -direct modules and

afterwards reconsidered by P.F. Smith, A.M. Viola-Prioli and J.E. Viola-

Prioli (1997).



Chapter 2

τ-injective modules

In this chapter we introduce injective modules relative to a hereditary torsion

theory τ and we study their main properties. We give characterization the-

orems for injective modules, including some in terms of a generating class of

τ . We show that every module has a τ -injective hull, unique up to an isomor-

phism. The class of τ -injective modules is also studied in terms of closedness

properties. Moreover, the relationship between τ -injectivity and usual in-

jectivity is analyzed. Finally, we discuss a relative injectivity generalizing

injectivity with respect to the Dickson torsion theory.

2.1 General properties

Let us begin with a basic characterization theorem, that will serve to define

τ -injective modules.

Theorem 2.1.1 The following conditions are equivalent for a module A:

(i) A is injective with respect to every monomorphism having a τ -torsion

cokernel.

(ii) A is a τ -closed submodule of E(A).

(iii) Any homomorphism from a τ -dense left ideal of R to A can be ex-

tended to a homomorphism from R to A.

51
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(iv) Ext1
R(B, A) = 0 for every τ -torsion module B.

(v) Ext1
R(R/I,A) = 0 for every τ -dense left ideal I of R.

Proof. (i) =⇒ (ii) Denote by A′ the τ -closure of A in E(A). Then 1A extends

by hypothesis to a homomorphism h : A′ → A. Then clearly h is surjective,

but also injective, because A E A′. Hence A′ = A and consequently A is

τ -closed in E(A).

(ii) =⇒ (iii) Let I be a τ -dense left ideal of R and let g : I → A be

a homomorphism. Denote by i : I → R and j : A → E(A) the inclusion

homomorphisms. Then there exists a homomorphism h : R → E(A) such

that hi = jg. If we denote a = h(1), we have

(Ra + A)/A ∼= R/(A : a) .

Since I ⊆ (A : a), (A : a) is τ -dense in R, so that (Ra + A)/A ⊆ E(A)/A is

τ -torsion. Then by hypothesis it follows that a ∈ A, whence Imh ⊆ A. Thus

h : R → A extends g.

(iii) =⇒ (i) Let C be a module, B a τ -dense submodule of C and g :

B → A a homomorphism. Consider the set M of all pairs (M, ϕ), where

B ⊆ M ⊆ C and ϕ : M → A is a homomorphism that extends g. Define on

M a partial order by

(M1, ϕ1) ≤ (M2, ϕ2) ⇐⇒ M1 ⊆ M2 and ϕ2|M1 = ϕ1 .

Clearly, M 6= ∅ and it is inductive. By Zorn’s Lemma, M has a maximal

element (M0, ϕ0). We will show that M0 = C. Suppose that there exists

c ∈ C \ M0 and denote I = (M0 : c). Then I is a τ -dense left ideal of R,

because (B : c) ⊆ I. By hypothesis, the homomorphism α : I → A defined

by α(x) = ϕ0(xc) can be extended to a homomorphism β : R → A. But then

the homomorphism

γ : M0 + Rc → A , γ(m0 + rc) = ϕ0(m0) + β(r)

extends ϕ0, that contradicts the maximality of (M0, ϕ0). Hence M0 = C.
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(ii) =⇒ (iv) For every module B, the short exact sequence 0 → A →
E(A) → E(A)/A → 0 induces the exact sequence

HomR(B, E(A)/A) → Ext1
R(B, A) → Ext1

R(B, E(A))

The first term is zero because B is τ -torsion and E(A)/A is τ -torsionfree,

whereas the last term is again zero by the injectivity of E(A). Hence

Ext1
R(B, A) = 0.

(iv) =⇒ (v) Clear.

(v) =⇒ (iii) Clear. �

Definition 2.1.2 A module satisfying the equivalent conditions of Theorem

2.1.1 is called τ -injective.

Actually, when checking τ -injectivity, we can restrict ourselves to τ -dense

essential left ideals of R. Thus we have the following proposition.

Proposition 2.1.3 A module A is τ -injective if and only if any homomor-

phism from a τ -dense essential left ideal of R to A can be extended to a

homomorphism from R to A.

Proof. The direct implication is obvious. For the converse, let I be a τ -dense

left ideal of R and let f : I → A be a homomorphism. Consider the set M
consisting of all pairs (J, g), where J is a left ideal of R that contains I and

g : J → A is a homomorphism that extends f . Use Zorn’s Lemma to obtain

a maximal element of M, say (J0, g0). Suppose that J0 is not essential in R.

Then there exists a non-zero left ideal K of R such that J0 ∩K = 0. Then

the homomorphism h : J0 + K → A defined by h(j + K) = g0(j) clearly

extends g0, a contradiction. Hence J0 � R. Now the conclusion follows. �

In the view of the following result, let us give first a definition.

Definition 2.1.4 Let τ be a hereditary torsion theory generated by a classA
of modules closed under submodules and homomorphic images. A submodule

B of a module A is called A-dense if A/B ∈ A.
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The following proposition shows that in order to check τ -injectivity in

this case, it is enough to consider A-dense left ideals of R.

Proposition 2.1.5 Let A be a class of modules closed under submodules and

homomorphic images and let τ be the hereditary torsion theory generated by

A. Then the following statements are equivalent for a module A:

(i) A is τ -injective.

(ii) A is injective with respect to every monomorphism having the cokernel

in A.

(iii) Any homomorphism from an A-dense left ideal of R to A can be

extended to a homomorphism from R to A.

(iv) Ext1
R(B, A) = 0 for every module B ∈ A.

(v) Ext1
R(R/I,A) = 0 for every A-dense left ideal I of R.

Proof. The equivalences (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) follow in a similar

way as for Theorem 2.1.1 and the implication (i) =⇒ (iv) is obvious.

(iv) =⇒ (i) Suppose that A is not τ -closed in E(A). Then there exists

C ≤ E(A) such that A ⊂ C and C/A ∈ A. Now by hypothesis, the exact

sequence 0 → A → C → C/A → 0 splits, hence A is a direct summand of

C. But this is a contradiction, because A � C. Hence A is τ -closed in E(A)

and consequently A is τ -injective by Theorem 2.1.1. �

Let us give now a characterization of τ -injective modules in terms of

projectivity of some τ -torsion modules with respect to certain short exact

sequences of modules.

Proposition 2.1.6 Let τ be a hereditary torsion theory generated by a class

A of modules closed under submodules and homomorphic images. Then the

following statements are equivalent for a module A:

(i) A is τ -injective.

(ii) Every module of the class A is projective with respect to the exact

sequence of modules 0 → A → E(A) → E(A)/A → 0.
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Proof. Since E(A) is injective, for every module B ∈ A we have

Ext1
R(B, A) = 0 if and only if the induced sequence

0 → HomR(B, A) → HomR(B, E(A)) → HomR(B, E(A)/A) → 0

is exact, that is, B is projective with respect to the initial exact sequence. �

Certain properties of injective modules over noetherian rings can be gen-

eralized to τ -injective modules over rings R such that every A-dense left ideal

of R is finitely generated. For instance, we give the following proposition.

Proposition 2.1.7 Let τ be a hereditary torsion theory generated by a class

A of modules closed under submodules and homomorphic images. Let R be a

ring such that every A-dense left ideal of R is finitely generated. Then every

module has a maximal τ -injective submodule.

Proof. Let A be a non-zero module. Denote by B the set of all τ -injective

submodules of A. Then B 6= ∅, because 0 ∈ B. Let (Bj)j∈J be a chain

in B and denote B =
⋃

j∈J Bj. Let I be an A-dense left ideal of R and

let f : I → B be a homomorphism. If I is generated by r1, . . . , rn, then

f(I) is generated by f(r1), . . . , f(rn), hence there exists k ∈ J such that

f(r1), . . . , f(rn) ∈ Bk, i.e. Imf ⊆ Bk. Since Bk is τ -injective and Bk ⊆ B,

there exists an homomorphism g : R → B that extends f . Hence B is τ -

injective. By Zorn’s Lemma, A has a maximal element, which is a maximal

τ -injective submodule of A. �

We give now a characterization of stable torsion theories related to τ -

injectivity (see also Proposition 1.2.8).

Proposition 2.1.8 τ is stable if and only if t(A) is a direct summand of

every τ -injective module A.

Proof. First, let A be a τ -injective module. Then A is τ -closed in E(A),

whence t(E(A)) ⊆ A. By hypothesis, t(A) = t(E(A)) is a direct summand

of E(A), so that it is injective. Hence t(A) is a direct summand of A.
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Conversely, let A be a τ -torsion module. By hypothesis, t(E(A)) is a

direct summand of E(A). Since A ⊆ t(E(A)) and A E E(A), we must have

t(E(A)) = E(A). Hence E(A) is τ -torsion and, consequently, τ is stable. �

Let us now give some properties for τ -torsion or τ -torsionfree τ -injective

modules.

Proposition 2.1.9 (i) Every τ -torsion τ -injective module is quasi-injective.

(ii) If τ is stable, then every τ -torsion τ -injective module is injective.

Proof. (i) Let A be a τ -torsion τ -injective module. If B ≤ A, then B is

τ -dense in A, so that every homomorphism B → A extends to an endomor-

phism of A by the τ -injectivity of A.

(ii) Let A be a τ -torsion τ -injective module. By Proposition 2.1.8, we

have A = t(E(A)) = E(A). �

Proposition 2.1.10 The following statements are equivalent for a module

A:

(i) A is τ -torsionfree τ -injective.

(ii) For every module B and every τ -dense submodule C of B, every

homomorphism C → A uniquely extends to a homomorphism B → A.

Proof. (i) =⇒ (ii) Let B be a module and let C be a τ -dense submodule of

B. Then the exact sequence 0 → C → B → B/C → 0 induces the exact

sequence

0 → HomR(B/C, A) → HomR(B, A) → HomR(C, A) → Ext1
R(B/C, A)

By hypothesis we have HomR(B/C, A) = 0 and Ext1
R(B/C, A) = 0, hence

HomR(B, A) ∼= HomR(C, A), that gives the requested uniqueness.

(ii) =⇒ (i) Assuming (ii), A is clearly τ -injective. By hypothesis we

have HomR(B, A) ∼= HomR(C, A) for every module B and every τ -dense

submodule C of B. If B is any τ -torsion module and C = 0, then from the

above exact sequence we get HomR(B, A) = 0. Thus A is τ -torsionfree. �
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Proposition 2.1.11 Let A be a module and B ≤ A.

(i) If A is τ -torsionfree and B is τ -injective, then B is τ -closed in A.

(ii) If A is τ -injective and B is τ -closed in A, then B is τ -injective.

(iii) If B is τ -injective and B � A, then B is τ -closed in A.

Proof. (i) Let T be a τ -torsion module. The exact sequence 0 → B → A →
A/B → 0 induces the exact sequence

HomR(T,A) → HomR(T,A/B) → Ext1
R(T, B)

Since A is τ -torsionfree and B is τ -injective, the first and the last term are

zero, hence we have HomR(T,A/B) = 0. Thus A/B is τ -torsionfree, that is,

B is τ -closed in A.

(ii) Let T be a τ -torsion module. The exact sequence 0 → B → A →
A/B → 0 induces the exact sequence

HomR(T,A/B) → Ext1
R(T,B) → Ext1

R(T,A)

Since A/B is τ -torsionfree and A is τ -injective, the first and the last term

are zero, hence we have Ext1
R(T, B) = 0. Thus B is τ -injective.

(iii) Since B is τ -injective, E(A)/B = E(B)/B is τ -torsionfree. Then so

is A/B, that is, B is τ -closed in A. �

Let us now see when the τ -injectivity of a module B assures the τ -

injectivity of HomR(A, B).

Theorem 2.1.12 Let R be commutative and let A and B be modules.

(i) If B is τ -injective and TorR
1 (R/I,A) = 0 for every τ -dense ideal I of

R, then HomR(A, B) is τ -injective.

(ii) If B is τ -torsionfree τ -injective, then so is HomR(A, B).

Proof. (i) Let I be a τ -dense ideal of R. The exact sequence 0 → I → R →
R/I → 0 induces the exact sequence

0 // TorR
1 (R/I,A) // I ⊗R A

f // R⊗R A
g // R/I ⊗R A // 0
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Since R⊗R A ∼= A and R/I⊗R A ∼= A/IA, we have Imf = Kerg ∼= IA. Thus

we obtain an exact sequence

0 → TorR
1 (R/I,A) → I ⊗R A → IA → 0

Using the hypothesis, we have I ⊗R A ∼= IA. Then we get the following

commutative diagram

HomR(A, B) //

��

HomR(R⊗R A, B) //

��

HomR(R, HomR(A, B))

��
HomR(IA,B) // HomR(I ⊗R A, B) // HomR(I, HomR(A, B))

where the horizontal arrows are isomorphisms and the first two vertical ar-

rows are epimorphisms. It follows that the third vertical arrow is an epimor-

phism, that shows that HomR(A, B) is τ -injective.

(ii) Since B is τ -torsionfree, for every τ -torsion module T we have

HomR(T, HomR(A, B)) ∼= HomR(A, HomR(T,B)) = 0 .

Hence HomR(A, B) is τ -torsionfree. Let I be a τ -dense ideal of R. It is

enough to show that

HomR(R, HomR(A, B)) ∼= HomR(I, HomR(A, B)) .

By the τ -injectivity of B, the exact sequence

0 → TorR
1 (R/I,A) → I ⊗R A → IA → 0

induces the exact sequence

0 → HomR(IA, B) → HomR(I ⊗R A, B) → HomR(TorR
1 (R/I,A), B) → 0

We claim that TorR
1 (R/I,A) is τ -torsion. To this end, consider an exact

sequence 0 → K → P → B → 0 with P projective. It induces an exact

sequence

0 → TorR
1 (R/I,A) → R/I ⊗R K → W → 0
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Now for every τ -torsionfree module F we have the exact sequence

HomR(R/I ⊗R K, E(F )) → HomR(TorR
1 (R/I,A), E(F )) → Ext1

R(W, E(F ))

The last term is clearly zero and

HomR(R/I ⊗R K, E(F )) ∼= HomR(K, HomR(R/I,E(F ))) = 0 ,

whence we get HomR(TorR
1 (R/I,A), E(F )) = 0. By Proposition 1.2.13,

TorR
1 (R/I,A) is τ -torsion.

Now HomR(TorR
1 (R/I,A), B) = 0, whence we obtain the isomorphisms

HomR(IA,B) ∼= HomR(I ⊗R A, B) ∼= HomR(I, HomR(A, B)) .

On the other hand, again by the τ -injectivity of B, the exact sequence 0 →
IA → A → A/IA → 0 induces the exact sequence

0 → HomR(A/IA, B) → HomR(A, B) → HomR(IA,B) → 0

Since A/IA is τ -torsion, the last Hom is zero, hence we have the isomorphism

HomR(IA,B) ∼= HomR(A, B). Therefore we get the isomorphisms

HomR(I, HomR(A, B)) ∼= HomR(A, B) ∼= HomR(R⊗R A, B)

∼= HomR(R, HomR(A, B)) ,

that finish the proof. �

2.2 τ-injective hulls

Now we introduce the torsion-theoretic version of the notion of injective hull

of a module.

Definition 2.2.1 The τ -closure of a module A in E(A) is called a τ -injective

hull of A and is denoted by Eτ (A).
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The following result summarizes some first properties of τ -injective hulls,

that will be often used.

Lemma 2.2.2 Let A be a module. Then:

(i) Eτ (A) is an essential τ -injective submodule of E(A) and it is the

minimal such submodule of E(A).

(ii) Eτ (A)/A = t(E(A)/A).

(iii) If D is a τ -injective module, then D = Eτ (A) if and only if A is a

τ -dense essential submodule of D.

(iv) If A is τ -torsion (respectively τ -torsionfree or τ -cocritical), then

Eτ (A) has the same property.

Proof. (i) By Theorem 2.1.1.

(ii) By Proposition 1.4.5.

(iii) By (i) and (ii).

(iv) If A is τ -torsion, then by (i), Eτ (A)/A is τ -torsion, whence it follows

that Eτ (A) is τ -torsion. If A is τ -torsionfree, then by Proposition 1.2.11,

Eτ (A) ⊆ E(A) is τ -torsionfree. The τ -injective hull of a τ -cocritical module

is τ -cocritical by Proposition 1.6.4. �

Theorem 2.2.3 Every module has a τ -injective hull, unique up to an iso-

morphism.

Proof. The existence is clear by definition. Let A be a module and suppose

that E1 and E2 are τ -injective hulls of A. Denote by i : A → E1 and

j : A → E2 the inclusion homomorphisms. By the τ -injectivity of E2, there

exists a homomorphism f : E1 → E2 such that fi = j. Since i is an essential

monomorphism, it follows that f is a monomorphism. By the τ -injectivity

of f(E1), the exact sequence 0 → f(E1) → E2 → E2/f(E1) → 0 splits, say

E2 = f(E1) ⊕ B. Then j(M) ∩ B = 0. Since j(M) � E2, we have B = 0,

hence f is an epimorphism. Thus E1
∼= E2. �

Now we can characterize τ -injective hulls in terms of their elements.
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Theorem 2.2.4 Let A be a module. Then:

(i) Eτ (A) = {x ∈ E(A) | (A : x) is τ -dense in R}.
(ii) If E is an injective module that cogenerates τ , then

Eτ (A) = {x ∈ E(A) | f(x) = 0 for every f : E(A) → E with f(A) = 0} .

Proof. (i) Denote

D = {x ∈ E(A) | (A : x) is τ -dense in R} .

We will prove that A is a τ -dense essential submodule of D and D is τ -

injective. It is easy to check that A ⊆ D and D is a submodule of E(A).

Moreover, A � D and A is τ -dense in D by Proposition 1.4.5. Also, D is the

maximal submodule of E(A) that contains A as a τ -closed submodule.

Now let T be a τ -torsion module. The exact sequence 0 → D → E(A) →
E(A)/D → 0 induces the exact sequence

HomR(T,E(A)/D) → Ext1
R(T, D) → Ext1

R(T, E(A))

Since E(A)/D is τ -torsionfree and E(A) is injective, the first and the last

term are zero, hence we have Ext1
R(T,D) = 0. Thus D is τ -injective. Now it

follows that D = Eτ (A).

(ii) First, let x ∈ Eτ (A). Let f : E(A) → E be a homomorphism with

f(A) = 0. Let I be a τ -dense left ideal of R such that Ix ⊆ A. Then

If(x) = f(Ix) = 0 and, since E is τ -torsionfree, it follows that f(x) = 0.

Now let x ∈ E(A) be such that f(x) = 0 for every homomorphism f :

E(A) → E with f(A) = 0. In order to prove that x ∈ Eτ (A), it suffices by

(i) to show that the left ideal I = (A : x) is τ -dense in R, or equivalently, to

show that HomR(R/I,E) = 0. Let g : R/I → E be a homomorphism and let

i : R/I → E(A)/A be the monomorphism defined by i(r + I) = rx + A. By

the injectivity of E, g extends to a homomorphism h : E(A)/A → E. Denote

by p : E(A) → E(A)/A the natural homomorphism. Since (hp)(A) = 0, by

hypothesis we get (hp)(x) = 0, whence g = 0. �
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It is known that if B is an essential submodule of a module A, then

E(B) = E(A). In the torsion-theoretic case we give the following result.

Lemma 2.2.5 Let A be a non-zero module and B � A. Then B is τ -dense

in A if and only if Eτ (B) = Eτ (A).

Proof. Suppose that B is τ -dense in A. We have E(A) = E(B). On the

other hand, A/B ⊆ t(E(A)/B) = Eτ (B)/B, hence A ⊆ Eτ (B). Then

Eτ (A) ⊆ Eτ (B), hence Eτ (B) = Eτ (A).

Assume now that Eτ (A) = Eτ (B). Then A/B ⊆ Eτ (A)/B = Eτ (B)/B.

But Eτ (B)/B is τ -torsion, hence A/B is τ -torsion. �

Proposition 2.2.6 Let (Ai)i∈I be a family of modules. If one of the follow-

ing conditions holds:

(i) I is a finite set;

(ii) τ is generated by a class A of modules closed under submodules and

homomorphic images, and every A-dense left ideal of R is finitely generated;

then

Eτ (
⊕
i∈I

Ai) =
⊕
i∈I

Eτ (Ai) .

Proof. (i) Immediate taking into account that in this case the class of τ -

injective modules is closed under direct sums (see Theorem 2.3.5).

(ii) Put A =
⊕

i∈I Ai. Since Ai E Eτ (Ai) for every i ∈ I, it follows

that A E
⊕

i∈I Eτ (Ai) E Eτ (A). Since every A-dense left ideal of R is

finitely generated, the module
⊕

i∈I Eτ (Ai) is τ -injective (see Proposition

2.3.9). Hence Eτ (A) =
⊕

i∈I Eτ (Ai). �

Proposition 2.2.7 Let τ be a stable torsion theory and let A be a module.

Then Eτ (A/t(A)) = t(E(A)/E(t(A)) = E(t(A)) and Eτ (A) ∼= Eτ (t(A)) ⊕
Eτ (A/t(A)).
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Proof. It is similar to the proof of Proposition 1.2.9. Thus we obtain a

commutative diagram of the same type with the injective hulls replaced by

the τ -injective hulls. Similarly, one shows that Eτ (A)/E(t(A)) is an essential

τ -injective extension of A/t(A). Furthermore, since Eτ (A)/A is τ -torsion, C

will be τ -torsion, hence A/t(A) has to be τ -dense in Eτ (A)/E(t(A)). Thus

Eτ (A/t(A)) = Eτ (A)/E(t(A)) and the conclusion follows. �

Proposition 2.2.8 Let A =
∑

i∈I Ai, where each Ai is a τ -cocritical τ -

injective module. Then there exists J ⊆ I such that A =
⊕

j∈J Aj.

Proof. Consider a maximal independent family (Aj)j∈J of (Ai)i∈I . Then for

every i ∈ I, there exists 0 6= a ∈ Ai ∩ (
⊕

j∈J Aj), which implies that there

exists a finite subset K ⊆ J such that Ai = Eτ (Ra) ⊆
⊕

j∈K Aj. It follows

that A =
⊕

j∈J Aj. �

Proposition 2.2.9 The following statements are equivalent:

(i) The essential submodules of every τ -torsionfree module are τ -dense.

(ii) The lattice of τ -closed submodules of every τ -torsionfree module is

complemented.

(iii) Every τ -torsionfree τ -injective module is injective.

Proof. (i) =⇒ (iii) Let A be a τ -torsionfree τ -injective module. Then A is

τ -closed in E(A). On the other hand, E(A) is τ -torsionfree and A � E(A),

whence by hypothesis we deduce that A is τ -dense in E(A). Thus A = E(A)

is injective.

(iii) =⇒ (i) Let A be a τ -torsionfree module and B � A. By hypothesis,

we deduce that Eτ (B) = E(B) = E(A). Since B is τ -dense in Eτ (B), it

follows that B is τ -dense in A.

(ii) =⇒ (iii) Let A be a τ -torsionfree τ -injective module. Then A is

τ -closed in E(A). By hypothesis, A has a τ -closed complement C, hence we

have A + C = E(A) and A ∩ C = t(E(A)) = 0. Now clearly A is injective.
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(iii) =⇒ (ii) Let A be a τ -torsionfree module. Note that the lattice

Cτ (A) is clearly isomorphic to the lattice Cτ (Eτ (A)). But Eτ (A) is injective

by hypothesis, hence the lattice Cτ (Eτ (A)) is clearly complemented. �

Proposition 2.2.10 Let A be a τ -cocritical faithful module over a commu-

tative ring R. Then Eτ (A) = E(A) ∼= E(R).

Proof. Let 0 6= a ∈ A. Since A is τ -cocritical, by Theorem 1.5.12 we have

AnnRa = AnnRA = 0. Then R ∼= Ra is τ -cocritical, hence every τ -injective

module is injective. Now E(A) = Eτ (A) = Eτ (Ra) = E(Ra) ∼= E(R). �

We continue with a few results on homomorphisms between τ -injective

hulls of certain modules.

Proposition 2.2.11 Let A and B be modules with B τ -torsionfree. Then

HomR(Eτ (A), Eτ (B)) = HomR(A, Eτ (B)) .

Proof. Note that Eτ (B) is τ -torsionfree and apply Proposition 2.1.10. �

Proposition 2.2.12 Let A and B be τ -cocritical modules. Then every non-

zero f ∈ HomR(Eτ (A), Eτ (B)) is an isomorphism.

Proof. Let 0 6= f ∈ HomR(Eτ (A), Eτ (B)). Clearly, Eτ (A) and Eτ (B)

are τ -cocritical. Then by Lemma 1.5.11, f is a monomorphism. Also,

Eτ (B)/f(Eτ (A)) is τ -torsion. By the τ -injectivity of f(Eτ (A)), it follows

that f(Eτ (A)) is a direct summand of Eτ (B). On the other hand, f(Eτ (A))

is τ -dense in Eτ (B), hence we have f(Eτ (A)) � Eτ (B) by Proposition 1.4.2.

Then we must have f(Eτ (A)) = Eτ (B). Thus f is an isomorphism. �

Recall that R is called a left H-ring if whenever S1 and S2 are simple

modules such that HomR(E(S1), E(S2)) 6= 0, then S1
∼= S2. For instance,

every commutative noetherian ring is an H-ring [101, p.110].



2.2. τ -INJECTIVE HULLS 65

Proposition 2.2.13 Let R be a left H-ring and let S1, S2 be simple modules.

Then S1
∼= S2 if and only if HomR(Eτ (S1), Eτ (S2)) 6= 0.

Proof. The direct implication is obvious.

Conversely, assume that HomR(Eτ (S1), Eτ (S2)) 6= 0. Let f : Eτ (S1) →
Eτ (S2) be a non-zero homomorphism. Let i : Eτ (S1) → E(S1) and j :

Eτ (S2) → E(S2) be the inclusion homomorphisms. By the injectivity of

E(S2), there exists a non-zero homomorphism g : E(S1) → E(S2) such that

gi = jf . Since R is a left H-ring, it follows that S1
∼= S2. �

Proposition 2.2.14 Let R be commutative noetherian and p, q ∈ Spec(R).

Then q ⊆ p if and only if HomR(Eτ (R/q), Eτ (R/p)) 6= 0.

Proof. Assume first that q ⊆ p. Then we have the following diagram with

exact row:

0 // R/q
i //

g

��

Eτ (R/q)

f

���
�

�
�

�
�

�
�

�

R/p

j

��
Eτ (R/p)

where i and j are inclusion homomorphisms and g is induced by the identity

map of R. Since Eτ (R/q) is τ -injective and Eτ (R/q)/(R/q) is τ -torsion,

there exists a homomorphism f : Eτ (R/q) → Eτ (R/p) such that fi = jg. It

follows that f 6= 0, because g 6= 0.

Conversely, let 0 6= f ∈ HomR(Eτ (R/q), Eτ (R/p)). Let j : Eτ (R/p) →
E(R/p) and i : Eτ (R/q) → E(R/q) be the inclusion homomorphisms. By

injectivity of E(R/p), there exists 0 6= g ∈ HomR(E(R/q), E(R/p)) such that

gi = jf . Then it follows that q ⊆ p [101, Proposition 4.21]. �

Corollary 2.2.15 Let R be commutative noetherian and let p, q ∈ Spec(R)

be such that R/p and R/q are τ -cocritical. Then q = p if and only if

HomR(Eτ (R/q), Eτ (R/p)) 6= 0.
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Proposition 2.2.16 Let R be a left H-ring, S be a simple module and A be

a proper submodule of EτD
(S). Then:

(i) Soc(EτD
(S)/A) =

⊕
i∈I Si, where Si

∼= S for every i ∈ I.

(ii) There exists B ≤ EτD
(S) containing A such that Soc(EτD

(S)/B) ∼= S.

Proof. (i) Since EτD
(S) is semiartinian, we have Soc(EτD

(S)/A) 6= 0. Let

Soc(EτD
(S)/A) =

⊕
i∈I Si, where Si is simple for every i ∈ I. Let v :

EτD
(S) → EτD

(S)/A be the natural homomorphism and let j ∈ I. Then we

have the following diagram with exact row:

0 // Sj
u //

f
��

EτD
(S)/A

g
xxq q

q
q

q

EτD
(Sj)

where u, f are inclusion homomorphisms. Since (EτD
(S)/A)/Sj is semiar-

tinian and EτD
(Sj) is τD-injective, there exists g : EτD

(S)/A → EτD
(Sj)

such that gu = f . Then 0 6= gv ∈ HomR(EτD
(S), EτD

(Sj)). By Proposition

2.2.13, Sj
∼= S.

(ii) If we denote B = Ker(gv) with the above notations, then we have

0 6= EτD
(S)/B ∼= Im(gv) ⊆ EτD

(Sj) ∼= EτD
(S) .

Therefore Soc(EτD
(S)/B) ∼= S. �

It is well known that every module is cogenerated by an injective module.

We prove now that every τD-torsion module and every τD-cocritical module is

cogenerated by a τD-injective module. But first we give the following lemma.

Lemma 2.2.17 Let A be a non-zero module which is either semiartinian or

τD-cocritical and let 0 6= a ∈ A. Then there exist a simple module S and a

homomorphism f : A → EτD
(S) such that f(a) 6= 0.

Proof. For the proper left ideal AnnRa of R, there exists a maximal left ideal

M of R such that AnnRa ⊆ M . We may define a map g : Ra → R/M
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by g(ra) = r + M for every r ∈ R. If ra = 0, then r ∈ AnnRa ⊂ M

and r + M = M , hence g is well-defined. It is easy to check that g is a

homomorphism and g(a) 6= 0. Let S = R/M . Let v : S → EτD
(S) be the

inclusion homomorphism. We may suppose that Ra 6= A. Then A/Ra is a

non-zero semiartinian module. Since EτD
(S) is τD-injective, there exists a

homomorphism f : A → EτD
(S) that extends vg, hence f(a) = g(a) 6= 0. �

Now consider all the isomorphism classes of simple modules and let (Si)i∈I

be a family of representatives, one for each isomorphism class.

Theorem 2.2.18 Every semiartinian module and every τD-cocritical module

is cogenerated by the τD-injective module
∏

i∈I EτD
(Si).

Proof. Denote D =
∏

i∈I EτD
(Si). Let A be a non-zero module which is

either semiartinian or τD-cocritical and let 0 6= a ∈ A. By Lemma 2.2.17,

there exist i ∈ I and a homomorphism fi : A → EτD
(Si) such that fi(a) 6= 0.

Let ui : EτD
(Si) → D be the canonical injection. Define the homomorphism

ha : A → D by ha = uifi. We have ha(a) = (uifi)(a) 6= 0. Denote Da = D

for every 0 6= a ∈ A. We define

h : A →
∏

a 6=0, a∈A

Da , h(x) = (ha(x))a∈A\{0}

for every x ∈ A. It is easy to check that h is a monomorphism. Hence A can

be embedded in a direct product of copies of D, i.e. A is cogenerated by the

τD-injective module D. �

2.3 The class of τ-injective modules

Let us see first when the class of τ -injective modules coincides with R-Mod.

It is well-known that semisimple rings are characterized by the fact that every

module is injective. For τ -injective modules we have the following result.
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Proposition 2.3.1 The following statements are equivalent:

(i) Every τ -dense left ideal of R is a direct summand of R.

(ii) Every module is τ -injective.

Proof. Immediate by Theorem 2.1.1. �

Remark. Clearly, if R is semisimple, then every module is τ -injective by

Proposition 2.3.1. But in general the converse does not hold, as we may see

in the next example.

Example 2.3.2 Let K be a field, let J be an infinite set and let R = KJ . Let

τ be the hereditary torsion theory on R-mod whose corresponding Gabriel

filter consists of those left ideals I of R such that there exists a cofinite subset

H of J (i.e. |J \ H| is finite) such that KH ⊆ I. Note that every τ -dense

left ideal of R is a direct summand of R. Then every module is τ -injective

by Proposition 2.3.1, but clearly R is not semisimple.

Nevertheless, we can specialize the previous result for the Dickson torsion

theory τD or for the torsion theories τn.

Proposition 2.3.3 The following statements are equivalent:

(i) R is semisimple.

(ii) Every maximal left ideal of R is τD-injective.

(iii) Every module is τD-injective.

Proof. (i) =⇒ (ii) Clear.

(ii) =⇒ (iii) Let S be a simple module and let M be the left maximal

ideal of R such that S = R/M . Since M is τD-injective, R ∼= M ⊕ S. Thus

every simple module is projective. Now the conclusion follows by Proposition

2.1.6.

(iii) =⇒ (i) Let A be a non-zero module and 0 6= a ∈ A. Then Ra has a

maximal submodule B. If B = 0, then Ra is simple. If B 6= 0, then by the

τD-injectivity of B there exists a simple module S such that Ra = B ⊕ S.
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In both cases we have Soc(Ra) 6= 0, hence Soc(A) 6= 0. It follows that every

module is semiartinian, that is, τD-torsion. Then every τD-injective module

is injective, hence every module is injective. Thus R is semisimple. �

Corollary 2.3.4 The following statements are equivalent for a ring R:

(i) R is semisimple.

(ii) For every n ∈ N, every module is τn-injective.

(iii) There exists n ∈ N such that every module is τn-injective.

Proof. If there exists n ∈ N such that every module is τn-injective, then every

module is τ0-injective and apply Proposition 2.3.3. �

In what follows let us study some closedness properties of the class of

τ -injective modules.

Theorem 2.3.5 The class of τ -injective modules is closed under direct prod-

ucts, finite direct sums, direct summands, extensions and τ -closed submod-

ules.

Proof. Let (Ai)i∈I be a family of τ -injective modules. Also, let A be a module,

B be a τ -dense submodule of A and f : B →
∏

i∈I Ai be a homomorphism.

For each j ∈ I, denote by pj :
∏

i∈I Ai → Aj the canonical projection. For

each τ -injective module Aj, there exists a homomorphism gj : A → Aj that

extends pjf . Then g : A →
∏

i∈I Ai, defined by g(a) = (gj(a))j∈I , extends f .

Thus
∏

i∈I Ai is τ -injective. Also, it is now clear that the class of τ -injective

modules is closed under finite direct sums.

It is immediate to see that every direct summand of a τ -injective module

is again τ -injective.

Now let 0 → X → Y → Z → 0 be an exact sequence with X and Z τ -

injective. For every τ -torsion module B the previous exact sequence induces

the exact sequence

Ext1
R(B, X) → Ext1

R(B, Y ) → Ext1
R(B, Z)
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Since the first and the last term are both zero by hypothesis, we have

Ext1
R(B, Y ) = 0. Thus Y is τ -injective.

Every τ -closed submodule of a τ -injective module is again τ -injective by

Proposition 2.1.11. �

We have seen in Theorem 2.3.5 that the class of τ -injective modules is

closed under finite direct sums. Under certain extra conditions, the class

of τ -injective modules is closed under arbitrary direct sums. But let us see

first some necessary and sufficient conditions for the classes of τ -torsion τ -

injective modules and τ -torsionfree τ -injective modules to be closed under

direct sums.

Theorem 2.3.6 The following statements are equivalent:

(i) R has ACC on τ -dense left ideals.

(ii) The class of τ -torsion τ -injective modules is closed under direct sums.

(iii) The class of τ -torsion τ -injective modules is closed under countable

direct sums.

Proof. (i) =⇒ (ii) Let A =
⊕

j∈J Aj be a direct sum of τ -torsion τ -injective

modules. Then A is τ -torsion. Let I be a τ -dense left ideal of R and let

f : I → A be a homomorphism. Then Kerf is τ -dense in I, so that it

is τ -dense in R. For every j ∈ J , denote by pj : A → Aj the canonical

projection.

Let us now show that the set F = {j ∈ J | pjf(I) 6= 0} is finite. Suppose

the contrary. Then choose an infinite countable subset K = {k1, k2, . . . } ⊆ J

such that pjf(I) = 0 for every j ∈ K. For every l ∈ N∗, denote

Il = f−1(
⊕

l∈(J\K)∪{k1,...,kl}

Al) .

But I1 ⊆ I2 ⊆ . . . is an infinite countable chain of left ideals of R, which

represents a contradiction. Thus F is finite and we have f(I) ⊆
⊕

j∈F Aj.
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Finally, using the previous partial result and the fact that every finite

direct sum of τ -injective modules is again τ -injective, we can extend f to a

homomorphism from R to A. Thus A is τ -injective.

(ii) =⇒ (iii) Obvious.

(iii) =⇒ (i) Let I1 ⊆ I2 ⊆ . . . . . . Ij ⊆ . . . (j ∈ J) be a chain of τ -

dense left ideals of R and set I =
⋃

j∈J Ij. Then
⊕

j∈J Eτ (R/Ij) is τ -torsion

τ -injective by hypothesis. It follows that the homomorphism

f : I →
⊕
j∈J

Eτ (R/Ij) , f(r) = (r + Ij)j∈J

extends to a homomorphism g : R → A. Then g(1) ⊆
⊕

j∈J Eτ (R/Ij) has

a finite number of non-zero coordinates, hence there exists an index k such

that I = Ik. Thus R has ACC on τ -dense left ideals. �

Theorem 2.3.7 The following statements are equivalent:

(i) τ is noetherian.

(ii) The class of τ -torsionfree τ -injective modules is closed under direct

sums.

Proof. (i) =⇒ (ii) Let (Ak)k∈K be a family of τ -torsionfree τ -injective mod-

ules. Denote by pλ :
∏

k∈K Ak → Aλ the canonical projection. Clearly, both

the direct sum and the direct product of the modules Ak are τ -torsionfree.

Let I be a τ -dense left ideal of R and let f : I →
⊕

k∈K Ak be a homomor-

phism. By the τ -injectivity of Ak, there exists a homomorphism hk : R → Ak

that extends pkf . Define the homomorphism

h : R →
∏
k∈K

Ak , h(r) = (hk(r))k∈K .

We claim that Imh ⊆
⊕

k∈K Ak. For that, it suffices to show that {k ∈ K |
hj 6= 0} is finite. Suppose that it is infinite and consider a countable subset

of indices k1, k2, . . . . For each l ∈ N∗, denote

Il = {r ∈ I | hks(r) = 0 for every s ≥ l} .
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Then I1 ⊆ I2 ⊆ . . . is an ascending chain of left ideals of R. Moreover,

their union is I, because if r ∈ I, then hk(r) = (pkf)(r) 6= 0 for finitely

many indices. By hypothesis, there exists an index t such that It is τ -dense

in R. If s ≥ t, then hks(It) = 0, so that hks induces a homomorphism in

HomR(R/It,
∏

k∈K Ak) = 0. But then hks = 0 for every s ≥ t, a contradic-

tion.

(ii) =⇒ (i) Let I1 ⊆ I2 ⊆ . . . be an ascending chain of left ideals of

R such that their union I is τ -dense in R. For each k, let Jk denote the

τ -closure of Ik in R. Suppose that there is no Ik τ -dense in R. Then each

Jk is a proper left ideal of R and we have J1 ⊆ J2 ⊆ . . . . If we denote

by J their union, then I ⊆ J , hence J is τ -dense in R. If there exists

an index l such that Jk = Jl for every k ≥ l, then Jl = J is τ -dense in

R, a contradiction. Hence we may assume that J1 ⊂ J2 ⊂ . . . . Denote

uk = qkpk, where pk : J → J/Jk is the natural homomorphism and qk :

J/Jk → R/Jk is the inclusion homomorphism. Denote by E the τ -torsionfree

injective module that cogenerates τ (see Theorem 1.2.15). Since R/Jk is τ -

torsionfree, it follows that there exists a homomorphism vk : R/Jk → E such

that vkuk 6= 0. Now consider the homomorphisms u : J →
⊕

k∈N∗ Jk defined

by u(j) = (uk(j))k∈N∗ and v =
⊕

k∈N∗ vk. Then Im(vu) is not contain in any

finite direct sum of copies of E. We have the following diagram:

0 // J
α //

u
��

R

w

���
�

�
�

�
�

�
�

�

⊕
k∈N∗ R/Jk

v

��⊕
k∈N∗ E

where α is the inclusion homomorphism. Since J is τ -dense in R and
⊕

k∈N∗ E

is τ -injective by hypothesis, there exists a homomorphism w that extends vu.

It follows that Im(vu) ⊆ Imw = Rw(1) is contained in a finite direct sum of

copies of E, a contradiction. �
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Theorem 2.3.8 The following statements are equivalent:

(i) R has ACC on τ -dense left ideals and τ is noetherian.

(ii) The class of τ -injective modules is closed under direct sums.

(iii) The class of τ -injective modules is closed under countable direct

sums.

Proof. (i) =⇒ (ii) Let A =
⊕

j∈J Aj be a direct sum of τ -injective modules.

Let I be a τ -dense left ideal of R and let f : I → A be a homomorphism.

Suppose that f(I) *
⊕

j∈F Aj for some finite F ⊆ J . As in the proof of

Theorem 2.3.6, we construct a strictly increasing chain I1 ⊂ I2 ⊂ . . . of left

ideals of R having the union I. Since I is τ -dense in R and τ is noetherian,

there exists a τ -dense left ideal In of R. Now since R has ACC on τ -dense

left ideals, it follows that Im = Im+1 = . . . for some m ≥ n, a contradiction.

Hence there exists a finite F ⊆ I such that f(I) ⊆
⊕

j∈F Aj. But
⊕

j∈F Aj

is τ -injective, whence it follows that A is τ -injective.

(ii) =⇒ (iii) Obvious.

(iii) =⇒ (i) Let I1 ⊆ I2 ⊆ . . . . . . Ij ⊆ . . . (j ∈ J) be a chain of τ -

dense left ideals of R such that I =
⋃

j∈J Ij is τ -dense in R. Define the

homomorphism

f : I →
⊕
j∈J

Eτ (R/Ij) , f(r) = (r + Ij)j∈J .

Then there exists x ∈
⊕

j∈J Eτ (R/Ij) such that (r + Ij)j∈J = xr for every

r ∈ I. If n is a non-zero coordinate of x, then r + In = 0 for every r ∈ I, so

that I = In. Thus In is τ -dense in R. Therefore τ is noetherian. Choosing

the left ideals Ij to be τ -dense, we easily get that R has ACC on τ -dense left

ideals. �

In the following proposition we ask for a condition on A-dense left ideals,

where A is a generating class for τ .

Proposition 2.3.9 Let τ be a hereditary torsion theory generated by a class

A of modules closed under submodules and homomorphic images. Let R be a
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ring such that every A-dense left ideal of R is finitely generated. Then every

direct sum of τ -injective modules is τ -injective.

Proof. Let (Di)i∈I be a family of τ -injective modules and put D =
⊕

i∈I Di.

Let M be an A-dense left ideal of R and let f : M → D be a homomorphism.

Since M is finitely generated, there exists a finite subset J of I such that

f(M) ⊆ D′ =
⊕

i∈J Di. Consider the following diagram of modules with

exact row
0 // M

u //

g

��

R
h′

~~}
}

}
}

h

���
�
�
�
�
�
�
�

D′

v

��
D

where g : M → D′ is a homomorphism defined by g(x) = f(x) for each

x ∈ M and u, v are inclusion homomorphisms. Then we have f = vg. Since

D′ is a finite direct sum of τ -injective modules, D′ is τ -injective, hence there

exists a homomorphism h′ : R → D′ such that h′u = g. Let h = vh′. Then

hu = vh′u = vg = f . Hence D is τ -injective. �

Let us discuss now when the class of τ -injective modules is closed under

homomorphic images.

Theorem 2.3.10 The following statements are equivalent:

(i) The class of τ -injective modules is closed under homomorphic images.

(ii) Every τ -torsion module has projective dimension at most 1.

(iii) Every τ -dense submodule of a projective module is projective.

(iv) Every τ -dense left ideal of R is projective.

Proof. (i) =⇒ (ii) Let T be a τ -torsion module and let A be any module.

Then the exact sequence 0 → A → E(A) → E(A)/A → 0 induces the exact

sequence

Ext1
R(T,E(A)/A) → Ext2

R(T, A) → Ext2
R(T, E(A))
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By hypothesis we have the first Ext zero and clearly the last one is zero,

hence Ext2
R(T, A) = 0. Thus T has projective dimension at most 1.

(ii) =⇒ (iii) Let P be a projective module and let B be a τ -dense

submodule of P . Also, let A be any module. Then the exact sequence

0 → B → P → P/B → 0 induces the exact sequence

Ext1
R(P, A) → Ext1

R(B, A) → Ext2
R(P/B,A)

The first Ext is clearly zero and the last one is zero by hypothesis, hence

Ext1
R(B, A) = 0. Thus B is projective.

(iii) =⇒ (iv) Obvious.

(iv) =⇒ (i) Let I be a τ -dense left ideal of R. Let A be a τ -injective

module and let f : A → C be an epimorphism with kernel B. The exact

sequence 0 → I → R → R/I → 0 induces the exact sequence

Ext1
R(I, B) → Ext2

R(R/I,B) → Ext2(R,B)

By the projectivity of I and R, the first and the last Ext are zero, hence we

have Ext2
R(R/I,B) = 0. Now the exact sequence 0 → B → A → C → 0

induces the exact sequence

Ext1
R(R/I,A) → Ext1

R(R/I, C) → Ext2
R(R/I,B)

The first and the last Ext are zero by the τ -injectivity of A and by what

we have showed above, hence we have Ext1
R(R/I, C) = 0. Thus C is τ -

injective and consequently the class of τ -injective modules is closed under

homomorphic images. �

The previous result can be refined in the following way.

Proposition 2.3.11 Let τ be a hereditary torsion theory generated by a class

A of modules closed under submodules and homomorphic images. Then the

following statements are equivalent for a ring R:

(i) Every A-dense left ideal of R is projective.

(ii) The class of τ -injective modules is closed under homomorphic images.
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Proof. Immediate by Theorem 2.3.10. �

Corollary 2.3.12 If every A-dense left ideal of R is projective, then every

sum of two τ -injective submodules of a module A is τ -injective.

Proof. By Proposition 2.3.11, every factor module of a τ -injective module

is τ -injective. Let B and C be two τ -injective submodules of A and define

the homomorphism f : B ⊕ C → B + C by f(b, c) = b + c. Then f is an

epimorphism, hence B + C is τ -injective. �

Remark. In particular, if R is left hereditary, then every factor module of a

τ -injective module is τ -injective and every sum of two τ -injective submodules

of a module is τ -injective.

We end this section with an equivalent condition for the class of τ -injective

modules to be closed under both direct sums and homomorphic images.

Theorem 2.3.13 The following statements are equivalent:

(i) The class of τ -injective modules is closed under direct sums and ho-

momorphic images.

(ii) Every τ -dense left ideal of R is finitely generated projective.

Proof. (i) =⇒ (ii) Let I be a τ -dense left ideal of R. By Theorem 2.3.10, I

is projective. Then I =
⊕

l∈L Jl for some countably generated ideals Jl of R.

We claim that each J = Jl is finitely generated. Let x1, x2, . . . be a count-

able set of generators for J . For each i = 1, 2, . . . , denote Ki =
∑i

j=1 Rxj.

By hypothesis, E =
⊕∞

i=1 E(J/Ki) is τ -injective. Let pi : J → J/Ki and

ui : J/Ki → E(J/Ki) be the natural epimorphism and the inclusion homo-

morphism respectively. Since for every x ∈ J , there exists n ∈ N such that

x ∈
∑n

i=1 Rxi and then uipi(x) = 0 for every i > n. Thus we may define the

homomorphism f : J → E by f(x) = (uipi(x))i≥1. By the τ -injectivity of

E, f extends to a homomorphism g : R → E. Then g(R) ⊆
⊕m

i=1 E(J/Ki)

for some m ∈ N, hence f(J) ⊆
⊕m

i=1 E(J/Ki), that is, J is generated by

x1, . . . , xm.
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Now L has to be finite, because otherwise there exists a proper countably

infinite subset L′ ⊆ L and then J =
⊕

l∈L′ Jl is a countably generated direct

summand of I that is not finitely generated. Therefore I is finitely generated.

(ii) =⇒ (i) By Theorem 2.3.10, the class of τ -injective modules is closed

under homomorphic images. Now let (Aj)j∈J be a family of τ -injective mod-

ules and denote A =
⊕

j∈J Aj. Let I be a τ -dense left ideal of R. By

hypothesis, I is finitely generated, say by x1, . . . , xn. Also let f : I → A be a

homomorphism. Now each f(xi) is contained in a finite sum of components

of A, hence f(I) has the same property. This sum is clearly τ -injective and

thus f extends to a homomorphism g : R → A. Hence A is τ -injective,

showing that the class of τ -injective modules is closed under direct sums. �

2.4 τ-injectivity versus injectivity

In this section we will see several cases when injectivity and τ -injectivity are

or are not the same.

Proposition 2.4.1 Every τG-injective module is injective.

Proof. Note that every essential left ideal of R is clearly τG-dense in R. �

Hence the Goldie torsion theory is not interesting from the point of view

of studying torsion-theoretic injectivity. We are going to see that there are

some other torsion theories, such as the Dickson torsion theory or the torsion

theories τn, for which τ -injectivity and usual injectivity do not coincide.

Clearly, we have the following result for an arbitrary torsion theory.

Lemma 2.4.2 If R is τ -torsion or τ -cocritical, then every τ -injective module

is injective.

In what follows we compare usual injectivity to injectivity with respect

to the Dickson torsion theory or the torsion theories τn.
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Corollary 2.4.3 Let R be a noetherian commutative domain such that every

maximal ideal of R is principal. Then every τD-injective module is injective.

Proof. Since R is a domain, clearly Soc(R) = 0, i.e. R is τD-torsionfree.

The condition
⋂∞

n=1 Mn = 0 for each maximal ideal M of R holds because

R is a noetherian domain [101, Proposition 4.23, Corollary 1]. Hence by

Proposition 1.5.10, R is τD-cocritical. Now use Lemma 2.4.2. �

For the rest of this section the ring R will be assumed to be commutative.

Let E and En be the class of injective modules and τn-injective modules

respectively. Then

E0 ⊇ E1 ⊇ · · · ⊇ En ⊇ · · · ⊇ E .

It follows that for a module A we have

Eτ0(A) ⊆ Eτ1(A) ⊆ · · · ⊆ Eτn(A) ⊆ · · · ⊆ E(A) .

Therefore for a commutative ring τD-injectivity (i.e. τ0-injectivity) is a

generalization of τn-injectivity. On the other hand, the τ0-injective hull of a

module is the ”closest” to the module among its τn-injective hulls.

Proposition 2.4.4 Let R be a noetherian domain. Then the following state-

ments are equivalent:

(i) Every τn-injective module is injective.

(ii) dim R ≤ n + 1.

Proof. Suppose first that dim R ≥ n + 2. We will show that there exist

τn-injective modules which are not injective. By Proposition 1.8.1, R is τn-

torsionfree and by Proposition 1.8.3, R is not τn-cocritical. It follows that

E(R) is τn-torsionfree and E(R) is not τn-cocritical. Then by Lemma 3.1.2,

there exists a non-zero proper τn-injective submodule A of E(R). Since E(R)

is indecomposable, A is not injective.
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Suppose now that dim R ≤ n+1. If dim R ≤ n, then by Proposition 1.8.1,

R is τn-torsion. If dim R = n + 1, then by Corollary 1.8.4, R is τn-cocritical.

In both cases, every τn-injective module is injective by Lemma 2.4.2. �

Remarks. (i) Note that the hypothesis on R to be noetherian is needed only

for showing that if dim R = n+1, then every τn-injective module is injective.

(ii) The equivalence of the statements (i) and (ii) in Proposition 2.4.4

does not hold for an arbitrary hereditary torsion theory on R-Mod, where R

is an arbitrary ring. We will give an example of a commutative ring R with

dim R = 0 and a hereditary torsion theory τ on R-Mod with the property

that not every τ -injective module is injective.

Example 2.4.5 Let K be a field, let J be an infinite set and let R = KJ . Let

τ be the hereditary torsion theory on R-Mod whose corresponding Gabriel

filter consists of those left ideals I of R such that there exists a cofinite

subset H of J such that KH ⊆ I. We have seen in Example 2.3.2 that

every module is τ -injective, but R is not semisimple. Therefore there exist

τ -injective modules that are not injective. On the other hand, R is von

Neumann regular, hence dim R = 0 [67, Theorem 3.71].

Corollary 2.4.6 If R is either a commutative principal ideal domain or a

Dedekind domain, then every τn-injective module is injective.

Proof. Every commutative principal ideal domain R is noetherian with

dim R ≤ 1. Since every Dedekind domain R is a noetherian ring whose every

non-zero prime ideal is maximal, we have dim R ≤ 1. Now use Proposition

2.4.4. �

In the sequel, we will give some first examples of non-injective τn-injective

modules, other examples being included in Chapter 3.

As a consequence of Proposition 2.4.4 and the remark following it, we

have the next corollary.
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Corollary 2.4.7 If dim R ≥ n+2, then there exist non-injective τn-injective

modules.

Proposition 2.4.8 Let R be a unique factorization domain such that every

maximal ideal of R is not principal. Then R is a τ0-injective R-module which

is not injective.

Proof. Since R is not a field, it follows that R 6= E(R), i.e. R is not injective.

Consider E(R) as the field of fractions of R. Suppose that Soc(E(R)/R) 6= 0.

Then there exists a simple module S ⊆ E(R)/R. Let M be the maximal ideal

of R such that S ∼= R/M . Then AnnRS = M . Let S = Ra, where a = a+R

and a ∈ E(R) \ R. Since R is a unique factorization domain, there exist

b, c ∈ R such that a = b
c
, where c is not invertible and the greatest common

divisor of b and c is 1. Since S is simple, AnnRa = M . Then for every

m ∈ M we have m b
c
∈ R. Hence for every m ∈ M , there exists d ∈ R such

that m = dc ∈ Rc. It follows that M ⊆ Rc. But c is not invertible and M

is a maximal ideal of R, so we obtain M = Rc, i.e. M is a principal ideal.

This provides a contradiction. It follows that Soc(E(R)/R) = 0. Hence R is

τ0-closed in E(R). Therefore R is a τ0-injective R-module. �

Lemma 2.4.9 Let R be a τ0-injective domain with dim R ≥ 1. Then R has

no principal maximal ideal.

Proof. Suppose that M is a principal maximal ideal of R. Then M ∼= R

is τ0-dense in R and τ0-injective, hence M is a direct summand of R, a

contradiction. �

Example 2.4.10 (1) Let R = K[[X1, . . . , Xm]] (m ≥ 2) be the ring of formal

power series on the set of commuting indeterminates X1, . . . , Xm over a field

K. Then M = RX1 + · · · + RXm is the unique maximal ideal of R, hence

R is a local ring. Since K is a field, R is a unique factorization domain [97,

Chapter VIII, Corollary 2.2.1]. Obviously, the ideal M is not principal. By

Proposition 2.4.8, R is a τ0-injective R-module which is not injective.
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(2) Let R = K[X1, . . . , Xm] (m ≥ 2) be the ring of polynomials on the

set of commuting indeterminates X1, . . . , Xm over an algebraic closed field

K. Then every maximal ideal of R is of the form (X1 − a1, . . . , Xm − am),

where a1, . . . , am ∈ K. Therefore the unique factorization domain R does not

have any principal maximal ideal. By Proposition 2.4.8, R is a τ0-injective

R-module which is not injective. Moreover, by Lemma 2.4.9, every non-

maximal prime ideal of R is τ0-injective as well. For instance, (Xi1 , . . . , Xik)

is τ0-injective, where k ∈ {1, . . . ,m− 1} and i1, . . . , ik ∈ {1, . . . ,m}.

Using Proposition 2.4.8, we are able to give examples of non-injective

τD-injective modules over noncommutative rings as well.

Example 2.4.11 Consider the polynomial ring R = K[X, Y ], where K is an

algebraically closed field and let Q be the field of fractions of R. By Example

2.4.10 (2), R is a τD-injective module that is not injective.

Consider the ring T =

(
R 0

Q Q

)
. Then T is left noetherian [82, Chapter

II, Example 5.1.6] and E(T ) = M2(Q) as left T -modules [67, p.79]. We have

T = A⊕B, where A =

(
R 0

Q 0

)
and B =

(
0 0

0 Q

)
are left ideals of T . Also

M2(Q) = C⊕D, where C =

(
Q 0

Q 0

)
and D =

(
0 Q

0 Q

)
are indecomposable

injective T -modules. Then A E C and B E D. The submodules of C

containing A are of the form

(
L 0

Q 0

)
, where L is an R-submodule of Q

containing R. Since R is τD-injective, Soc(Q/R) = 0, hence Soc(C/A) = 0,

i.e. A is τD-injective. Clearly, A is not injective.

Remark. Therefore injectivity with respect to the Dickson torsion theory or

to the torsion theories τn do not coincide in general with the usual injectivity.

This is the reason for us to prefer them as the main particular torsion theories

in order to strengthen results on τ -injectivity.
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2.5 A relative injectivity

At this point, let us leave for the moment the context of torsion theories

and discuss a special type of relative injectivity. Thus we will obtain a more

general result from which a part of Proposition 2.1.5 will be recovered as a

particular case.

Let C be a class of modules closed under isomorphisms, having also the

following property:

For every module M and for every family (Mi)i∈I of submodules of M

such that Mi ∈ C for every i ∈ I, there exists a subset J of I such that∑
i∈I

Mi =
⊕
j∈J

Mj .

Example 2.5.1 The class C may be considered to be the class of all simple

modules or the class of all τ -cocritical τ -injective modules (see Proposition

2.2.8).

In what follows C will be a class of modules with the above property.

For every module M , put C0(M) = 0 and denote by C1(M) the sum of all

submodules of M which belong to the class C. If M does not contain such

submodules, take C1(M) = 0.

Following [1, p.1336], for every module M we define an ascending chain

of submodules of M

0 = C0(M) ⊆ C1(M) ⊆ · · · ⊆ Cα(M) ⊆ Cα+1(M) ⊆ . . .

where for every ordinal α ≥ 0,

Cα+1(M)/Cα(M) = C1(M/Cα(M))

and for every limit ordinal α,

Cα(M) =
⋃

0≤β<α

Cβ(M) .
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The ascending chain of submodules of M defined above is called the C-series
of M .

Since M is a set, there exists an ordinal α such that Cα(M) = Cα+1(M) =

. . . . The least ordinal with that property is called the C-length of the C-series

of M and it is denoted by l(M).

We will denote c(M) = Cl(M)(M). Then l(c(M)) = l(M). A module M

is called C-module if c(M) = M .

Example 2.5.2 If the class C is the class of all simple modules, then

C1(M) = Soc(M) and the C-series of a module is its Loewy series [82, p.115].

In this case, the C-modules are exactly the semiartinian modules [82, Chapter

I, Theorem 11.4.10].

Let

0 // A
u // B

v // C // 0 (1)

be a short exact sequence of modules.

Theorem 2.5.3 The following statements are equivalent for a module D:

(i) D is injective with respect to every exact sequence (1) where C ∈ C.
(ii) D is injective with respect to every exact sequence (1) where C is a

C-module.

Proof. (i) =⇒ (ii) Assume (i) and let (1) be a short exact sequence of

modules, where C is a C-module. We may assume without loss of generality

that A is a submodule of B and u is the inclusion homomorphism. Since

B/A ∼= C, it follows that B/A is a C-module.

Denote by γ = l(B/A), A0 = A and Aγ = B. The C-series of B/A is a

collection {Aα/A0 | α < γ}, where Aα is a submodule of B for every ordinal

α < γ. It follows that {Aα | α < γ} is a chain of submodules of B such that

Aβ ⊆ Aα whenever β < α.



84 CHAPTER 2. τ -INJECTIVE MODULES

Let f0 : A → D be a homomorphism. Let α be an ordinal and suppose

that for every β < α there exists a homomorphism fβ : Aβ → D such that if

δ < β, then fβ |Aδ
= fδ.

Suppose that α is a successor of an ordinal β, i.e. α = β + 1. Then

Aα/Aβ is the sum of all submodules of B/Aβ which belong to the class C, say

Aα/Aβ =
∑

i∈I(Mi/Aβ). Then by the definition of the class C, there exists a

subset J of I such that

Aα/Aβ =
⊕
j∈J

(Mj/Aβ) .

Then Aα =
∑

j∈J Mj and Mh ∩ (
∑

j 6=h Mj) = Aβ for every h ∈ J .

By hypothesis, for every j ∈ J there exists a homomorphism gj : Mj → D

such that gj |Aβ
= fβ. If x ∈ Aα, there exist mjk

∈ Mjk
, where jk ∈ J ,

k = 1, . . . , n, such that x = mj1 +· · ·+mjn . Then we may define fα : Aα → D

by

fα(x) = gj1(mj1) + · · ·+ gjn(mjn).

If also x = m′
j1

+ · · · + m′
jn

with m′
jk
∈ Mjk

, where each jk ∈ J , then for

every s ∈ {1, . . . , n}, we have

mjs −m′
js
∈

n∑
k=1, k 6=s

Mjk
.

Hence there exist ak ∈ Aβ such that mjk
= m′

jk
+ ak for every k = 1, . . . , n

and a1 + · · ·+ an = 0. It follows that

fα(x) =
n∑

k=1

gjk
(mjk

) =
n∑

k=1

(gjk
(m′

jk
) + gjk

(ak)) =

=
n∑

k=1

gjk
(m′

jk
) +

n∑
k=1

fβ(ak) =
n∑

k=1

gjk
(m′

jk
) ,

hence fα is well-defined. It is easy to check that fα is a homomorphism.
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Now suppose that α is a limit ordinal. Then Aα =
⋃

β<α Aβ. If x ∈ Aα,

then there exists an ordinal β < α such that x ∈ Aβ and we may define

fα : Aα → D , fα(x) = fβ(x) .

If also x ∈ Aδ, δ < α, then we have either δ < β or β < δ, hence

fδ(x) = fβ(x), therefore fα is well-defined. It is easy to check that fα is

a homomorphism.

By transfinite induction, there exists a homomorphism h : B → D such

that hu = f0, i.e. D is injective with respect to the exact sequence (1), where

C is a C-module.

(ii) =⇒ (i) Assume (ii) and let (1) be a short exact sequence of modules,

where C ∈ C. Since C1(D) = D, D is a C-module. Now the result follows. �

In the particular case when the class C is the class of all simple modules,

as a consequence of Theorem 2.5.3 we obtain in a different way Proposition

2.1.5 in the particular case of the Dickson torsion theory.

Let us see a situation when the condition (i) of Theorem 2.5.3 holds.

Proposition 2.5.4 Let C be the class of all τn-cocritical τn-injective mod-

ules. Then every τn+1-injective module is injective with respect to every exact

sequence (1) where C ∈ C.

Proof. Since C is τn-cocritical, C cannot be τn+1-cocritical by Proposition

1.8.3. But τn ≤ τn+1, hence by Proposition 1.5.9, C is τn+1-torsion. Now if

D is a τn+1-injective module, it follows that D is injective with respect to

every exact sequence (1), where C ∈ C. �
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Notes on Chapter 2

As is the case for some general properties of torsion theories, it is rather

difficult to trace all the results on torsion-theoretic injectivity. Different

characterizations and general properties on τ -injectivity, sometimes called τ -

divisibility, have been established in the 1960’s. In what follows we mention

some of the more significant later results. G. Helzer (1966) characterized the

situation when the class of τ -injective modules is closed under both direct

sums and homomorphic images. G. Helzer (1966), J.S. Golan and M. Teply

(1973), and K. Masaike and T. Horigome (1980) studied when the class of τ -

torsionfree τ -injective, τ -injective, respectively τ -torsion τ -injective modules

is closed under direct sums. Many properties of τ -torsionfree τ -injective

modules, especially used in the context of localization, were established by

J.S. Alin and S. Dickson (1968). Results on the τ -injective hull of a module as

well as on the τ -injectivity of HomR(A, B) for a τ -injective module B were

given by K. Aoyama (1976). K. Masaike and T. Horigome (1980) showed

that from any sum of τ -cocritical τ -injective modules it can be refined a

direct sum of τ -cocritical τ -injective modules. This result was the author’s

motivation to introduce a special class of modules in the final part of the

chapter.



Chapter 3

Minimal τ-injective modules

The present chapter deals with minimal τ -injective modules, which play an

important part in direct sum decompositions of τ -injective modules. Par-

tial or complete structure theorem for them will be established in several

cases. In tight connection with minimal τ -injective modules, we will study

the structure of the τ -injective hull of a module. Moreover, we are interested

in obtaining information on the structure of the injective hull of a module

by studying the existence of (minimal) τ -injective submodules contained in

the injective hull. In the end we will give a few results on change of ring and

direct sum decompositions for τ -injective hulls.

3.1 General properties

Definition 3.1.1 A non-zero module which is the τ -injective hull of each of

its non-zero submodules is called minimal τ -injective.

Minimal τ -injective modules play in the torsion-theoretic context a similar

part with indecomposable injective modules.

The following lemma collects some first properties of minimal τ -injective

modules, that will be frequently used.

87
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Lemma 3.1.2 (i) Every minimal τ -injective module is uniform.

(ii) A module A is τ -injective τ -cocritical if and only if A is τ -torsionfree

minimal τ -injective.

(iii) Every minimal τ -injective module is either τ -torsion or τ -cocritical.

(iv) The endomorphism ring of a minimal τ -injective module is local.

(v) Let (Ai)i∈I be a family of minimal τ -injective modules. Then they are

relatively injective.

Proof. (i) It is clear that every non-zero submodule of a minimal τ -injective

module A is essential in A.

(ii) Suppose first that A is τ -injective τ -cocritical. Let B be a non-

zero submodule of A. Clearly, Eτ (B) ⊆ A. Since A is τ -cocritical, A is

τ -torsionfree, B is τ -dense in A and A is uniform, hence E(B) = E(A).

Then A/B ⊆ t(E(A)/B) = t(E(B)/B) = Eτ (B)/B, whence A ⊆ Eτ (B).

Consequently, A is minimal τ -injective.

Conversely, suppose that A is τ -torsionfree minimal τ -injective. Let B

be a non-zero submodule of A. Denote C/B = t(A/B). Since A is minimal

τ -injective, we have Eτ (C) = A. Then A/B is τ -torsion as an extension of

the τ -torsion module C/B by the τ -torsion module A/C = Eτ (C)/C. Thus

A is τ -cocritical.

(iii) Let A be a minimal τ -injective module. If A is not τ -torsion, then

let 0 6= a ∈ A \ t(A), whence it follows that A = Eτ (Ra) is τ -torsionfree.

Then by (ii), A is τ -cocritical.

(iv) Let A be a minimal τ -injective module and let 0 6= f ∈ EndR(A).

Then A is uniform. Also, Kerf ∩ Ker(1A − f) = 0, hence Kerf = 0 or

Ker(1A − f) = 0, that is, either f or 1A − f is a monomorphism. In both

cases, the image of this monomorphism is τ -injective, hence it has to be A.

Now it follows that f is an automorphism.

(v) Let i ∈ I. Since Ai is a non-zero minimal τ -injective module, ev-

ery proper factor module of Ai is τ -torsion. Then by the definition of τ -

injectivity, Aj is Ai-injective for every j ∈ I. �
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Let us now consider a couple of other properties of τ -torsion or τ -

torsionfree minimal τ -injective modules.

Theorem 3.1.3 Let τ be a hereditary torsion theory generated by a class

A of modules closed under submodules and homomorphic images. Then the

following statements are equivalent for a non-zero τ -torsion module A:

(i) A is minimal τ -injective.

(ii) A = Eτ (B), where B ∈ A and B is uniform.

Proof. (i) =⇒ (ii) Since A is τ -torsion, there exists a non-zero submodule B

of A such that B ∈ A. Then A = Eτ (B). Since A is uniform, it follows that

B is uniform.

(ii) =⇒ (i) Let C be a non-zero submodule of A. Since A is τ -torsion,

Eτ (C) is τ -dense in A. Then Eτ (C) is a direct summand of A. But A is

uniform, hence Eτ (C) = A. Hence A is minimal τ -injective. �

In the sequel we assume R to be commutative, unless stated otherwise.

Theorem 3.1.4 Let A be a τ -torsionfree minimal τ -injective module. Then

A ∼= Eτ (R/p), where p = AnnRA ∈ Spec(R).

Proof. Note that A is τ -cocritical. By Theorem 1.5.12 and Corollary 1.5.13,

p ∈ Spec(R) and R/p is τ -cocritical. Let 0 6= a ∈ A. Then again by Theorem

1.5.12 we have Ra ∼= R/AnnRa = R/p. Since A is minimal τ -injective,

A = Eτ (Ra) ∼= Eτ (R/p). �

We obtain some stronger results for minimal τn-injective modules.

Proposition 3.1.5 Let p ∈ Spec(R). Then:

(i) Eτn(R/p) is τn-torsion minimal τn-injective if and only if dim p ≤ n.

(ii) If Eτn(R/p) is τn-torsionfree minimal τn-injective, then dim p = n+1.

(iii) If Eτn(R/p) is τn-torsionfree, but not minimal τn-injective, then

dim p ≥ n + 1.

(iv) If dim p ≥ n + 2, then Eτn(R/p) is τn-torsionfree, but not minimal

τn-injective.
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Proof. (i) Suppose that Eτn(R/p) is τn-torsion minimal τn-injective. Then

R/p is τn-torsion, hence dim p ≤ n by Proposition 1.8.1.

Assume that dim p ≤ n. Then Eτn(R/p) is τn-torsion by Proposition

1.8.1. Since R/p is uniform and R/p ∈ An, it follows by Theorem 3.1.3 that

Eτn(R/p) is minimal τn-injective.

(ii) Since Eτn(R/p) is τn-cocritical, then by Proposition 1.8.3, q =

AnnREτn(R/p) ∈ Spec(R) and dim q = n + 1. On the other hand, by The-

orem 1.5.12, we have q = AnnRa = p for every non-zero element a ∈ R/p.

Hence dim p = n + 1.

(iii) Since R/p is τn-torsionfree, dim p ≥ n + 1 by Proposition 1.8.1.

(iv) By Proposition 1.8.1, Eτn(R/p) is τn-torsionfree. Since dim p 6= n+1,

it follows by (ii) that Eτn(R/p) is not minimal τn-injective. �

For a noetherian ring R we are able to establish the form of minimal

τn-injective modules.

Corollary 3.1.6 Let R be noetherian and let A be a module. Then:

(i) A is τn-torsion minimal τn-injective if and only if A ∼= E(R/p) for

some p ∈ Spec(R) with dim p ≤ n.

(ii) A is τn-torsionfree minimal τn-injective if and only if A ∼= Eτn(R/p)

for some p ∈ Spec(R) with dim p = n + 1.

Proof. (i) It follows by Proposition 2.1.9, Proposition 1.8.1 and by the fact

that E(R/p) is indecomposable.

(ii) The ”only if” part follows by Theorem 3.1.4 and Proposition 3.1.5.

Conversely, suppose that A ∼= Eτn(R/p) for some p ∈ Spec(R) with dim p =

n + 1. Then by Corollary 1.8.4, R/p is τn-cocritical. Hence A ∼= Eτn(R/p) is

τn-torsionfree minimal τn-injective. �

We have the following characterization of minimal τD-injective modules.

Recall that τD is generated by the class of simple modules.
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Proposition 3.1.7 The following statements are equivalent for a module D

over a not necessarily commutative ring:

(i) D is minimal τD-injective.

(ii) D = EτD
(A), where A is either τD-cocritical or simple.

Proof. (i) =⇒ (ii) Suppose that D is minimal τD-injective. If D is τD-torsion,

then by Theorem 3.1.3, we have D = EτD
(S), where S is a simple module.

If D is τD-torsionfree, then A is τD-cocritical.

(ii) =⇒ (i) Suppose that D = EτD
(A), where A is either τD-cocritical or

simple. If A is simple, then D is minimal τD-injective by Theorem 3.1.3. If

A is τD-cocritical, then D = EτD
(A) is τD-cocritical by Lemma 2.2.2, hence

D is minimal τD-injective. �

Proposition 3.1.8 Let R be a not necessarily commutative ring such that

every maximal left ideal of R is finitely generated projective and let D be a

minimal τD-injective R-module. Then for every non-zero proper submodule

A of D, there exists a family of simple modules (Si)i∈I such that

D/A =
⊕
i∈I

EτD
(Si) .

Proof. By Propositions 2.3.11, D/A is τD-injective. Since D is min-

imal τD-injective, D/A is semiartinian. Then Soc(D/A) E D/A and

(D/A)/Soc(D/A) is semiartinian, hence EτD
(Soc(D/A)) = EτD

(D/A) by

Lemma 2.2.5. Now let Soc(D/A) =
⊕

i∈I Si, where Si is simple for every

i ∈ I. Then by Proposition 2.2.6, we have

D/A = EτD
(D/A) = EτD

(Soc(D/A)) = EτD
(
⊕
i∈I

Si) =
⊕
i∈I

EτD
(Si) . �

Clearly, Proposition 3.1.8 holds for R left hereditary left noetherian. We

illustrate this in the following example.
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Example 3.1.9 The ring Z is commutative hereditary noetherian with

dim Z = 1. Hence every τD-injective Z-module is injective by Proposition

2.4.4. If P is the set of prime numbers, we have Q/Z ∼=
⊕

p∈P Zp∞ , where

Q = E(Z) and Zp∞ = E(Zp) are indecomposable injective Z-modules for

every p ∈ P .

Corollary 3.1.10 Let R be a not necessarily commutative left H-ring such

that every maximal left ideal of R is finitely generated projective. Let S be a

simple R-module and let A be a proper submodule of EτD
(S). Then:

(i) EτD
(S)/A =

⊕
i∈I EτD

(Si), where Si
∼= S for every i ∈ I.

(ii) There exists a proper submodule B of EτD
(S) which contains A and

EτD
(S)/B ∼= EτD

(S).

Proof. It follows by Propositions 2.2.16 and 3.1.8. �

We end this section with some examples of minimal τD-injective modules

over a noncommutative and even non-left noetherian ring.

Example 3.1.11 Consider the ring T =

(
Z Q
0 Q

)
. Then T has the following

properties:

(i) T is not left noetherian and T is not left semiartinian [82, Chapter II,

Example 5.1.6].

(ii) E(T ) = M2(Q) as left T -modules [55, p.82].

The left ideals of T are exactly the sets:{(
z q

0 u

)
| (z, q) ∈ H , u ∈ U

}

where H is a subgroup of Z⊕Q and U is an ideal of Q such that U ⊆ H [82,

Chapter II, Proposition 5.1.1]. Hence we have three types of left ideals of T :(
nZ Q
0 Q

)
(n ∈ N∗) ,

(
0 Q
0 Q

)
,

{(
z q

0 0

)
| (z, q) ∈ H

}
.
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Then the maximal left ideals of T are of the following two types:

Mp =

(
pZ Q
0 Q

)
(p prime) , M =

(
Z Q
0 0

)
.

The Jacobson radical of T is J(T ) =

(
0 Q
0 0

)
. Clearly, the maximal left

ideals of T are essential in T , hence Soc(T ) ⊆ J(T ). But J(T ) does not

contain any simple T -submodule, because Q does not contain any simple

subgroup. Therefore Soc(T ) = 0, i.e. T is τD-torsionfree.

We have T = B ⊕ C, where B =

(
Z 0

0 0

)
and C =

(
0 Q
0 Q

)
. Clearly,

D =

(
Q 0

Q 0

)
is a T -module and E(T ) = D⊕C. Hence D and C are injective

T -modules. Since B is essential in D, we have E(B) = D. The class of τD-

torsionfree modules is closed under injective hulls and submodules, hence D

and C are τD-torsionfree. We show that D and C are minimal τD-injective.

Let X =

(
Q 0

0 0

)
. Then the T -submodules of X are of the form XA =(

A 0

0 0

)
, where A is a subgroup of Q. Since Q = EτD

(Z) = E(Z) is τD-

cocritical, Q/A contains a simple subgroup, hence X/XA contains a simple

submodule. Since X is τD-torsionfree, it follows that X is τD-cocritical.

We have

D/X =

{(
0 0

q 0

)
+

(
Q 0

0 0

)}
∼=

{(
0 0

0 q

)
+

(
Z Q
0 0

)}
= T/M

Then D/X is simple. But X is essential in D, therefore EτD
(X) = D.

Since X is τD-cocritical, D is τD-cocritical, hence D is minimal τD-injective.

Moreover, EτD
(B) = D. Similarly, we have EτD

(J(T )) = C and C is minimal

τD-injective.

The only τD-torsion minimal τD-injective modules are E(T/M) and

E(T/Mp).
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3.2 τ-injective hulls versus injective hulls

Let us begin with a general result characterizing when the τ -injective hull

and the injective hull of a module coincide.

Theorem 3.2.1 Let A be a τ -torsionfree module. Then Eτ (A) = E(A) if

and only if for every left ideal I of R and for every homomorphism f : I → A,

there exist a τ -dense left ideal J of R with I ⊆ J and a homomorphism

g : J → A that extends f .

Proof. First suppose that Eτ (A) = E(A). Let I be a left ideal of R and

let f : I → A be a homomorphism. Then there exists a homomorphism

h : R → E(A) that extends f . By hypothesis, J = (A : h(1)) is a τ -dense

left ideal of R, I ⊆ J and h(J) ⊆ A. Then g = h|J extends f .

For the converse, let I be a left ideal of R and let f : I → A be a

homomorphism. Let h : R → E(A) be the homomorphism that extends f

and denote x = h(1).

We claim that x ∈ Eτ (A). Suppose the contrary. Let u : (A : x) → A

be the homomorphism defined as the right multiplication by x. Then there

exist a τ -dense left ideal I ′ of R with (A : x) ⊆ I ′ and a homomorphism

v : I ′ → A that extends u. Then (A : x) ⊂ I ′, because if the equality

holds, then x ∈ Eτ (A), a contradiction. It follows that there exists y ∈ E(A)

such that v is the right multiplication by y. Since (A : x) ⊂ I ′ ⊆ (A : y),

(A : y) is τ -dense in R. But E(A) is τ -torsionfree, whence we deduce that

HomR(R/(A : y), E(A)) = 0. Since x 6= y, it follows that (A : y)(x− y) 6= 0.

Hence there exists b ∈ (A : y) such that bx 6= by. But Rb(x − y) ∩ A 6= 0,

so there exists r ∈ R such that 0 6= rb(x − y) ∈ A. Since rby ∈ A, we have

rbx ∈ A. Then rb(x − y) = rbx − rby = u(rb) − v(rb) = 0, a contradiction.

Therefore x ∈ Eτ (A).

Now let α : I → Eτ (A) be a homomorphism and denote K = α−1(A).

Then K is τ -dense in R, because α induces a monomorphism I/K →
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Eτ (A)/A. Let β = α|K . Since Eτ (A) is τ -torsionfree τ -injective, it follows by

Proposition 2.1.10 that there exists a unique homomorphism γ : I → Eτ (A)

that extends β. By the above arguments, there exists x ∈ Eτ (A) such that

β is the right multiplication by x. By uniqueness, we deduce that α is the

right multiplication by x. Thus α can be extended to a homomorphism

R → Eτ (A). Therefore Eτ (A) is injective, whence Eτ (A) = E(A). �

Throughout the rest of this section R will be assumed to be commutative.

Theorem 3.2.2 Let p ∈ Spec(R) be such that Eτ (R/p) = E(R/p). Then

Eτ (R/p) is minimal τ -injective.

Proof. Let A be a non-zero submodule of Eτ (R/p) and let 0 6= a ∈ A. Since

R/p E Eτ (R/p), there exists r ∈ R such that 0 6= b = ra ∈ Ra ∩ R/p. But

AnnRb = p, hence Rb ∼= R/p. It follows that Eτ (Rb) ∼= Eτ (R/p) = E(R/p),

which means that Eτ (Rb) is injective. But E(R/p) is indecomposable injec-

tive and Eτ (Rb) E E(R/p), hence Eτ (Rb) = E(R/p). We also have

Eτ (Rb) E Eτ (A) E Eτ (R/p) = E(R/p).

Hence Eτ (A) = E(R/p). Thus E(R/p) is a minimal τ -injective module. �

We deduce now a number of corollaries of Theorem 3.2.2.

Corollary 3.2.3 The following statements are equivalent for a domain R:

(i) R is τ -cocritical.

(ii) τ is proper and Eτ (R) = E(R).

Proof. (i) =⇒ (ii). It follows by Proposition 2.2.10.

(ii) =⇒ (i). Assume (ii). By Theorem 3.2.2, Eτ (R) is minimal τ -

injective. Since 0 ∈ Spec(R), R is either τ -torsion or τ -torsionfree by Lemma

1.4.7. If R is τ -torsion, then every module is τ -torsion, a contradiction. Hence

R is τ -torsionfree. Therefore Eτ (R) is τ -cocritical. �

Note that Corollary 3.2.3 does not hold anymore if R is not a domain, as

we can see in the following example.
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Example 3.2.4 Consider the ring T =

(
Z Q
0 Q

)
and use the same notations

as in Example 3.1.11. Then we have EτD
(T ) = E(T ) = M2(Q). Note that

Soc(T ) = 0 and T is not τD-cocritical.

Let us now recall an auxiliary result.

Lemma 3.2.5 [101, Proposition 2.26, Corollary 1] If I is a proper left ideal

of a domain R, then AnnRE(R/I) = 0.

Corollary 3.2.6 Let R be a domain and let p ∈ Spec(R) be τn-closed in R.

If Eτn(R/p) = E(R/p), then dim p = n + 1, p = 0 and every τn-injective

module is injective.

Proof. By Theorem 3.2.2 and Proposition 1.8.1, Eτn(R/p) is τn-torsionfree

minimal τn-injective. By Proposition 3.1.5, dim p = n+1. Since Eτn(R/p) is

τn-cocritical, it follows by Theorem 1.5.12 that AnnREτD
(R/p) = p. Since R

is a domain, AnnRE(R/p) = 0 by Lemma 3.2.5. It follows that p = 0. Now

R is τn-cocritical, hence every τn-injective module is injective. �

Corollary 3.2.7 Let p ∈ Spec(R). If one of the following conditions holds:

(i) dim p ≥ n + 2;

(ii) R is a domain with dim R ≥ n + 2 and dim p ≥ n + 1,

then Eτn(R/p) is not injective.

Proof. If dim p ≥ n + 2, then the result follows by Theorem 3.2.2 and

Proposition 3.1.5. If R is a domain with dim R ≥ n + 2 and dim p ≥ n + 1,

then apply Corollary 3.2.6. �

We need the following preliminary result.

Proposition 3.2.8 [101, Proposition 2.27] Let I be a two-sided ideal of R

and let E be an injective R-module. Then AnnEI is injective as an R/I-

module. Moreover, if E is the injective hull of an R-module A, then AnnEI

is an injective hull of A ∩ AnnEI considered as an R/I-module.
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Now we are able to give the main result of this section, establishing the

structure of the τ -injective hull of some R/p, where p ∈ Spec(R).

Theorem 3.2.9 Let p ∈ Spec(R) be such that R/p is τ -cocritical. Then:

(i) Eτ (R/p) = AnnE(R/p)p.

(ii) There exists an R/p-isomorphism (and hence an R-isomorphism) be-

tween Eτ (R/p) and the field of fractions of R/p.

(iii) If p is not maximal, then R/p 6= Eτ (R/p).

Proof. (i) Denote A = Eτ (R/p). Note that A is τ -torsionfree minimal τ -

injective. We have seen in the proof of Theorem 3.1.4 that AnnRA = p. It

follows that A ⊆ AnnE(R/p)p. By Lemma 1.5.14, we have AnnRd ⊆ p for

every 0 6= d ∈ E(R/p). Let 0 6= b ∈ AnnE(R/p)p. Then AnnRb = p and

Rb ∼= R/p is τ -cocritical. But since E(R/p) is uniform, A is the maximal τ -

cocritical submodule of E(R/p) by Proposition 1.5.4. It follows that Rb ⊆ A,

hence AnnE(R/p)p ⊆ A. Therefore Eτ (R/p) = AnnE(R/p)p.

(ii) By (i) and Proposition 3.2.8, it follows that Eτ (R/p) = AnnE(R/p)p

is an injective hull of R/p considered as an R/p-module. Since R/p is a

domain, Eτ (R/p), considered as an R/p-module, is isomorphic to the field of

fractions of R/p.

(iii) It follows by (ii), because R/p is not a field. �

Remarks. (i) Note that the hypothesis needed in the proof is for Eτ (R/p) to

be τ -torsionfree minimal τ -injective.

(ii) Consider the context of Theorem 3.2.9 and suppose that R is a domain

and p 6= 0. Then AnnRE(R/p) = 0 by Lemma 3.2.5. On the other hand,

by Theorem 1.5.12, AnnREτ (R/p) = p. Hence the τ -injective hull does not

coincide here with the injective hull.

Let us now see an example of determining the τ -injective hull of a τ -

cocritical module R/p for some p ∈ Spec(R) by using Theorem 3.2.9.
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Example 3.2.10 Consider the polynomial ring R = K[X1, . . . , Xm] (m ≥
2), where K is a field, and let p = (X1, . . . , Xm−n−1), where n < m−1. Then

p ∈ Spec(R) and we have the ring isomorphism

K[X1, . . . , Xm]/(X1, . . . , Xm−n−1) ∼= K[Xm−n, . . . , Xm] .

But K[Xm−n, . . . , Xm] has both a structure of R/p-module and R-module

by restriction of scalars. Since R is noetherian and dim p = n + 1, R/p is a

τn-cocritical R-module by Corollary 1.8.4. Then Eτn(R/p) is τn-torsionfree

minimal τn-injective. Now by Theorem 3.2.9 we have the R-isomorphism

Eτn(K[X1, . . . , Xm]/(X1, . . . , Xm−n−1)) ∼= K(Xm−n, . . . , Xm) ,

where K(Xm−n, . . . , Xm) is the field of fractions of K[Xm−n, . . . , Xm].

We continue with two important corollaries of Theorem 3.2.9.

Corollary 3.2.11 Every τ -torsionfree minimal τ -injective module is iso-

morphic to the field of fractions of R/p for some p ∈ Spec(R).

Proof. By Theorems 3.1.4 and Theorem 3.2.9. �

Recall that a module A is called locally noetherian if every finitely gen-

erated submodule of A is noetherian [40, p.10]. Recall also that a module A

is said to be
∑

-Z if any direct sum of copies of A has the property Z. For

instance, a module A is said to be
∑

-injective if any direct sum of copies of

A is injective.

Corollary 3.2.12 Let p be an N-prime ideal of R such that R/p is τ -

cocritical. Then Eτ (R/p) is locally noetherian and
∑

-quasi-injective.

Proof. Let A be a non-zero finitely generated submodule of Eτ (R/p). Since

R/p is τ -cocritical, Eτ (R/p) is minimal τ -injective. Also Eτ (R/p) is τ -

cocritical, hence A is τ -cocritical. By Theorem 3.2.9, Eτ (R/p) = AnnE(R/p)p.

Then AnnRA = AnnRa = p, for every 0 6= a ∈ A.
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If {a1, . . . , an} is a set of generators of A, then Rak ' R/p are noetherian

R-modules, for every k ∈ {1, . . . , n} and considering the canonical epimor-

phism

ϕ :
n⊕

k=1

Rak →
n∑

k=1

Rak = A ,

it follows that A is noetherian. Therefore Eτ (R/p) is locally noetherian.

Now let I be a set and denote Ai = Eτ (R/p) for every i ∈ I. Then we

have seen that every Ai is minimal τ -injective and locally noetherian. By

Lemma 3.1.2, Ai is Aj-injective for every i, j ∈ I. Hence
⊕

i∈I Ai is Aj-

injective ([40, p.10]). It follows that
⊕

i∈I Ai is
⊕

i∈I Ai-injective. Therefore⊕
i∈I Ai is quasi-injective, i.e. Eτ (R/p) is

∑
-quasi-injective. �

Corollary 3.2.13 Let p be an N-prime ideal of R with dim p = 1. Then

for every non-zero finitely generated submodule A of Eτ0(R/p) and for every

non-zero proper submodule B of A, A/B has a composition series.

Proof. Let A be a non-zero finitely generated submodule of Eτ0(R/p) and let

B be a non-zero proper submodule of A. By Corollary 3.2.12, A is noetherian

and by Corollary 1.8.4, A is τ0-cocritical. Hence A/B is noetherian and semi-

artinian. Then A/B has a composition series ([82, Chapter II, Proposition

2.1.1]). �

We have seen in Lemma 3.1.2 that every minimal τ -injective module is

uniform. Now we can show that the converse does not hold in general.

Example 3.2.14 Consider the polynomial ring R = K[X1, . . . , Xm] (m ≥
2), where K is a field and the prime ideal p = (X1, . . . , Xm−1) of R. Then

dim p = 1 and Eτ0(R/p) is a τ0-torsionfree minimal τ0-injective R-module

by Proposition 1.8.1. But Eτ0(R/p) = AnnE(R/p)p by Theorem 3.2.9 and

R is a domain, so that AnnREτ0(R/p) = p 6= 0 = AnnRE(R/p). Then

Eτ0(R/p) 6= E(R/p). Therefore E(R/p) is not minimal τ0-injective, but it is

uniform since R is noetherian.
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The following theorem is a partial converse of Theorem 3.2.9.

Theorem 3.2.15 Let p ∈ Spec(R). If Eτ (R/p) = AnnE(R/p)p, then

Eτ (R/p) is minimal τ -injective.

Proof. Suppose that Eτ (R/p) is not minimal τ -injective. Then there exists a

non-zero proper τ -injective submodule A of Eτ (R/p). Let 0 6= a ∈ A. Then

AnnRa = p and

Eτ (Ra) ∼= Eτ (R/p) = AnnE(R/p)p .

Thus Eτ (Ra) is a proper submodule of AnnE(R/p)p, hence Eτ (Ra) is a proper

R/p-submodule of AnnE(R/p)p. By Proposition 3.2.8, AnnE(R/p)p is the injec-

tive hull of R/p considered as an R/p-module. Moreover, both AnnE(R/p)p

and Eτ (Ra) are injective indecomposable R/p-modules. Then Eτ (Ra) is a

direct summand of AnnE(R/p)p, a contradiction. �

For p ∈ Spec(R) such that R/p is τ -cocritical, we have showed in Theorem

3.2.9 the equality between the τ -injective hull of R/p and the annihilator of p

in E(R/p). In what follows let us see what is the relationship between them

in some other cases.

Theorem 3.2.16 If p ∈ Spec(R) is τ -dense in R, then AnnE(R/p)p ⊆
Eτ (R/p).

Proof. Let 0 6= a ∈ AnnE(R/p)p. Then AnnRa = p, hence Ra ∼= R/p. Since

Ra is τ -torsion, we get Ra ⊆ Eτ (R/p). Hence AnnE(R/p)p ⊆ Eτ (R/p). �

Theorem 3.2.17 Let p ∈ Spec(R) be such that dim p = n + 1 and R/p is

τn-cocritical. Then

Eτ0(R/p) ⊂ Eτ1(R/p) ⊂ · · · ⊂ Eτn−1(R/p) ⊂ Eτn(R/p) = AnnE(R/p)p .

Proof. The inclusions are clear and by Theorem 3.2.9 we have Eτn(R/p) =

AnnE(R/p)p.
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Suppose now that Eτn−1(R/p) = Eτn(R/p). By Proposition 1.8.1, dim p ≥
n + 1 and R/p is τn−1-torsionfree. By Proposition 1.8.3, Eτn−1(R/p) is not

τn−1-cocritical, hence it is not minimal τn−1-injective. Therefore there exists

a non-zero proper τn−1-injective submodule A of Eτn−1(R/p). Now let 0 6=
a ∈ A. Then Ra ∼= R/p. Hence

Eτn−1(Ra) ∼= Eτn−1(R/p) = Eτn(R/p) .

But Eτn−1(Ra) ⊂ Eτn−1(R/p). This contradicts the fact that Eτn(R/p) is

minimal τn-injective. Now the result follows inductively. �

Remark. In the context of Theorem 3.2.17, we have Eτn−1(R/p) ⊂ Eτn(R/p).

Then for every k ∈ {0, . . . , n − 1}, Eτk
(R/p) is a τk-injective module which

is not τn-injective. This is also an example of a τk-injective module which is

not injective.

Example 3.2.18 Let R = K[X1, . . . , Xm] be the polynomial ring over a

field K (m ≥ 2). Let 0 < n < m − 1 and let p = (X1, . . . , Xm−n−1). Then

p ∈ Spec(R) and dim p = n + 1. Since R is noetherian, R/p is τn-cocritical

by Corollary 1.8.4 . Then Eτn−1(R/p) is a τn−1-injective module which is not

τn-injective.

Proposition 3.2.19 Let R be noetherian and let 0 6= p ∈ Spec(R) be τn-

closed in R. Then AnnE(R/p)p is τn-injective.

Proof. Denote A = AnnE(R/p)p. We will show that E(R/p)/A is τn-

torsionfree. Suppose the contrary. Then there exists a non-zero submod-

ule B of E(R/p)/A such that B ∈ An. It follows that B ∼= U/V , where

U and V are ideals of R containing an ideal q ∈ Spec(R) with dim q ≤ n.

Then qU ⊆ V , hence qB = 0. On the other hand, there exists an element

x ∈ E(R/p) \ A such that x + A ∈ B. Now let r ∈ q \ p and let s ∈ p such

that sx 6= 0. Then rx ∈ A, which implies srx = 0. Since multiplication by r



102 CHAPTER 3. MINIMAL τ -INJECTIVE MODULES

on E(R/p) is an automorphism [118, p.83], we have rsx 6= 0, a contradiction.

Hence A is τn-injective. �

For R noetherian, the following theorem offers a complete picture of the

relationship between Eτn(R/p) and AnnE(R/p)p, where 0 6= p ∈ Spec(R).

Theorem 3.2.20 Let p ∈ Spec(R).

(i) If dim p ≤ n, then AnnE(R/p)p ⊆ Eτn(R/p).

(ii) Let R be τn-noetherian. If dim p = n + 1, then AnnE(R/p)p =

Eτn(R/p).

(iii) Let R be noetherian. If dim p ≥ n+2, then AnnE(R/p)p ⊃ Eτn(R/p).

Proof. (i) By Proposition 1.8.1 and Theorem 3.2.16.

(ii) By Corollary 3.1.6 and Theorem 3.2.9.

(iii) By Proposition 3.2.19, AnnE(R/p)p is τn-injective. Since R/p ⊆
AnnE(R/p)p, we have Eτn(R/p) � AnnE(R/p)p. Since dim p ≥ n + 2, Eτn(R/p)

is not minimal τn-injective by Proposition 3.1.5. Now by Theorem 3.2.15, it

follows that Eτn(R/p) 6= AnnE(R/p)p. �

3.3 τ-injective submodules of indecompos-

able injective modules

We begin our discussion on τ -injective submodules of indecomposable injec-

tive modules by considering the minimal ones.

Proposition 3.3.1 Let A be an indecomposable injective module over a not

necessarily commutative ring. Then A contains at most one minimal τ -

injective submodule.

Proof. Suppose that B and C are minimal τ -injective submodules of A. Since

B and C are essential submodules of A, E(B) = E(C) = A. Since B and
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C are τ -injective, it follows that B and C are τ -closed in A. Then B ∩ C is

τ -closed in A, hence B ∩ C is τ -injective. Then B ∩ C = B = C. �

For the rest of this section, the ring R will be assumed to be commutative.

Let us now recall the following lemma.

Lemma 3.3.2 [101, Lemma 2.31 Corollary] Let p, q ∈ Spec(R) be such that

E(R/p) ∼= E(R/q). Then p = q.

Proposition 3.3.3 Let p ∈ Spec(R). Then:

(i) If dim p ≤ n, then E(R/p) contains a unique minimal τn-injective

submodule, namely Eτn(R/p).

(ii) If dim p ≥ n + 2, then E(R/p) does not contain any minimal τn-

injective module.

Proof. (i) It follows by Propositions 3.3.1 and 3.1.5.

(ii) Suppose that E(R/p) does contain a minimal τn-injective module D.

By Proposition 1.8.1, R/p is τn-torsionfree. It follows that D is τn-torsionfree.

Then by Theorem 3.1.4, we have D ∼= Eτn(R/q), where q ∈ Spec(R) and by

Proposition 3.1.5 we have dim q = n + 1. Since E(R/p) is indecomposable,

it follows that E(R/p) = E(D). But E(D) ∼= E(Eτn(R/q)) = E(R/q),

hence E(R/p) ∼= E(R/q). Then q = p by Lemma 3.3.2. This provides a

contradiction. �

Example 3.3.4 Consider the ring T =

(
R 0

Q Q

)
, where R = K[X, Y ] is

the polynomial ring over an algebraically closed field K and Q is the field of

fractions of R. Use the notations from Example 2.4.11.

Since dim R = 2 and 0 ∈ Spec(R), R does not contain minimal τD-

injective R-submodules by Proposition 3.3.3, so that A has the same property.

Hence A is not minimal τD-injective.

Clearly, B is a simple T -module and B E D. Then E(B) = D. Since T is

left noetherian, EτD
(B) = E(B) = D. Moreover, D is minimal τD-injective.

Also, C = E(A) is indecomposable injective and not minimal τD-injective.
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By Proposition 3.3.3, we obtain immediately the following corollary con-

necting the situation when every τn-injective module is injective with the

dimension of R, result that generalizes an implication from Proposition 2.4.4.

Corollary 3.3.5 If every τn-injective module is injective, then dim R ≤ n +

1.

We have analyzed in Proposition 3.3.3 whether E(R/p) contains or not a

minimal τn-injective submodule depending on the dimension of p ∈ Spec(R).

For an N -prime ideal p of R, and thus for a noetherian ring R, we are able

to clarify the case dim p = n + 1 as well.

Corollary 3.3.6 Let p be an N-prime ideal of R with dim p = n + 1. Then

E(R/p) contains a unique minimal τn-injective submodule, namely Eτn(R/p).

Proof. By Corollary 1.8.4, R/p is τn-cocritical, hence Eτn(R/p) is minimal

τn-injective. Now by Proposition 3.3.1, Eτn(R/p) is the unique minimal τn-

injective submodule of E(R/p). �

Theorem 3.3.7 Let p ∈ Spec(R) be such that dim p ≥ n + 2. Then there

exist τn-injective modules Dk (k ∈ N∗) such that

· · · ⊂ Dk ⊂ · · · ⊂ D1 ⊂ Eτn(R/p)

and Dk
∼= Eτn(R/p) for every k ≥ 1.

Proof. By Corollary 3.2.7, Eτn(R/p) is not injective. By Proposition 3.3.3,

the indecomposable injective module E(R/p) does not contain any minimal

τn-injective submodule. Now let D be a non-zero proper τn-injective sub-

module of Eτn(R/p) and let 0 6= a ∈ D. Then there exists r ∈ R such that

0 6= ra ∈ R/p. It is known that the collection of all annihilators of non-

zero elements of E(R/p) has a unique maximal member, namely the ideal p.

Then AnnR(ra) = p. But Rra ⊆ D, hence AnnR(Rra) = p. It follows that
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Rra ∼= R/AnnR(ra) = R/p. Put D1 = Eτn(Rra). Then D1 ⊆ D ⊂ Eτn(R/p)

and D1
∼= Eτn(R/p). Now repeat the argument for D1 instead of Eτn(R/p).

The requested modules Dk are obtained inductively. �

Every injective submodule of an injective module is a direct summand.

We can show now that there exist τn-injective modules with τn-injective sub-

modules which are not direct summands.

Example 3.3.8 Consider Eτn(R/p) and the modules Dk from Theorem

3.3.7. Then every non-zero proper τn-injective submodule of Eτn(R/p) is not

a direct summand, because Eτn(R/p) is uniform as a submodule of E(R/p).

We continue with some results on the existence of τ -injective (but not

necessarily minimal τ -injective) submodules of injective hulls of modules.

Theorem 3.3.9 Let R be a domain and let A be a non-zero proper τ -

injective submodule of E(R). Then there exists a proper τ -injective submodule

of E(R) which strictly contains A.

Proof. Since 0 ∈ Spec(R), by Lemma 1.4.7, Eτ (R) is either τ -torsion or

τ -torsionfree. First we will show that Eτ (R) is τ -torsionfree, but not τ -

cocritical. Suppose that Eτ (R) is either τ -torsion or τ -cocritical. Then R is

either τ -torsion or τ -cocritical. Hence every non-zero ideal of R is τ -dense.

Then every τ -injective module is injective. Since E(R) is indecomposable,

it follows that A = E(R), a contradiction. Therefore Eτ (R) is τ -torsionfree,

but not τ -cocritical.

Suppose now that it does not exist any proper τ -injective submodule of

E(R) which strictly contains A. Then every non-zero proper submodule D

of E(R) strictly containing A is not τ -closed in E(R), i.e. E(R)/D is not τ -

torsionfree. Since A is τ -injective, E(R)/A is τ -torsionfree. Then by Proposi-

tion 1.5.2, E(R)/A is τ -cocritical. By Theorem 1.5.12, p = AnnR(E(R)/A) ∈
Spec(R). Assume p = 0. Then E(R)/A is faithful τ -cocritical. By Propo-

sition 2.2.10, Eτ (E(R)/A) ∼= E(R), hence E(R) is minimal τ -injective, a
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contradiction. Therefore p 6= 0. Now let d be a non-zero element of p. We

may assume that E(R) is the field of fractions of R. Let a
b
∈ E(R) \ A. On

the other hand a
b

= d · a
bd
∈ A, a contradiction. Therefore there exists a

proper τ -injective submodule of E(R) which strictly contains A. �

Corollary 3.3.10 Let R be a domain such that Eτ (R) 6= E(R). Then there

exists τ -injective modules Bk (k ∈ N∗) such that

Eτ (R) ⊂ B1 ⊂ · · · ⊂ Bk ⊂ · · · ⊂ E(R) .

Recall that we have denoted by An the class of modules that generates

the torsion theory τn.

Corollary 3.3.11 Let R be a domain with dim R ≥ n + 2 such that every

ideal in An is finitely generated. Then E(R) =
⋃

i∈I Bi, where (Bi)i∈I is a

totally ordered family of τn-injective modules such that Eτn(R) ⊆ Bi ⊂ E(R)

for every i ∈ I.

Proof. By Corollary 3.2.7, Eτn(R) ⊂ E(R). Let F be the family of all

τn-injective modules A such that Eτn(R) ⊆ A ⊂ E(R). Clearly, F 6= ∅.
Suppose now that E(R) is not a union of a totally ordered subset of F .

Let (Dj)j∈J be a totally ordered subset of F and denote D =
⋃

j∈J Dj. Let

I ∈ An and let f : I → D be a homomorphism. Since I is finitely generated,

f(I) ⊆ Dk for some k ∈ J . But Dk is τn-injective and I is a τn-dense ideal

of R, hence there exists a homomorphism g : R → Dk that extends f . Thus

D is τn-injective. We also have D 6= E(R). Hence D ∈ F and D is an

upper bound of (Dj)j∈J . By Zorn’s lemma, F has a maximal element. On

the other hand, by Theorem 3.3.9 F does not have a maximal element, a

contradiction. Now the result follows. �

Theorem 3.3.12 Let R be a domain, let A be a non-zero τ -injective module

with AnnRA = 0 and let B be a proper essential τ -injective submodule of A

with AnnRB = s 6= 0. Then there exist infinitely many τ -injective submodules

of A which strictly contain B.
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Proof. Suppose that it does not exist any τ -injective module C such that

B ⊂ C ⊂ A. Then by Proposition 2.1.11, for every module D such that

B ⊂ D ⊂ A, A/D is not τ -torsionfree. Since B is a proper essential τ -

injective submodule of A, it follows that A/B is τ -torsionfree. Hence A/B

is τ -cocritical. Then by Theorem 1.5.12, p = AnnR(A/B) ∈ Spec(R). As-

sume p = 0. Then A/B is faithful τ -cocritical. By Proposition 2.2.10,

Eτ (A/B) ∼= E(R), hence E(R) is τ -torsionfree minimal τ -injective. Then

R is τ -cocritical, hence every τ -injective module is injective. Then B is a

non-zero proper injective submodule of A, i.e. B is a direct summand of A, a

contradiction. Therefore p 6= 0. Now let d be a non-zero element of p and let

r be a non-zero element of s. Then dra = 0 for every a ∈ A, a contradiction.

Therefore there exists a τ -injective module D1 such that B ⊂ D1 ⊂ A. If

AnnRD1 = 0, there exists a τ -injective module D2 such that B ⊂ D2 ⊂ D1.

If AnnRD1 6= 0, there exists a τ -injective module D2 such that D1 ⊂ D2 ⊂ A.

Now the result follows by complete induction. �

Corollary 3.3.13 Let R be a domain and let 0 6= p ∈ Spec(R) be such that

R/p is τ -cocritical. Then there exist infinitely many τ -injective submodules

of E(R/p) which strictly contain Eτ (R/p).

Proof. Since R/p is τ -cocritical, Eτ (R/p) is τ -torsionfree minimal τ -

injective. Then by Theorem 3.2.9, Eτ (R/p) = AnnE(R/p)p. We also have

AnnR(Eτ (R/p)) = p and AnnR(E(R/p)) = 0, hence Eτ (R/p) ⊂ E(R/p).

The result follows now by Theorem 3.3.12. �

In the sequel we are interested in studying certain particular submodules

of E(R/p), where R is noetherian and 0 6= p ∈ Spec(R).

Following [118, p.83], for each positive integer m ≥ 1 denote

Am = {x ∈ E(R/p) | pmx = 0}.

Note that A1 ⊆ A2 ⊆ · · · ⊆ Am ⊆ Am+1 ⊆ . . . .
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If R is noetherian, then we have

E(R/p) =
∞⋃

m=1

Am

[118, p.83]. In this case of a noetherian ring, we will establish several prop-

erties of the submodules Am.

Proposition 3.3.14 Let R be a noetherian domain and let 0 6= p ∈ Spec(R)

be τ -dense in R. Then for every m ≥ 1, Am is not τ -injective.

Proof. Since R is noetherian and R/p is τ -torsion, we have Eτ (R/p) =

E(R/p). Then by Theorem 3.2.2, E(R/p) is minimal τ -injective. On the

other hand, since R is a domain, each Am is a proper submodule of E(R/p).

Therefore for every m ≥ 1, Am is not τ -injective. �

We have seen in Proposition 3.2.19 that A1 = AnnE(R/p)p is τn-injective

provided R is noetherian and 0 6= p ∈ Spec(R) is τn-closed in R. More

generally, we have the following result, whose proof is similar to that for A1.

Theorem 3.3.15 Let R be noetherian and let 0 6= p ∈ Spec(R) be τn-closed

in R. Then Am is τn-injective for every m ≥ 1.

Proof. Let m ≥ 1. We will show that E(R/p)/Am is τn-torsionfree. Suppose

the contrary. Then there exists a non-zero submodule B of E(R/p)/Am such

that B ∈ An. It follows that B ∼= U/V , where U and V are ideals of R

containing an ideal q ∈ Spec(R) with dim q ≤ n. Then qU ⊆ V , hence

qB = 0. On the other hand, there exists an element x ∈ E(R/p) \ Am such

that x + Am ∈ B. Now let r ∈ q \ p and let s ∈ pm such that sx 6= 0. Then

rx ∈ Am, which implies srx = 0. Since multiplication by r on E(R/p) is an

automorphism [118, p.83], we have rsx 6= 0, a contradiction. Hence Am is

τn-injective. �

Corollary 3.3.16 Let R be a noetherian domain and let 0 6= p ∈ Spec(R).

Then each Am is τn-injective if and only if p is τn-closed in R.
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Proof. By Proposition 1.8.1, Theorem 3.3.15 and Proposition 3.3.14. �

Corollary 3.3.17 Let R be a noetherian domain, let 0 6= p ∈ Spec(R) be

such that dim p ≥ n + 2 and let m ≥ 1 be a positive integer. Then there exist

τn-injective modules Bk (k ∈ N∗) such that

Am ⊂ · · · ⊂ Bk ⊂ · · · ⊂ B1 ⊂ Am+1 .

Proof. Let us show first that Am 6= Am+1 for each m. Suppose that there

exists m such that Am = Am+1. Then it follows easily that Am+i = Am for

every i ∈ N, hence E(R/p) = Am. Since R is a domain, we have

pm ⊆ AnnRAm = AnnRE(R/p) = 0 ,

a contradiction.

Now let B be a τn-injective module such that Am ⊂ B ⊆ Am+1. Suppose

that there does not exists a τn-injective module D such that Am ⊂ D ⊂ B.

Then B/Am is τn-cocritical. By Proposition 1.8.3, q = AnnR(B/Am) ∈
Spec(R) and dim q = n + 1. Now let b ∈ B \ Am. Then pmb 6= 0. But

qb ∈ Am, hence pmqb = 0, i.e. q ∈ AnnR(pmb). Since pmb ∈ E(R/p), by

Lemma 1.5.14 we have q ⊆ p, a contradiction. Now the result follows. �

Remarks. (i) The hypothesis on R to be a domain in Corollary 3.3.17 is

needed for ensuring that Am ⊂ Am+1 for each τD.

(ii) In the context of Corollary 3.3.17, each Am is a proper submodule

of E(R/p). Since E(R/p) is an indecomposable injective module, for every

m ≥ 1, Am is not injective. Thus E(R/p) is a union of τn-injective modules

which are not injective.

3.4 Change of ring and τ-injective modules

We have seen in Proposition 3.2.8 that if I is a two-sided ideal of R and E

is an injective R-module, then AnnEI is an injective R/I-module. A similar

result holds for τ -injective modules as well.
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Theorem 3.4.1 Let I be a non-zero proper two-sided ideal of R and let A

be a τ -injective R-module. Then:

(i) AnnAI is τ -injective as an R/I-module.

(ii) If I ⊆ AnnRA, then A is τ -injective as an R/I-module.

Proof. i) Let J/I be a τ -dense left ideal of R/I. Then (R/I)/(J/I) ∼= R/J

is τ -torsion, hence J is a τ -dense left ideal of R. Both J/I and R/I may be

seen as R/I-modules and R-modules as well. Consider the following diagram

with exact rows and commutative square:

0 // J
i //

u
��

R

g

��1
1

1
1

1
1

1
1

v
��

0 // J/I
j //

f

��

R/I

hzzv v
v

v
v

AnnAI
k

// A

where i, j, k are inclusion homomorphisms, u, v are natural R-epimorphisms

and f : J/I → AnnAI is an R/I-homomorphism. Seeing J/I and AnnAI

as R-modules, f is also an R-homomorphism. Since A is a τ -injective R-

module and J is a τ -dense left ideal of R, there exists an R-homomorphism

g : R → A such that gi = kfu. Note that g(s) = kfu(s) = 0 for every

s ∈ I ⊆ J .

Now define the R/I-homomorphism

h : R/I → AnnAI , h(r + I) = g(r)

for every r ∈ R. If r, s ∈ R and r + I = s + I, then r − s ∈ I, hence

g(r− s) = 0, i.e. g(r) = g(s). If s ∈ I and r ∈ R, we have sg(r) = g(sr) = 0,

which means that g(r) ∈ AnnAI. Therefore h is well-defined.

For every r ∈ J we have

hj(r + I) = h(r + I) = g(r) = gi(r) = kfu(r) = kf(r + I) = f(r + I) .
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Hence hj = f , i.e. AnnAI is τ -injective as an R/I-module.

(ii) If I ⊆ AnnRA, then AnnAI = A and the result follows by (i). �

For the rest of this section, the ring R will be assumed to be commutative.

Corollary 3.4.2 Let R be noetherian and let 0 6= p ∈ Spec(R) be such that

dim p ≥ n + 2. Then Eτn(R/p) is τn-injective as an R/p-module.

Proof. By Theorem 3.2.20, Eτn(R/p) ⊂ AnnE(R/p)p and by Lemma 1.5.14,

AnnREτn(R/p) = p. Now by Theorem 3.4.1, Eτn(R/p) is τn-injective as an

R/p-module. �

Quite interestingly, a converse of Theorem 3.4.1 holds in the case of τ0-

injectivity provided I is an s-pure ideal of R.

A submodule B of a module A is called s-pure in A if 1S⊗i : S⊗B → S⊗A

is a monomorphism for every simple right module S, where i : B → A is the

inclusion homomorphism [20].

Theorem 3.4.3 Let I be a non-zero proper s-pure ideal of R and A an R-

module such that I ⊆ AnnRA. Then A is τ0-injective as an R-module if and

only if A is τ0-injective as an R/I-module.

Proof. Suppose that A is τ0-injective as an R-module. Since AnnAI = A, by

Theorem 3.4.1, A is τ0-injective as an R/I-module.

Now suppose that A is τ0-injective as an R/I-module. It is known that

I is an s-pure submodule of R if and only if IM = I ∩M for every maximal

ideal M of R [106, p.170].

Let M be a maximal ideal of R. Let i : M → R be the inclusion homo-

morphism and f : M → A an R-homomorphism.

If r ∈ IM , we have r =
∑n

j=1 sjtj, where sj ∈ I and tj ∈ M for every

j ∈ {1, . . . , n}. Then

f(r) = f(
n∑

j=1

sjtj) =
n∑

j=1

sjf(tj) = 0 .
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We distinguish two cases: I ⊆ M and I 6⊆ M .

Assume first that I ⊆ M . Then IM = I. Consider the following diagram

with exact row and commutative square:

0 // M
i //

u
��

f

��








R

v
��

M/I
j //

g
}}{

{
{

{
R/I

h
uul l l l l l l l l

A

where j is the inclusion homomorphism and u, v natural R-epimorphisms.

If r ∈ I = IM , it follows that f(r) = 0. Now f induces an R-

homomorphism g : M/I → A, defined by g(r + I) = f(r) for every

r ∈ M , such that gu = f . But g is an R/I-homomorphism as well, be-

cause AnnR(M/I) = AnnRA = I. Since A is τD-injective as an R/I-module,

there exists an R/I-homomorphism h : R/I → A such that hj = g. We have

hvi = hju = gu = f .

Now assume that I 6⊆ M . Then M + I = R. If r ∈ R, there exists

m ∈ M such that r + I = m + I. Then we can define an R-homomorphism

q : R → A by q(r) = f(m). If r ∈ R, r+I = m+I and r+I = m′+I, where

m,m′ ∈ M , then m − m′ ∈ I ∩ M = IM . It follows that f(m) = f(m′).

Hence q is well-defined. We have qi(s) = f(s) for every s ∈ M , i.e. qi = f .

Therefore A is τ0-injective as an R-module. �

Remarks. (i) The theorem holds for every pure ideal, since every pure ideal

is s-pure.

(ii) Note that the theorem does not hold if we simply replace τ0-injective

modules by injective modules.

Corollary 3.4.4 Let R be a (von Neumann) regular ring. An R-module A

is τ0-injective if and only if A is τ0-injective as an R/AnnRA-module.

Proof. Note that every ideal of R is pure, hence s-pure, and apply Theorem

3.4.3. �



3.4. CHANGE OF RING AND τ -INJECTIVE MODULES 113

Corollary 3.4.5 Let I be a non-zero proper idempotent ideal of R and let A

be an R-module such that I ⊆ AnnRA. Then A is τ0-injective as an R-module

if and only if A is τ0-injective as an R/I-module.

Proof. Let M be a maximal ideal of R.

If I ⊆ M , we have I = I2 ⊆ IM ⊆ I ∩M ⊆ I. Then IM = I ∩M .

If I 6⊆ M , then I + M = R, hence I and M are comaximal ideals. Then

I ∩M = IM .

Therefore I ∩M = IM for every maximal ideal M , which means that I

is an s-pure ideal of R. Now the result follows by Theorem 3.4.3. �

Corollary 3.4.6 Let 0 6= p ∈ Spec(R) be s-pure with dim p ≥ 2. Then:

(i) The submodules of A1 = AnnE(R/p)p are τ0-injective as R-modules if

and only if they are τ0-injective as R/p-modules.

(ii) There exist τ0-injective R-modules Bk (k ∈ N∗) such that

Eτ0(R/p) ⊂ B1 ⊂ · · · ⊂ Bk ⊂ · · · ⊂ A1 .

Proof. (i) By Theorem 3.4.3, noting that every non-zero submodule of A1

has annihilator p.

(ii) Note that R/p is a domain with dim p ≥ 2, hence by Corollary 3.2.7

it follows that Eτ0(R/p) is not injective. By Theorems 3.2.9 and 3.4.3, A1 is

the injective hull of R/p as an R/p-module. Now apply Corollary 3.3.10. �

References: S. Crivei [21], [24], [25], [26], [28], [31], [36], T. Izawa [61],

K. Masaike, T. Horigome [74], B. Stenström [107], H. Tachikawa [108], J. Xu

[118].

Notes on Chapter 3

The terminology of minimal τ -injective module was used by the author,

this notion appearing in the literature either without a special name (in
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most of the cases) or under the name of τ -uniform τ -injective module, like

in the work of J.L. Bueso, P. Jara and B. Torrecillas (1985). K. Masaike

and T. Horigome (1980) showed that the endomorphism ring of a minimal

τ -injective module is local. An equivalent condition for the τ -injective hull

of a τ -torsionfree module to coincide with its injective hull is based on the

work of H. Tachikawa (1971) and T. Izawa (1981). The chapter is completed

with the author’s results.



Chapter 4

τ-completely decomposable

modules

This chapter develops a study of τ -completely decomposable modules, that is,

direct sums of minimal τ -injective submodules. We give some classical direct

sum decomposition properties and we study when τ -injective modules are

τ -completely decomposable. Furthermore, we see the class of τ -completely

decomposable modules as a subclass of the class of τ -complemented modules.

This allows us to establish some further important properties of τ -completely

decomposable modules, especially concerning their direct summands (on a

generalized problem of Matlis) or their extensions.

4.1 Some τ-complete decompositions

Let us begin with the definition of the key notion of this chapter.

Definition 4.1.1 A module is called (finitely) τ -completely decomposable if

it is a (finite) direct sum of minimal τ -injective submodules.

Example 4.1.2 (1) Taking the improper torsion theory χ on R-mod where

R is left noetherian, the minimal χ-injective modules are exactly the indecom-

115
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posable injective modules, therefore every injective module is χ-completely

decomposable.

(2) M2(Q) is τD-completely decomposable (see Example 3.1.11).

(3) Consider the polynomial ring R = K[X, Y ], where K is an alge-

braically closed field and let Q be the field of fractions of R. Then M2(Q) is

not τD-completely decomposable (see Examples 2.4.11 and 3.3.4).

We immediately have the following property.

Lemma 4.1.3 The class of τ -completely decomposable modules is closed un-

der direct sums.

Proposition 4.1.4 Let A =
⊕

i∈I Ai be a τ -completely decomposable module

and let B =
⊕

j∈J Bj be a τ -completely decomposable submodule of A, where

each Ai and each Bj is minimal τ -injective. If J is finite or infinite countable,

then there exists a subset K ⊆ I such that B ∼=
⊕

k∈K Ak.

Proof. For every j ∈ J , denote

J(j) = {s ∈ J | Bs
∼= Bj}

I(j) = {t ∈ I | At
∼= Aj} .

Let us show that for every j ∈ J , we have |J(j)| ≤ |I(j)|. Let j ∈ J , let

s1, s2, . . . , sn ∈ J(j) be distinct and, for every u ∈ {1, . . . , n}, let xu be a

non-zero element of Bsu . We have

n⊕
u=1

Bsu =
n⊕

u=1

Eτ (Rxu) = Eτ (
n⊕

u=1

Rxu) .

Then there exists a monomorphism f :
⊕n

u=1 Bsu →
⊕m

v=1 Aiv for some m

such that
⊕n

u=1 Bsu is not contained in any direct sum of a proper subset

of Ai1 , . . . , Aim . For every v ∈ {1, . . . ,m}, denote by piv : A → Aiv the
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canonical projection. For every v ∈ {1, . . . ,m} choose yv ∈
⊕n

u=1 Bsu such

that pivf(yv) 6= 0 and pitf(yv) = 0 for every t 6= v. We have

f(Ry1 ⊕ · · · ⊕Rym) = f(Ry1)⊕ · · · ⊕ f(Rym) ⊆ Ai1 ⊕ · · · ⊕ Aim ,

hence Eτ (
⊕m

v=1 Ryv) = Ai1⊕· · ·⊕Aim . It follows that
⊕n

u=1 Bsu
∼=
⊕m

v=1 Aiv .

By Lemma 3.1.2, the endomorphism ring of a minimal τ -injective module

is local, hence by Krull-Remak-Schmidt-Azumaya Theorem, it follows that

n = m and each Aiv is isomorphic to some Bsu . Therefore if J(j) is finite,

then |J(j)| ≤ |I(j)|. Also, if J(j) is infinite, it follows that |I(j)| is infinite

and the conclusion follows from the fact that |J | is infinite countable. �

In what follows we will study when every (τ -torsion, τ -torsionfree) τ -

injective module is τ -completely decomposable.

Theorem 4.1.5 The following statements are equivalent:

(i) R has ACC on τ -dense left ideals.

(ii) Every τ -torsion τ -injective module is τ -completely decomposable.

Proof. (i) =⇒ (ii) Assume (i). Let A be a τ -torsion τ -injective module. Also,

let 0 6= x ∈ A. Then Rx ∼= R/Ann(x) is clearly τ -torsion and noetherian by

hypothesis. Hence Rx contains a uniform submodule B. It follows that A

has a minimal τ -injective submodule, namely Eτ (B).

Now let (Aj)j∈J be a maximal independent family of minimal τ -injective

submodules of A. Let us show that
⊕

j∈J Aj �A. If 0 6= y ∈ A, then Eτ (Ry)

has a minimal τ -injective submodule, hence (
⊕

j∈J Aj) ∩ Eτ (Ry) 6= 0. But

then (
⊕

j∈J Aj)∩Ry 6= 0 and consequently
⊕

j∈J Aj �A. Since
⊕

j∈J Aj is τ -

injective by Theorem 2.3.6, it is a direct summand of A, hence
⊕

j∈J Aj = A.

(ii) =⇒ (i) Assume (ii). Consider a complete family (Bj)j∈J of repre-

sentatives of isomorphism classes of τ -torsion τ -injective uniform modules.

Then clearly each Bj is minimal τ -injective. Let A = Eτ (
⊕

j∈J B
(Z)
j ). By hy-

pothesis, we can write A =
⊕

k∈K Ak as a direct sum of minimal τ -injective
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submodules. By Proposition 4.1.4, C =
⊕

j∈J B
(Z)
j is isomorphic to a direct

summand of A, hence it is τ -injective.

Now suppose that there exists a strictly increasing chain I1 ⊂ I2 ⊂ . . . of

τ -dense left ideals of R. Denote I =
⋃

k∈N∗ Ik. Then for every k, Eτ (R/Ik) is

a direct sum of τ -torsion minimal τ -injective modules. It follows that every Ik

is an annihilator of a subset of
⊕

j∈J Bj. Now choose some elements x1, x2, . . .

of
⊕

j∈J Bj such that for every k we have Ikxk = 0 and Ik+1xk+1 6= 0. Define

the homomorphism f : I → C by f(r) = (rxk)k≥1. Since I is τ -dense in R

and C is τ -injective, f extends to a homomorphism g : R → C. But this

contradicts the fact that for every n ∈ N∗, there exists an element r such

that rxn 6= 0. Thus R has ACC on τ -dense left ideals. �

We have seen in Theorem 1.4.14 that R is τ -noetherian if and only if every

τ -torsionfree injective module is a direct sum of indecomposable injective

modules. We can give now, for a stable torsion theory τ , a sufficient condition

for τ -torsion injective (or equivalently τ -torsion τ -injective by Proposition

2.1.9) modules to be a direct sum of indecomposable injective modules.

Theorem 4.1.6 Suppose that τ is stable and R has ACC on τ -dense left ide-

als. Then every τ -torsion injective module is a direct sum of indecomposable

injective modules.

Proof. Let A be a τ -torsion injective module. By Zorn’s Lemma, A has a

family (Ai)i∈I of indecomposable injective submodules that is maximal with

respect to the property that their sum is direct. Denote B =
⊕

i∈I Ai. Then

B is injective by Theorem 2.3.6 and Proposition 2.1.9, hence A = B ⊕ C

for some C ≤ A. Suppose that C 6= 0. If c ∈ C, then Rc has ACC on

τ -dense submodules as a homomorphic image of R. Since Rc is τ -torsion,

every submodule of Rc is τ -dense, hence Rc is noetherian. Then it has a

submodule D such that E(D) is indecomposable. Now the sum B + E(D)

is direct, because E(D) ⊆ C. This contradicts the maximality of B. Thus
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C = 0 and consequently A =
⊕

i∈I Ai is a direct sum of indecomposable

injective modules. �

Now let us see when every τ -torsionfree τ -injective module is τ -completely

decomposable. We need the following lemma.

Lemma 4.1.7 The following statements are equivalent:

(i) R is τ -semisimple.

(ii) Every τ -torsionfree τ -injective module is τ -semisimple.

Proof. (i) =⇒ (ii) By Theorem 1.6.9.

(ii) =⇒ (i) Let A be a module. By Lemma 1.6.7 (ii) and (iii), we may

assume without loss of generality that A is τ -torsionfree. Let B be a τ -closed

submodule of A. Then Eτ (B) is τ -closed in the τ -torsionfree τ -injective

module Eτ (A). By Proposition 1.6.8, there exists a τ -simple submodule C

of Eτ (A) such that Eτ (A) ∩ C = t(C). Then C ′ = B ∩ C is a τ -simple

submodule of B and B ∩ C ′ = t(C ′). Now by Proposition 1.6.8, A is τ -

semisimple. Finally, by Theorem 1.6.9, R is τ -semisimple. �

Theorem 4.1.8 The following statements are equivalent:

(i) R is τ -noetherian and τ -semisimple.

(ii) R is τ -noetherian and every τ -torsionfree τ -injective module is injec-

tive.

(iii) Every τ -torsionfree τ -injective module is τ -completely decomposable.

Proof. (i) =⇒ (ii) By Lemma 4.1.7 and Propositions 1.6.8 and 2.2.9.

(ii) =⇒ (iii) Let A be a τ -torsionfree τ -injective module. Then A is

injective by hypothesis. Since R is τ -noetherian, it follows by Theorem 1.4.14

that A is a direct sum of indecomposable injective modules, say
⊕

i∈I Ai.

Since R is τ -semisimple, each Ai is τ -semisimple by Theorem 1.6.9, hence

each Ai contains a τ -cocritical submodule Ci. But Ai is uniform, hence

Ci �Ai and since A is τ -torsionfree, Ci is τ -dense in Ai by Proposition 1.6.8.
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Now by Proposition 1.5.3 Ai is τ -cocritical. It follows that A is τ -completely

decomposable.

(iii) =⇒ (i) By hypothesis, every τ -torsionfree τ -injective module is τ -

semisimple. Then by Lemma 4.1.7, R is τ -semisimple. Again by Lemma 4.1.7

and by Proposition 1.6.8, it follows that the lattice of τ -closed submodules of

every τ -torsionfree module is complemented. Now by Proposition 1.6.8, every

τ -torsionfree τ -injective module is injective. Finally, by Theorem 1.4.14, R

is τ -noetherian. �

We will see in a forthcoming result (see Theorem 4.5.4) when every τ -

injective module is τ -completely decomposable.

We continue with an equivalent condition for the τ -injective hull of a

finitely generated module to be a direct sum of uniform modules.

Theorem 4.1.9 Let A be a finitely generated module. The following state-

ments are equivalent:

(i) Eτ (A) =
⊕n

i=1 Ai for some uniform submodules A1, . . . , An of A.

(ii) There exist submodules B1, . . . , Bk of A such that
⋂k

j=1 Bj = 0 and

for each j, Cj =
⋂k

l=1,l 6=j Bl * Bj, A/Bj is uniform and Bj + Cj is τ -dense

in A.

Proof. (i) =⇒ (ii) For every i ∈ {1, . . . , n}, denote Cj = A ∩ Ai and Bj =

A ∩
∑n

j=1,j 6=i Aj. Then Bj 6= 0 and
⋂k

j=1 Bj = 0. Also Cj 6= 0 and Cj =⋂k
l=1,l 6=j Bl * Bj. Since A/Bj is isomorphic to a submodule of Aj, it is

uniform. Furthermore, Cj is τ -dense in Aj, because

Aj/Cj
∼= (A + Aj)/A ⊆ Eτ (A)/A .

Then
∑n

j=1 Cj is τ -dense in Eτ (A), hence it is τ -dense in A. Now since we

have
∑n

j=1 Cj ⊆ Bj + Cj, it follows that Bj + Cj is τ -dense in A.

(ii) =⇒ (i) Since
⋂k

j=1 Bj = 0, there exists a canonical homomorphism

ϕ : A →
⊕k

i=1 A/Bj. Then Imϕ �
⊕k

i=1 A/Bj because

Imϕ ∩ (A/Bj) ⊇ (Bj + Cj)/Bj 6= 0 .
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Also, Bj +Cj is τ -dense in A, so that Imϕ is τ -dense in
⊕k

i=1 A/Bj. It follows

that

Eτ (A) = Eτ (Imϕ) ∼=
k⊕

i=1

Eτ (A/Bj)

and clearly each Eτ (A/Bj) is uniform. �

We will now establish conditions under which the τ -injective hull of a

module, not necessarily finitely generated, is a direct sum of minimal τ -

injective modules. Recall that every minimal τ -injective module is uniform,

but the converse does not hold in general.

We begin with a useful preliminary theorem. Recall that an intersection

K1 ∩ · · · ∩Kn of submodules of a module A is said to be irredundant if

Ki 6⊇ K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · · ∩Kn

for every i ∈ {1, . . . , n}.

Theorem 4.1.10 Let A be a module and let B = B1 ∩ · · · ∩ Bn be an ir-

redundant intersection of submodules of A such that Eτ (A/Bi) is a minimal

τ -injective module for every i ∈ {1, . . . , n} Then

Eτ (A/B) ∼=
n⊕

i=1

Eτ (A/Bi)

and any two such direct sum decompositions are isomorphic.

Proof. Let f : A →
⊕n

i=1 Eτ (A/Bi) be defined by

f(a) = (a + B1, . . . , a + Bn) .

Then f is a homomorphism with Kerf = B. Hence f induces a monomor-

phism g : A/B →
⊕n

i=1 Eτ (A/Bi). For each i ∈ {1, . . . , n}, let qi :

Eτ (A/Bi) →
⊕n

i=1 Eτ (A/Bi) denote the canonical injection. Since the in-

tersection B = B1 ∩ · · · ∩ Bn is irredundant, for every i there exists bi ∈
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B1∩· · ·∩Bi−1∩Bi+1∩· · ·∩Bn such that bi /∈ Bi. Then g(bi+B) = qi(bi+Bi)

is a non-zero element of g(A/B) ∩ qi(A/Bi). But Eτ (A/Bi) is minimal τ -

injective, hence qi(Eτ (A/Bi)) has the same property. Then qi(Eτ (A/Bi)) is

a τ -injective hull of g(A/B) ∩ qi(A/Bi). Hence

n⊕
i=1

Eτ (A/Bi) =
n⊕

i=1

qi(Eτ (A/Bi)) =

= Eτ (
n⊕

i=1

(g(A/B) ∩ qi(A/Bi))) = Eτ (g(A/B))

But Eτ (g(A/B) ∼= Eτ (A/B). It follows that Eτ (A/B) ∼=
⊕n

i=1 Eτ (A/Bi).

Now let B = C1 ∩ · · · ∩ Cm be another irredundant intersection of sub-

modules of A such that Eτ (A/Cj) is a minimal τ -injective module for every

j ∈ {1, . . . ,m}. We have the isomorphisms

Eτ (A/B) ∼=
n⊕

i=1

Eτ (A/Bi) ∼=
n⊕

i=1

Eτ (A/Cj).

Now by Lemma 3.1.2 and by Krull-Remak-Schmidt-Azumaya Theorem, we

have m = n and there exists a permutation σ of the set {1, . . . , n} such that

Eτ (A/Bi) ∼= Eτ (A/Cσ(i)) for every i ∈ {1 . . . , n}. �

Remark. In the context of the previous theorem, since E(A/Bi) is indecom-

posable, Bi is irreducible for every i ∈ {1, . . . , n}.

Theorem 4.1.11 Let n be a natural number, let A be a module and B ≤ A.

Then the following statements are equivalent:

(i) Eτ (A/B) =
⊕n

i=1 Ei, where Ei is a minimal τ -injective module for

every i ∈ {1, . . . , n}.
(ii) There exists an irredundant intersection B = B1 ∩ · · · ∩ Bn of sub-

modules of A such that Eτ (A/Bi) is a minimal τ -injective module for every

i ∈ {1, . . . , n}.
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Proof. (ii) =⇒ (i). This is Theorem 4.1.10.

(i) =⇒ (ii). Let p : A → A/B and k : A/B → Eτ (A/B) be the natural

homomorphism and the inclusion homomorphism respectively. For every

i ∈ {1, . . . , n}, denote by qi : Eτ (A/B) → Ei the canonical projection and by

gi : A → Ei the combined homomorphism gi = qikp. Also put Bi = Kergi.

Then B = B1 ∩ · · · ∩ Bn. Since Ei ∩ (A/B) 6= 0, it follows that Bi 6= A. We

have A/Bi
∼= gi(A) ⊆ Ei, hence Eτ (A/Bi) ∼= Ei, because Ei is a minimal

τ -injective module. Suppose that the intersection B = B1 ∩ · · · ∩ Bn is not

irredundant. Then we can refine from it an irredundant intersection with

fewer terms by omission. By Theorem 4.1.10, Eτ (A/B) is isomorphic to a

direct sum of less than n minimal τ -injective modules, a contradiction. �

Example 4.1.12 Consider the polynomial ring R = K[X1, . . . , Xn+2],

where K is a field and n ≥ 2. Let p = (X1X2, X1X3). If p1 = (X1)

and p2 = (X2, X3), then p = p1 ∩ p2 is an irredundant intersection of the

prime ideals p1 and p2 of R. We have dim p1 = n + 1 and dim p2 = n.

Then R/p2 is τn-torsion. Since R is noetherian, it follows that R/p1 is τn-

cocritical by Corollary 1.8.4 and Eτn(R/p2) = E(R/p2). Now by Corollary

3.1.6, Eτn(R/p1) and Eτn(R/p2) are minimal τn-injective. Then by Theorem

4.1.10,

Eτn(K[X1, . . . , Xn+2]/(X1X2, X1X3)) ∼=
∼= Eτn(K[X1, . . . , Xn+2]/(X1))⊕ E(K[X1, . . . , Xn+2]/(X2, X3)) .

But we have the ring isomorphisms K[X1, . . . , Xn+2]/(X1) ∼=
K[X2, . . . , Xn+2] and K[X1, . . . , Xn+2]/(X2, X3) ∼= K[X1, X4, . . . , Xn+2]. By

Theorem 3.2.9, it follows that we have the R-isomorphism

Eτn(K[X1, . . . , Xn+2]/(X1X2, X1X3)) ∼=
∼= K(X2, . . . , Xn+2)⊕ E(K[X1, X4, . . . , Xn+2]) ,

where K(X2, . . . , Xn+2) is the field of fractions of K[X2, . . . , Xn+2].

Moreover, K(X2, . . . , Xn+2) is τn-torsionfree minimal τn-injective and

E(K[X1, X4, . . . , Xn+2]) is τn-torsion minimal τn-injective.
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4.2 τ-complemented τ-injective modules

In this section we consider a subclass of the class of τ -complemented mod-

ules, that will be useful for establishing results on τ -completely decomposable

modules. Recall that a module A is called τ -complemented if every submod-

ule of A is τ -dense in a direct summand of A.

We begin with a very useful characterization of τ -complemented τ -

injective modules.

Proposition 4.2.1 The following statements are equivalent for a τ -injective

module A:

(i) A is τ -complemented.

(ii) Every τ -injective submodule of A is a direct summand.

(iii) Every τ -injective submodule of A is closed.

(iv) A has no proper essential τ -injective submodule.

Proof. (i) =⇒ (ii) Suppose that A is τ -complemented and let B be a τ -

injective submodule of A. Then B is τ -dense in a direct summand D of A,

hence D/B is τ -torsion. Since B is τ -injective, it is a direct summand of D

and, consequently, of A.

(ii) =⇒ (iii) Clear.

(iii) =⇒ (iv) Clear.

(iv) =⇒ (i) Suppose that A has no proper essential τ -injective submodule

and let B be a submodule of A. If Eτ (B) = A, we are done. Assume

further that Eτ (B) is a proper submodule of A. Then it is not essential

in A. Let D be a complement of Eτ (B) in A. Since Eτ (B) ∩ D = 0,

we have Eτ (B) ∩ Eτ (D) = 0, whence D = Eτ (D). Then Eτ (B) ⊕ Eτ (D) =

Eτ (B)⊕D�A. Since Eτ (B)⊕D is τ -injective, it follows that Eτ (B)⊕D = A.

Thus B is τ -dense in the direct summand Eτ (B) of A. Therefore A is τ -

complemented. �
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In order to show that a τ -injective module is τ -complemented, Proposition

4.2.1 will be frequently used.

Remarks. (i) Note that every minimal τ -injective module is τ -complemented.

(ii) In general, a τ -injective submodule of a τ -injective module is not a

direct summand and the notions of τ -injective module and τ -complemented

module are independent, as we may see in the following examples.

Example 4.2.2 Let R be a commutative noetherian domain with dim R ≥ 2

and let p ∈ Spec(R) be such that dim p = 1.

(1) By Corollaries 3.3.6 and 3.3.13, Eτ0(R/p) is a proper τ0-injective sub-

module of the indecomposable module E(R/p), hence it is not a direct sum-

mand.

(2) Since R/p is τ0-cocritical, it is τ0-complemented, but by Theorem

3.2.9 R/p is not τ0-injective. On the other hand, Eτ0(R/p) is a proper essen-

tial submodule of E(R/p) by Corollary 3.3.13. Then by Proposition 4.2.1,

E(R/p) is not τ0-complemented.

Every τ -torsionfree τ -complemented module is extending by Lemma 1.7.5.

We will see that every τ -complemented τ -injective module is even quasi-

injective. But first let us mention another subclass of the class of quasi-

injective modules. We have seen in Proposition 2.1.9 that the class of τ -

torsion τ -injective modules is contained in the class of quasi-injective mod-

ules. We will see that the class of τ -complemented τ -injective modules is

placed in between. Indeed, every τ -torsion module is clearly τ -complemented.

On the other hand we have the following lemma.

Lemma 4.2.3 Every τ -complemented τ -injective module is quasi-injective.

Proof. Let A be a τ -complemented τ -injective module. Also, let B be a

submodule of A, f : B → A a homomorphism and i : B → A the inclusion.

Since Eτ (B)/B is τ -torsion and A is τ -injective, there exists a homomorphism
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g : Eτ (B) → A extending f . Since A is τ -complemented τ -injective, by

Proposition 4.2.1 there exists a submodule D of A such that A = Eτ (B)⊕D.

If h = g ⊕ 1D : A → A, then hi = f . Thus A is quasi-injective. �

Remarks. (i) The class of τ -complemented τ -injective modules does not

coincide with the class of τ -torsion τ -injective modules. For instance, if R

is left seminoetherian, then there exist τ -cocritical τ -injective modules, i.e.

there exist τ -torsionfree minimal τ -injective modules.

(ii) The class of τ -complemented τ -injective modules does not coincide

either with the class of quasi-injective modules, as we will show in a forth-

coming example (see Example 4.3.11).

It is well-known that every injective module is a direct summand of any

module which contains it. By Proposition 4.2.1, we immediately have a

similar property for τ -injective submodules of τ -complemented τ -injective

modules.

Lemma 4.2.4 Let A be a τ -complemented τ -injective module and let B be a

τ -injective submodule of A. Then B is a direct summand of any submodule

of A which contains B.

We have seen that every minimal τ -injective module is uniform, but in

general not conversely (see Lemma 3.1.2 and Example 3.2.14). Nevertheless,

we have the following result for τ -complemented τ -injective modules.

Lemma 4.2.5 The following statements are equivalent for a τ -

complemented τ -injective module A:

(i) A is minimal τ -injective.

(ii) A is uniform.

(iii) A is non-zero indecomposable.

Proof. (i) =⇒ (ii) =⇒ (iii) Clear.

(iii) =⇒ (i) Suppose that A is not minimal τ -injective. Then there exists

a non-zero proper submodule B of A such that Eτ (B) is a proper submodule
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of A. Since A is τ -complemented τ -injective, Eτ (B) is a non-zero proper

direct summand of A, a contradiction. �

Proposition 4.2.6 Let (Ai)i∈I be a family of τ -complemented τ -injective

modules. Then Eτ (
⊕

i∈I Ai) is τ -complemented.

Proof. We will show that A = Eτ (
⊕

i∈I Ai) has no proper essential τ -injective

submodules. Then the result will follow by Proposition 4.2.1.

Let D be an essential τ -injective submodule of A and let i ∈ I. Then

D ∩ Ai 6= 0 and E(D) = E(A). Since D is τ -injective, it follows that

E(A)/D is τ -torsionfree, hence A/D is τ -torsionfree. Then Ai/(D ∩ Ai)

is τ -torsionfree, being isomorphic to the submodule (D + Ai)/D of A/D.

This means that D ∩ Ai is τ -closed in the τ -injective module Ai. Therefore

D ∩ Ai is τ -injective. Now let 0 6= ai ∈ Ai. Then there exists ri ∈ R such

that 0 6= riai ∈ D, hence riai ∈ D ∩ Ai. It follows that D ∩ Ai � Ai. By

Proposition 4.2.1, D ∩ Ai = Ai. Then
⊕

i∈I Ai � D � A. Hence D = A. �

We have seen in Example 1.7.7 that the class of τ -complemented mod-

ules is not closed under submodules or finite direct sums. But we have the

following proposition for τ -complemented τ -injective modules.

Proposition 4.2.7 The class of τ -complemented τ -injective modules is

closed under τ -injective submodules, direct summands, τ -closed submodules

and finite direct sums.

Proof. Let A be a τ -complemented τ -injective module and let B be a sub-

module of A. If B is τ -injective and D is a τ -injective submodule of B,

then D is a direct summand of A and, consequently, a direct summand of B.

Thus B is τ -complemented by Proposition 4.2.1. If B is a direct summand

of A, then B is τ -injective. It also follows that B is τ -complemented. If B is

τ -closed in A, then B is τ -injective. Hence B is τ -complemented τ -injective.
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Now let
⊕

i∈I Ai be a finite direct sum of τ -complemented τ -injective

modules. Then
⊕

i∈I Ai is τ -injective, hence
⊕

i∈I Ai is τ -complemented by

Proposition 4.2.6. �

Remarks. (i) Similarly, it can be proved that the class of τ -complemented τ -

injective modules is closed under arbitrary direct sums, provided τ is noethe-

rian and R has ACC on τ -dense left ideals. In this case, direct sums of

τ -injective modules are τ -injective by Theorem 2.3.8.

(ii) We have seen that every τ -complemented τ -injective module is quasi-

injective. But the class of τ -complemented τ -injective modules and the class

of quasi-injective modules does not coincide, because the former is closed

under finite direct sums and the latter is not.

Proposition 4.2.8 The class of τ -complemented modules is closed under

τ -injective hulls.

Proof. Let A be a τ -complemented module. Then by Theorem 1.7.8, A =

B ⊕ C, where B is a τ -torsionfree τ -complemented submodule of A and

C = t(A). It follows that

Eτ (A) = Eτ (B)⊕ Eτ (C) .

Then Eτ (C) is τ -complemented τ -injective. We will show that Eτ (B) is

τ -complemented. Let D be a non-zero τ -injective submodule of Eτ (B). De-

noting F = B ∩D, we have F � D. Since B is τ -complemented, there exist

two submodules G and H of B such that B = G⊕H and F is τ -dense in G.

But G is τ -torsionfree, so that F � G by Lemma 1.7.5. We have

Eτ (B) = Eτ (G)⊕ Eτ (H) .

Clearly F ∩ H = 0, hence D ∩ Eτ (H) = 0. Since F is τ -dense in G and

G is τ -dense in Eτ (G), F is τ -dense in Eτ (G). Since F � G, it follows that

Eτ (F ) = Eτ (G). Then

F ⊕H � D ⊕ Eτ (H) � Eτ (F )⊕ Eτ (H) = Eτ (B) .
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But D ⊕ Eτ (H) is τ -injective. Then we must have Eτ (B) = D ⊕ Eτ (H),

i.e. D is a direct summand of Eτ (B). Thus Eτ (B) is τ -complemented by

Proposition 4.2.1. Now apply Proposition 4.2.7. �

Corollary 4.2.9 If (Ai)i∈I is a family of τ -complemented modules, then

Eτ (
⊕

i∈I Ai) is τ -complemented.

Proof. Clearly we have⊕
i∈I

Ai �
⊕
i∈I

Eτ (Ai) � Eτ (
⊕
i∈I

Ai) ,

whence it follows that

Eτ (
⊕
i∈I

Ai) = Eτ (
⊕
i∈I

Eτ (Ai)) .

By Proposition 4.2.8, Eτ (Ai) is τ -complemented for every i ∈ I. Now apply

Proposition 4.2.6. �

Corollary 4.2.10 Let A be a τ -complemented module and let B be a τ -

injective submodule of A. Then B is a direct summand of A and B is τ -

complemented.

Proof. By Proposition 4.2.8, Eτ (A) is τ -complemented. Then by Proposition

4.2.1, B is a direct summand of Eτ (A), hence B is a direct summand of A.

By Proposition 4.2.7, B is τ -complemented. �

Remark. In general, a τ -injective submodule B of a τ -injective module A is

not τ -closed in A. For instance, let A = B ⊕ C, where B is a τ -injective

module and C is a non-zero τ -torsion τ -injective module. Then A/B is not

τ -torsionfree, i.e. B is not τ -closed in A.

Proposition 4.2.11 Let A be a τ -torsionfree τ -complemented τ -injective

module. Then:
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(i) Any intersection of τ -injective submodules of A is τ -complemented

τ -injective.

(ii) If B and C are τ -injective submodules of A, then B + C is τ -

complemented τ -injective.

Proof. (i) Let (Bi)i∈I be a family of τ -injective submodules of A and let

B =
⋂

i∈I Bi. Then Bi is τ -closed in A for every i ∈ I by Proposition 2.1.11.

But the class of τ -closed submodules of a module is closed under arbitrary

intersections. Hence B is τ -closed in the τ -injective module A. Therefore

B is τ -injective by Proposition 2.1.11. Now by Proposition 4.2.7, B is τ -

complemented.

(ii) Consider the short exact sequence of modules

0 −→ B ∩ C
f−→ B ⊕ C

g−→ B + C −→ 0

where the homomorphisms f and g are defined by f(b) = (b,−b) for every

b ∈ B ∩ C and g(b, c) = b + c for every (b, c) ∈ B ⊕ C. The modules B and

C are τ -complemented τ -injective, because A is τ -complemented τ -injective.

By Proposition 4.2.7, B ⊕ C is τ -complemented τ -injective. Since B ∩ C is

τ -injective, f(B ∩ C) is a τ -injective submodule of B ⊕ C. It follows that

B ⊕ C ∼= f(B ∩ C)⊕ (B + C) .

Therefore B + C is τ -complemented τ -injective. �

In the sequel we will see that the class of τ -complemented τ -injective mod-

ules is not closed under arbitrary extensions, having however some weaker

properties in this sense.

For the rest of this section we will refer to a short exact sequence of

modules

0 −→ A
f−→ B

g−→ C −→ 0

We may assume without loss of generality that A is a submodule of B and

f is the inclusion homomorphism.
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Remark. Let R be left hereditary. Let B be a non-zero τ -injective module and

let A be a proper essential τ -complemented τ -injective submodule of B such

that it does not exist any proper τ -injective submodule of B which strictly

contains A. Then B/A is τ -injective τ -cocritical, hence B/A is minimal τ -

injective, therefore B/A is τ -complemented τ -injective. But since A � B,

B is not τ -complemented. Hence the class of τ -complemented τ -injective

modules is not closed under extensions.

Proposition 4.2.12 Let A be τ -injective. If one of the following two con-

ditions holds:

(i) A is not essential in B and C is minimal τ -injective;

(ii) A is closed in B and C is τ -complemented τ -injective,

then the above sequence splits.

Proof. We may assume that A is a non-zero proper submodule of B. Since

the class of τ -injective modules is closed under extensions, B is τ -injective.

Note that each of the two conditions assumes that A is not essential in B.

Let D be a complement of A in B. Then D 6= 0, A ∩ D = 0 and

A⊕D � B. Since D is closed in B and B is τ -injective, D is τ -injective. We

have g(D) ∼= D 6= 0, hence g(D) is a non-zero τ -injective submodule of C.

Assume that the first condition is satisfied. Since C is minimal τ -injective,

we have g(D) = C. Then it follows easily that B = A⊕D ∼= A⊕ C, hence

the sequence splits.

Assume now that the second condition is satisfied. We will also show

that g(D) = C. Suppose the contrary and let c ∈ C \ g(D). Then there

exists b ∈ B \ (A ⊕ D) such that g(b) = c. Then A is a proper submodule

of Rb + A. Since A is closed, A is maximal with the property A ∩ D = 0.

Hence (Rb + A) ∩ D 6= 0. Then there exist r ∈ R, a ∈ A and a non-zero

element d ∈ D such that d = rb+a. Hence 0 6= g(d) = g(rb+a) = rg(b), i.e.

0 6= rc ∈ g(D). It follows that g(D) � C. Thus g(D) is a proper essential

submodule of the τ -complemented τ -injective module C. By Proposition
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4.2.1, this is a contradiction. Therefore g(D) = C. As above, we have

B ∼= A⊕ C, hence the sequence splits. �

Corollary 4.2.13 Let A and C be τ -complemented τ -injective and suppose

that A is not essential in B. If either A is closed in B or C is minimal

τ -injective, then B is τ -complemented τ -injective.

Proof. By Proposition 4.2.7, A⊕C is τ -complemented τ -injective. By Propo-

sition 4.2.12, B ∼= A⊕ C, hence B is τ -complemented τ -injective. �

4.3 τ-completely decomposable modules ver-

sus τ-complemented modules

Let us show now that the class of τ -completely decomposable modules is a

subclass of the class of τ -complemented modules.

Theorem 4.3.1 Every τ -completely decomposable module is τ -

complemented.

Proof. Let A be a τ -completely decomposable module and let A
f−→ B −→ 0

be an exact sequence of modules with B τ -torsionfree. We will show that

the sequence splits. Then the result will follow by Proposition 1.7.3.

Let A =
⊕

i∈I Ai, where each Ai is a minimal τ -injective submodule of

A. We may suppose that f is a non-zero homomorphism. Denote fi = f |Ai

for every i ∈ I.

Now let i ∈ I. It follows that fi(Ai) is τ -torsionfree. Since Ai is minimal

τ -injective, Ai is either τ -torsion or τ -torsionfree. If Ai is τ -torsion or fi = 0,

then fi(Ai) = 0. Suppose now that Ai is τ -torsionfree and fi 6= 0. Then

fi(Ai) ∼= Ai, because Ai is τ -cocritical. Let J = {j ∈ I | f(Aj) 6= 0}. Then

B = f(A) =
∑

j∈J f(Aj). It follows that there exists a subset K ⊆ J such

that B =
⊕

k∈K f(Ak) by Proposition 2.2.8. Now let g : B → A be the
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homomorphism defined by g =
⊕

k∈K f−1
k . Then fg = 1B, i.e. the above

sequence splits. �

Corollary 4.3.2 Let A be a τ -completely decomposable module and let B be

a τ -injective submodule of A. Then B is a direct summand of A and B is

τ -complemented.

Proof. It follows by Corollary 4.2.10 and Theorem 4.3.1. �

Now recall that every τ -torsionfree τ -complemented module is extending

by Lemma 1.7.5. In order to show a stronger result for τ -torsionfree τ -

completely decomposable modules we need first two propositions.

Proposition 4.3.3 Let A be a τ -torsionfree τ -completely decomposable mod-

ule and B ≤ E(A).

(i) If B is minimal τ -injective, then B is a direct summand of A.

(ii) If B is τ -completely decomposable and E(B) = E(A), then B = A.

Proof. Let A =
⊕

i∈I Ai, where each Ai is a minimal τ -injective submodule

of A.

(i) Suppose that B is minimal τ -injective. Since E(A) is τ -torsionfree, B

is τ -injective τ -cocritical. Since A � E(A), we have B ∩ A 6= 0. Let x be a

non-zero element of B ∩A. Then there exists a finite subset J ⊆ I such that

Rx ⊆ B ∩ (
⊕

i∈J Ai). But
⊕

i∈J Ai is τ -injective. It follows that Eτ (Rx) ⊆⊕
i∈J Ai. Since Rx is τ -cocritical, Eτ (Rx) is τ -injective τ -cocritical. But

B∩Eτ (Rx) 6= 0, hence B = Eτ (Rx). Therefore B is a submodule of A. Now

by Corollary 4.3.2, B is a direct summand of A.

(ii) Let B =
⊕

j∈J Bj, where each Bj is a minimal τ -injective submodule

of B and suppose that E(B) = E(A). Then B is τ -torsionfree. Since each

Bj is a minimal τ -injective submodule of E(A) and each Ai is a minimal

τ -injective submodule of E(B), it follows that each Bj is a submodule of A

and each Ai is a submodule of B by (i). Then A = B. �
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Proposition 4.3.4 Let A and B be τ -completely decomposable modules with

B τ -torsionfree and let f : E(A) → E(B) be a homomorphism. Then f(A) ⊆
B.

Proof. Let A =
⊕

i∈I Ai, where each Ai is a minimal τ -injective submod-

ule of A. We may suppose that f is a non-zero homomorphism. Follow-

ing the proof of Theorem 4.3.1, there exists a subset K ⊆ I such that

f(A) =
∑

k∈K f(Ak), where each Ak is τ -cocritical τ -injective, i.e. minimal

τ -injective. By Proposition 4.3.3 it follows that each f(Ak) is a submodule

of B. Therefore f(A) ⊆ B. �

Corollary 4.3.5 Every τ -torsionfree τ -completely decomposable module is

quasi-injective.

By Theorem 1.7.8, we know that a module is τ -complemented if and

only if it is a direct sum of a τ -torsion module and a τ -torsionfree τ -

complemented module. By Theorem 4.1.5, every τ -torsion τ -injective module

is τ -completely decomposable if and only if R has ACC on τ -dense left ideals.

Therefore over a ring that satisfies ACC for τ -dense left ideals, the problem

of a τ -complete decomposition of a τ -complemented τ -injective module A

reduces to the case when A is τ -torsionfree.

Theorem 4.3.6 Let A be a τ -torsionfree τ -complemented τ -injective mod-

ule. Then A = B ⊕ C, where B is the τ -injective hull of a τ -completely

decomposable module and C is a τ -injective submodule of A that does not

contain any uniform submodule.

Proof. Note that since A is τ -torsionfree, a submodule of A is minimal τ -

injective if and only if it is τ -injective τ -cocritical. If A does not contain any

minimal τ -injective submodule, then B = 0.

Suppose now that A does contain a minimal τ -injective submodule. Let

D =
∑

i∈I Di, where (Di)i∈I is the family of all minimal τ -injective submod-

ules of A. Then there exists a subset J of I such that D =
⊕

j∈J Dj by
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Proposition 2.2.8. Then Eτ (D) is a τ -injective submodule of A, hence it is a

direct summand of A. Therefore A = B ⊕ C, where B = Eτ (D) and C is a

τ -injective submodule of A which does not contain any minimal τ -injective,

hence uniform submodule. �

Theorem 4.3.7 Let R be τ -noetherian and let A be a module. Then A

is τ -complemented τ -injective if and only if A = B ⊕ C, where B is τ -

torsion τ -injective and C is the τ -injective hull of a τ -torsionfree τ -completely

decomposable module.

Proof. Suppose that A is τ -complemented τ -injective. By Theorem 1.7.8, we

have A = B ⊕ C, where B = t(A) and C is τ -torsionfree τ -complemented

τ -injective. Hence B is τ -torsion τ -injective. We may suppose that C 6= 0.

The hypothesis on R allow us to write E(C) =
⊕

i∈I Ei as a direct sum

of indecomposable injective modules by Theorem 1.4.14. For every i ∈ I,

denote Di = C ∩ Ei. Then for every i ∈ I, we have 0 6= Di � Ei, hence⊕
i∈I

Di �
⊕
i∈I

Ei = E(C) .

It follows that
⊕

i∈I Di � C. By Proposition 4.2.1, C = Eτ (
⊕

i∈I Di). Obvi-

ously,
⊕

i∈I Di is τ -torsionfree. We still have to show that each Di is minimal

τ -injective. Let i ∈ I. Then

Ei/Di
∼= (C + Ei)/C ⊆ E(C)/C

is τ -torsionfree. Then Di is τ -closed in Ei, hence Di is τ -injective. Now

by Proposition 4.2.7, Di is τ -complemented τ -injective. But Di is uniform,

hence by Lemma 4.2.5, Di is minimal τ -injective.

Conversely, suppose that A = B ⊕ C, where B is τ -torsion τ -injective

and C is the τ -injective hull of a τ -torsionfree τ -completely decomposable

module. Then B is τ -complemented τ -injective. Now apply Propositions

4.2.6 and 4.2.7. �
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We have seen in Theorem 1.7.10 a partial result on the structure of τ -

complemented modules. For a τ -complemented τ -injective module we have

the following important theorem.

Theorem 4.3.8 Let R be a ring that has ACC both on τ -dense and τ -closed

left ideals. Then a module A is τ -complemented τ -injective if and only if A

is τ -completely decomposable.

Proof. Suppose that A is τ -complemented τ -injective. Then by Theorem

4.3.7, A = B ⊕ C, where B is τ -torsion τ -injective and C is the τ -injective

hull of a τ -torsionfree τ -completely decomposable module. Since R has ACC

on τ -dense left ideals, every τ -torsion τ -injective module has a τ -complete

decomposition by Theorem 4.1.5. Under both hypotheses on R, direct sums

of τ -injective modules are τ -injective by Theorem 2.3.8. Now the result

follows.

For the converse apply Theorem 4.3.1 and again Theorem 2.3.8. �

Remark. Clearly, Theorem 4.3.8 holds for a left noetherian ring, but there

also exist non-left noetherian rings that satisfy ACC both on τ -dense and

τ -closed left ideals.

Example 4.3.9 [91, Example 28] Consider

R = Z⊕ (
⊕
i∈N∗

Zpi
) ,

where pi is the i-th prime number. Then R is a ring with the following

operations:

(a, . . . , xi, . . . ) + (b, . . . , yi, . . . ) = (a + b, . . . , xi + yi, . . . )

(a, . . . , xi, . . . ) ◦ (b, . . . , yi, . . . ) = (ab, . . . , bxi + ayi, . . . ) .

Let τ be the hereditary torsion theory generated by all R-modules Zpi
for

i ∈ N∗. Then R is not left noetherian, but R has ACC both on τ -dense and

τ -closed left ideals.
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Let us see an example of determining the structure of τ -completely de-

composable modules by using Theorem 4.3.8.

Example 4.3.10 Let R be a commutative noetherian ring with dim R ≥ 1.

Then by Corollary 3.1.6, a module M is minimal τ0-injective if and only if

M ∼= Eτ0(R/p), where p ∈ Spec(R) and dim p ∈ {0, 1}. If p is maximal, then

R/p is τ0-torsion and we have Eτ0(R/p) = E(R/p). If dim p = 1, then R/p is

τ0-cocritical. Now Theorem 4.3.8 gives the structure of τ0-completely decom-

posable (τ0-complemented τ0-injective) modules. Thus A is a τ0-completely

decomposable if and only if

A ∼= (
⊕
i∈I

Eτ0(R/pi))⊕ (
⊕
j∈J

E(Sj)) ,

where each pi ∈ Spec(R) and has dim pi = 1 and each Sj is a simple module.

Finally, we are now able to show that the class of τ -completely decom-

posable modules is strictly included in the class of τ -complemented modules,

as it may be seen in the following example.

Example 4.3.11 Consider the polynomial ring R = K[X1, . . . , Xm] (m ≥
2), where K is a field and the prime ideal p = (X1, . . . , Xm−n−1) of R, where

n < m− 1. We have seen in Example 3.2.10 that

K[Xm−n, . . . , Xm] ∼= K[X1, . . . , Xm]/(X1, . . . , Xm−n−1)

is a τn-cocritical R-module and its τn-injective hull is R-isomorphic to its field

of fractions K(Xm−n, . . . , Xm). Clearly, K ∼= K[X1, . . . , Xm]/(X1, . . . , Xm)

is a τn-torsion R-module. Then by Theorem 1.7.8, it follows that K ⊕
K[Xm−n, . . . , Xm] is a τn-complemented R-module. Since K[Xm−n, . . . , Xm]

is not τn-injective, K ⊕ K[Xm−n, . . . , Xm] cannot be τn-injective. Having

noted that R is noetherian, Theorem 4.3.8 shows that K⊕K[Xm−n, . . . , Xm]

is not a τn-completely decomposable module.
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4.4 Direct summands of τ-completely decom-

posable modules

Previously established results on τ -completely decomposable modules will

allow us to give partial answers to a question generalizing a problem of Matlis.

Among classical questions to ask on a class of modules is the following one:

If A =
⊕

i∈I Ai is a direct sum of modules of a class A, is a direct

summand B of A still a direct sum of modules of the class A?

This is apparently an open question if A is either the class of all modules

with local endomorphism rings or the class of all indecomposable injective

modules [42, p.267]. For the former, the answer is known to be yes if each

Ai is countably generated [42, Corollary 2.55]. For the latter, raised by

E. Matlis [75], the answer is known to be yes in several cases, such as: R

left noetherian [75], I finite [101], A injective [43], A quasi-injective [63], B

countably generated [43] or B injective [63].

Now consider the following condition on a module A [40, p.16]:

(C2) Every submodule isomorphic to a direct summand of A is a direct

summand of A.

Among the modules satisfying (C2) we mention continuous modules (that

can be seen as extending modules with (C2)) and, in particular, quasi-

injective modules.

If the class A consists of all minimal τ -injective modules, that are known

to have local endomorphism rings, we will also give an affirmative answer to

the question mentioned above, provided R has ACC both on τ -dense and

τ -closed left ideals, A satisfies the condition (C2), A is τ -torsionfree, A is

τ -injective, I is finite, B is τ -injective or B is countably generated.

In the sequel, we will use some properties of τ -complemented modules in

order to give partial answers to the following question:

Is a direct summand of a τ -completely decomposable module still a τ -
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completely decomposable module?

Theorem 4.4.1 Let R be a ring that has ACC both on τ -dense and τ -closed

left ideals and let A be a τ -completely decomposable module. Then any direct

summand of A is τ -completely decomposable.

Proof. By Theorem 4.3.8, A is τ -complemented τ -injective. Then every

direct summand B of A is τ -complemented τ -injective. Again by Theorem

4.3.8, it follows that B is τ -completely decomposable. �

The following theorem is the main result of this section.

Theorem 4.4.2 Let A be a τ -completely decomposable module that satisfies

the condition (C2). Then any direct summand of A is τ -completely decom-

posable.

Proof. Let A =
⊕

i∈I Ai, where each Ai is a minimal τ -injective submodule

of A and let B be a non-zero proper direct summand of A. Since each Ai is

uniform and B is not essential in A, there exists k ∈ I such that B ∩Ak = 0

[40, p.38]. By Zorn’s Lemma, there exists a maximal subset J ⊆ I such that

B ∩ (
⊕

j∈J Aj) = 0. Let p : A →
⊕

i∈I\J Ai the natural projection. Then

the restriction p|B is a monomorphism, whence p(B) ∼= B. Since A satisfies

the condition (C2), p(B) is a direct summand of A. Hence p(B) is a direct

summand of
⊕

i∈I\J Ai. Suppose that p(B) 6=
⊕

i∈I\J Ai. Then there exists

h ∈ I \ J such that p(B) ∩ Ah = 0 [40, p.38]. It follows that

B ∩ (Ah ⊕ (
⊕
j∈J

Aj)) = 0 ,

which contradicts the maximality of J . Therefore p(B) =
⊕

i∈I\J Ai. Then

B is τ -completely decomposable. �

Corollary 4.4.3 Let A be a τ -completely decomposable module. If one of

the following extra conditions on A holds:
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(i) A is continuous;

(ii) A is τ -torsionfree;

(iii) A is τ -injective;

(iv) A is finitely τ -completely decomposable,

then any direct summand of A is τ -completely decomposable.

Proof. If (i) holds, apply Theorem 4.4.2. If (ii) holds, then A is quasi-

injective by Corollary 4.3.5 and the conclusion follows by the result for (i).

If (iii) holds, by Theorem 4.3.1, A is τ -complemented and by Lemma 4.2.3,

A is quasi-injective. If (iv) holds, note that the class of τ -injective modules

is closed under finite direct sums and apply the result for (iii). �

In the following two results we ask for some conditions on the direct

summands.

Theorem 4.4.4 (i) Every τ -torsionfree direct summand of a τ -completely

decomposable module is τ -completely decomposable.

(ii) Every τ -injective direct summand of a τ -completely decomposable

module is τ -completely decomposable.

Proof. Let A =
⊕

i∈I Ai, where each Ai is minimal τ -injective, and let B be

a direct summand of A.

(i) Assume that B is τ -torsionfree. Let 0 6= b ∈ B. Then Eτ (Rb) ⊆ B and

Eτ (Rb) is contained in a finite sum of submodules Ai. By Proposition 4.1.4,

Eτ (Rb) is isomorphic to a finite direct sum of submodules Ai. Each Eτ (Rb)

is τ -torsionfree minimal τ -injective, hence τ -cocritical τ -injective. Now by

Proposition 2.2.8, B =
∑

b∈B Eτ (Rb) is τ -completely decomposable.

(ii) Assume that B is τ -injective. As for injective modules (see [116]),

there exists J ⊆ I such that B =
⊕

j∈J Aj, so that B is τ -completely decom-

posable. �

For completeness, we also mention the following theorem, whose proof is

similar with the corresponding one given for indecomposable injective mod-

ules. In order to complete the proof, Corollary 4.3.2 is needed.
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Theorem 4.4.5 Let A be a τ -completely decomposable module. Then:

(i) If B is a direct summand of A and C is a finitely generated submodule

of B, then B contains a finitely τ -completely decomposable τ -injective hull of

C.

(ii) Any countably generated direct summand of A is τ -completely decom-

posable.

Proof. Let A =
⊕

i∈I Ai, where each Ai is a minimal τ -injective submodule

of A.

(i) Since C is finitely generated, there exists a finite subset J ⊆ I such

that C ⊆
⊕

j∈J Aj. Then Eτ (C) ⊆
⊕

j∈J Aj and by Corollary 4.3.2, Eτ (C)

is a direct summand of
⊕

j∈J Aj. But
⊕

j∈J Aj is finitely τ -completely de-

composable. Then by Corollary 4.4.3, Eτ (C) is finitely τ -completely decom-

posable. Now consider p : A → B the canonical projection. Then p|C is a

monomorphism, hence p|Eτ (C) is a monomorphism. Hence p(Eτ (C)) ∼= Eτ (C)

is a finitely τ -completely decomposable τ -injective hull of C.

(ii) Let D be a countably generated direct summand of A and let

d1, . . . , dn, . . . be a countable generating set of D. By (i) for each natu-

ral number n ≥ 1, there exists a finitely τ -completely decomposable module

Dn such that d1, . . . , dn ∈ Dn. By Corollary 4.3.2, each Dn is a direct sum-

mand of A, hence each Dn is a direct summand of D. But D =
⋃

n≥1 Dn.

Denoting D0 = 0, we have

D ∼=
⊕
n≥0

Dn+1/Dn ,

that is, a direct sum of finitely τ -completely decomposable modules. There-

fore D is τ -completely decomposable. �

Remark. If the Gabriel filter associated to τ consists of all left ideals of R,

then τ -injective modules and minimal τ -injective modules become injective

and indecomposable injective modules respectively. Thus the well-known
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results for indecomposable injective modules are obtained as particular cases

of Theorems 4.4.1, 4.4.5 and Corollary 4.4.3.

We have seen in Corollary 4.3.5 that every τ -torsionfree τ -completely de-

composable module is quasi-injective. More generally, we have the following

property.

Proposition 4.4.6 Every τ -torsionfree direct summand of a τ -completely

decomposable module is quasi-injective.

Proof. By Theorem 4.4.4, every τ -torsionfree direct summand of a τ -

completely decomposable module is τ -completely decomposable. Then use

Corollary 4.3.5. �

We have seen that a direct summand of a τ -torsionfree τ -completely de-

composable module is τ -completely decomposable. The converse is also true.

Theorem 4.4.7 Let A be a τ -torsionfree τ -completely decomposable module.

Then a submodule of A is a direct summand if and only if it is τ -completely

decomposable.

Proof. The ”only if” part follows by Corollary 4.4.3.

Suppose now that B is a τ -completely decomposable submodule of A. By

Theorem 4.3.1 and Proposition 4.2.6, Eτ (A) is τ -complemented. Since Eτ (B)

is a τ -injective submodule of Eτ (A), there exists a non-zero submodule D

of Eτ (A) such that Eτ (A) = Eτ (B) ⊕ D. By Corollary 4.5.2, D = Eτ (C),

where C is a τ -completely decomposable submodule of D. Hence Eτ (A) =

Eτ (B⊕C). Since B⊕C is τ -completely decomposable, by Proposition 4.3.3

it follows that A = B ⊕ C. Therefore B is a direct summand of A. �

We will continue this section with a result that generalizes a correspond-

ing one given for indecomposable injective modules. We need the following

lemma.
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Lemma 4.4.8 Let A be a τ -completely decomposable module, B be a direct

summand of A and C be a τ -injective submodule of A such that B ∩ C = 0.

Then B ⊕ C is a direct summand of A.

Proof. There exists a submodule D of A such that A = B⊕D. Let p : A → D

be the canonical projection. Since B ∩ C = 0 we have p(C) ∼= C. Hence

p(C) is a τ -injective submodule of A. By Corollary 4.3.2, p(C) is a direct

summand of A, hence p(C) is a direct summand of D. But B⊕C = B⊕p(C).

Therefore B ⊕ C is a direct summand of A. �

Let us now recall an auxiliary result.

Lemma 4.4.9 [71, Lemma 2.1] Let X, Y, Z be submodules of a module such

that X ⊕ Y = X ⊕ Z. Then there exists an isomorphism f : Y → Z such

that

f(B) ∩ C = (X ⊕B) ∩ C

for every submodule B of Y and for every submodule C of Z.

Theorem 4.4.10 Let A be a τ -completely decomposable module. Then ev-

ery non-zero direct summand B of A contains a minimal τ -injective direct

summand.

Proof. Let P be the family of all finite subsets J of I such that (
⊕

j∈J Aj)∩
B 6= 0. Note that P is non-empty, because B is a non-zero submodule of A.

Denote by k the least (finite) cardinal of the elements of P , say k = |K| and

take K = {i1, . . . , ik}. Also write A = B ⊕ C.

Suppose first that k = 1. Since (Ai1 ∩ B) ∩ (Ai1 ∩ C) = 0, Ai1 ∩ B 6= 0

and Ai1 is uniform, we have Ai1 ∩ C = 0. Then by Lemma 4.4.8, it follows

that Ai1 ⊕ C is a direct summand of A, say A = Ai1 ⊕ C ⊕D. But we also

have A = B⊕C. Then there exists an isomorphism f : Ai1⊕D → B. Hence

B = f(Ai1 ⊕D) = f(Ai1)⊕ f(D). Therefore f(Ai1) is a minimal τ -injective

direct summand of B.
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Suppose now that k > 1. Denote

M = Ai1 ⊕ · · · ⊕ Aik−1
,

L =
⊕

i∈I\{i1,...,ik−1}

Ai .

Clearly, M ∩ B = 0 by the choice of k. By Lemma 4.4.8, since M is τ -

injective, M ⊕ B is a direct summand of A, say A = M ⊕ B ⊕ N . On the

other hand, we have A = M ⊕ L. By Lemma 4.4.9, it follows that there

exists an isomorphism g : L → B ⊕N such that

g(Aik) ∩B = (M ⊕ Aik) ∩B .

But since

(g(Aik) ∩B) ∩ (g(Aik) ∩N) = 0 ,

g(Aik) ∩B = (
⊕
i∈K

Ai) ∩B 6= 0

and g(Aik) is uniform, we have g(Aik) ∩ N = 0. Now repeat the argument

used for k = 1. Then B will contain a minimal τ -injective direct summand

of B isomorphic to g(Aik). �

4.5 Essential extensions of τ-completely de-

composable modules

Now we are able to characterize the τ -injective hull of a τ -completely decom-

posable module.

Theorem 4.5.1 A module A is the τ -injective hull of a τ -completely de-

composable module if and only if A is τ -complemented τ -injective and the

τ -injective hull of every non-zero cyclic submodule of A contains a uniform

submodule.
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Proof. Suppose first that A = Eτ (
⊕

i∈I Bi), where each Bi is a minimal

τ -injective module. By Proposition 4.2.6, A is τ -complemented. Let C be

a non-zero cyclic submodule of A = Eτ (
⊕

i∈I Bi). Then there exists a non-

zero element x ∈ C ∩ (
⊕

i∈I Bi). It follows that there exists a finite subset

J ⊆ I such that Rx ⊆
⊕

j∈J Bj. But
⊕

j∈J Bj is τ -complemented τ -injective.

Hence Eτ (Rx) is a direct summand of the τ -completely decomposable module⊕
j∈J Bj. By Corollary 4.4.3, Eτ (Rx) is τ -completely decomposable, hence

there exists a minimal τ -injective, hence uniform submodule D ⊆ Eτ (Rx) ⊆
C.

Suppose now that A is τ -complemented τ -injective and the τ -injective

hull of every non-zero cyclic submodule of A contains a uniform submodule.

Let B be the family of all minimal τ -injective submodules of A. Since A is

τ -injective, there exists a uniform submodule B of A. Then Eτ (B) is minimal

τ -injective by Proposition 4.2.7 and Lemma 4.2.5. Hence Eτ (B) ∈ B, i.e. B
is non-empty. Then there exists a maximal collection (Bi)i∈I of members of

B whose sum is direct [101, Proposition 1.7].

We will show that
⊕

i∈I Bi � A. Let C be a non-zero submodule of A.

Suppose that (
⊕

i∈I Bi) ∩ C = 0. But A is τ -injective, hence Eτ (C) ⊆ A.

It follows that (
⊕

i∈I Bi) ∩Eτ (C) = 0. As above, Eτ (C) contains a minimal

τ -injective submodule D. Then (
⊕

i∈I Bi) ⊕ D ⊆ A, which contradicts the

maximality of the family (Bi)i∈I . Therefore
⊕

i∈I Bi � A. It follows that

Eτ (
⊕

i∈I Bi) � A. By Proposition 4.2.1, A = Eτ (
⊕

i∈I Bi). �

Corollary 4.5.2 Let A be the τ -injective hull of a τ -completely decomposable

module. Then any τ -injective submodule of A is the τ -injective hull of a τ -

completely decomposable module.

Proof. Let A = Eτ (
⊕

i∈I Bi), where each Bi is a minimal τ -injective module

and let C be a non-zero τ -injective submodule of A. By Theorem 4.5.1, the τ -

injective hull of every non-zero cyclic submodule of A, hence of C, contains

a uniform submodule. But C is τ -complemented τ -injective. Then again
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by Theorem 4.5.1, C is the τ -injective hull of a τ -completely decomposable

module. �

In what follows we will deal with the following two problems:

Problem 1. For some particular torsion theories τ , characterize the rings

with the property that every τ -injective module is an essential extension of a

τ -injective τ -completely decomposable module.

Problem 2. For some particular classes of rings, characterize the torsion

theories with the property that every τ -injective module is an essential exten-

sion of a τ -injective τ -completely decomposable module.

Concerning Problem 1 we have the following result.

Theorem 4.5.3 Let τ be a noetherian torsion theory. The following condi-

tions are equivalent:

(i) Every τ -injective module is an essential extension of a τ -injective τ -

completely decomposable module.

(ii) R has ACC on τ -dense left ideals and R is τ -semiartinian.

Proof. (i) =⇒ (ii) Let A be a τ -torsion τ -injective module. Then every

τ -injective submodule of A is a direct summand. It follows that A has an

essential τ -injective submodule B of A, that is τ -completely decomposable.

Since B is τ -dense in A, we have B = A, that is, A is τ -completely decom-

posable. Now by Theorem 4.1.5, R has ACC on τ -dense left ideals.

Since every τ -torsionfree minimal τ -injective module is τ -cocritical, every

τ -injective module has essential τ -socle. Hence every module has an essential

τ -socle, that is, R is τ -semiartinian.

(ii) =⇒ (i) Let A be a τ -injective module. Then t(A) is τ -injective as a

τ -closed submodule of A. By Theorem 4.1.5, t(A) is τ -completely decompos-

able. We may assume that it is not essential in A. Then let B be a closed

submodule of A such that B ∩ t(A) = 0 and B⊕ t(A) � A. It follows that B
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is τ -injective. Then there is a family (Bi)i∈I of minimal τ -injective submod-

ules of B such that Socτ (B) = Eτ (
⊕

i∈I Bi). Then Socτ (B) � B, because

R is τ -semiartinian. Since τ is noetherian, it follows by Theorem 2.3.7 that⊕
i∈I Bi is τ -injective. Then A is an essential extension of the τ -injective

τ -completely decomposable module t(A)⊕ (
⊕

i∈I Bi). �

As a consequence of Theorem 4.5.3, we can characterize the situation

when every τ -injective module is τ -completely decomposable.

Theorem 4.5.4 The following statements are equivalent:

(i) R is left noetherian, τ -semisimple and τ is stable.

(ii) R has ACC both on τ -dense and τ -closed left ideals, R is τ -semisimple

and τ is stable.

(iii) Every τ -injective module is τ -completely decomposable.

Proof. (i) =⇒ (ii) Clear.

(ii) =⇒ (iii) Let A be a τ -injective module. Since R is τ -noetherian, it

follows that τ is noetherian. Since R is τ -semisimple, R is τ -semiartinian

by Corollary 1.6.10. Hence by Theorem 4.5.3, A is an essential extension of

a τ -injective τ -completely decomposable module, say B =
⊕

i∈I Ai. Denote

J = {i ∈ I | Ai is τ -torsion} and K = {i ∈ I | Ai is τ -torsionfree}. Then

I = J ∪K. Denote C =
⊕

j∈J Aj and D =
⊕

k∈K Ak. Then C � t(A), but C

is also τ -injective and τ -dense in t(A), hence C = t(A). By the stability of

τ it follows that (C ⊕D)/C � A/C = A/t(A). Since R is τ -semisimple, by

Proposition 1.6.8 the lattice Cτ (R) is complemented. Again by Proposition

1.6.8, (C ⊕ D)/C is τ -dense in A/t(A). But (C ⊕ D)/C is also τ -injective,

so that we have (C ⊕ D)/C = A/t(A), whence A = C ⊕ D. Thus A is

τ -completely decomposable.

(iii) =⇒ (i) By hypothesis, every injective module A is τ -completely

decomposable, say A =
⊕

i∈I Ai. But then each Ai is uniform and injective.

Therefore R is left noetherian. By Theorem 4.1.8, R is τ -semisimple. By

hypothesis, it follows that every indecomposable injective module is minimal
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τ -injective, that is, it is either τ -torsion or τ -torsionfree by Lemma 3.1.2.

Now by Proposition 1.2.10, τ is stable. �

Remark. Note that by Example 4.3.9, there exist rings R that have ACC

both on τ -dense and τ -closed left ideals, without being left noetherian.

Let us now deal with Problem 2. Thus we will determine those torsion

theories on R-Mod, where R is a commutative noetherian ring that is not

a domain, having the property that every τ -injective module is an essential

extension of a τ -complemented τ -injective module or equivalently of a τ -

completely decomposable module (see Theorem 4.3.8).

For the rest of this section we will assume the ring R to be commutative.

Let P be a non-empty set of minimal prime ideals of R. Denote by AP

the class of all modules isomorphic to factor modules U/V , where U and V

are ideals of R containing a non-zero prime ideal q /∈ P . Denote by τP the

hereditary torsion theory generated by AP .

Proposition 4.5.5 Let R be noetherian, let τ be the torsion theory τP de-

fined above and let 0 6= p ∈ Spec(R). Then R/p is τ -cocritical if and only if

p ∈ P.

Proof. Suppose first that R/p is τ -cocritical. Then by Theorem 1.5.12,

p ∈ Spec(R). If p /∈ P , then R/p is τ -torsion by the definition of τ , a

contradiction. Hence p ∈ P .

Suppose now that p ∈ P. Assume that R/p is τ -torsion. Then R/p

contains a non-zero submodule A isomorphic to U/V , where U and V are

ideals of R containing a non-zero prime ideal q /∈ P. Let 0 6= a ∈ A. Since

p ∈ Spec(R), AnnRa = p. Let r ∈ q \ p. Then ra = 0, whence r ∈ p, a

contradiction. Therefore R/p is not τ -torsion. Now by Lemma 1.4.7, R/p is

τ -torsionfree. Clearly R/p is a noetherian R-module, hence by Proposition

1.5.8 there exists an ideal q of R such that p ⊆ q and R/q is τ -cocritical. By
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Theorem 1.5.12, q = AnnR(R/q) ∈ Spec(R). If q 6= p, then q /∈ P, hence

R/q is τ -torsion, a contradiction. Therefore q = p and R/p is τ -cocritical. �

Theorem 4.5.6 Let R be commutative noetherian that is not a domain.

Then the following statements are equivalent:

(i) Every τ -injective module is an essential extension of a τ -complemented

τ -injective module.

(ii) τ is the improper torsion theory χ or τ = τP for some non-empty set

P of minimal prime ideals of R.

Proof. By the hypotheses and Theorem 4.3.8, τ -completely decomposable

modules and τ -complemented τ -injective modules coincide.

(i) =⇒ (ii) Suppose that τ is proper. Then there exists a τ -cocritical

module A by Example 1.5.7. By Theorem 3.1.4, Eτ (A) ∼= Eτ (R/p), where

p ∈ Spec(R). Since R is not a domain, p 6= 0.

We show first that p is a minimal prime ideal. Suppose the contrary. Then

there exists q ∈ Spec(R) such that q ⊂ p. Since R/p is τ -torsionfree, R/q

is τ -torsionfree. Moreover, R/q cannot be τ -cocritical, because otherwise

R/p ∼= (R/q)/(p/q) would be τ -torsion. On the other hand, Eτ (R/q) is

an essential extension of a τ -complemented τ -injective module B. Since

Eτ (R/q) is uniform, B is uniform. Now by Lemma 4.2.5, B is minimal τ -

injective. Furthermore, B is also τ -torsionfree and, consequently, τ -cocritical

τ -injective. Since B �Eτ (R/q), there exists a non-zero element b ∈ B∩R/q.

We have AnnRB = AnnRb = q and R/q is τ -cocritical, a contradiction.

Therefore p is minimal.

Denote by P the set of all minimal prime ideals s of R such that Eτ (R/s)

is τ -cocritical. Note that P is non-empty, since p ∈ P .

Let us now show that τ -torsion and τP-torsion modules coincide.

Let M be a τ -torsion module. By the hypotheses on R, every torsion

theory is stable, hence we have

Eτ (M) = E(M) =
⊕
i∈I

E(R/pi) ,
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where each pi /∈ P is a (non-zero) prime ideal of R. Then R/pi ∈ AP , whence

it follows immediately that M is τP-torsion. Hence every τ -torsion module

is τP-torsion.

Now let N ∈ AP . Then N ∼= U/V , where U and V are ideals of R con-

taining a (non-zero) prime ideal q′ /∈ P . Suppose that R/q′ is τ -torsionfree.

By hypothesis, Eτ (R/q′) is an essential extension of a τ -complemented τ -

injective module C. Repeating the above arguments, it follows that R/q′

is τ -cocritical, which contradicts the choice of q′. Then R/q′ is τ -torsion.

Hence R/V and, consequently, N ∼= U/V is τ -torsion. Thus every τP-torsion

module is τ -torsion. Therefore τ = τP .

(ii) =⇒ (i) Suppose first that τ = χ, i.e. every module is τ -torsion. Then

every module is τ -complemented and the result follows.

Suppose now that τ = τP , for some non-empty set P of minimal prime

ideals of R. Let A be a τ -injective module. By the stability of τ and by

Proposition 2.1.8, we may write A = t(A) ⊕ C, where C is τ -torsionfree

τ -injective. Clearly, t(A) is τ -complemented τ -injective, hence τ -completely

decomposable. By the hypotheses on R, we have E(C) =
⊕

i∈I E(R/pi),

where each pi is a (non-zero) prime ideal of R. Then E(R/pi) is τ -torsionfree,

hence pi ∈ P for every i ∈ I. Now let i ∈ I. By Proposition 4.5.5, R/pi is

τ -cocritical, whence Eτ (R/pi) is minimal τ -injective. Thus
⊕

i∈I Eτ (R/pi) is

τ -completely decomposable.

We have C ∩ Eτ (R/pi) 6= 0. Then

Eτ (R/pi)/(C ∩ Eτ (R/pi)

is both τ -torsion, because Eτ (R/pi) is τ -cocritical, and τ -torsionfree, because

Eτ (R/pi)/(C ∩ Eτ (R/pi)) ∼= (C + Eτ (R/pi))/C ⊆ E(C)/C .

Hence Eτ (R/pi) ⊆ C and thus
⊕

i∈I Eτ (R/pi) � C. Now A is an es-

sential extension of a τ -completely decomposable module, namely t(A) ⊕
(
⊕

i∈I Eτ (R/pi)). �
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Remark. The hypothesis on R not to be a domain is essential in Theo-

rem 4.5.6. Indeed, suppose that R is a domain and consider τ = τP for

some non-empty set P of minimal prime ideals of R. Clearly Eτ (R) is τ -

torsionfree and AnnRx = 0 for every 0 6= x ∈ Eτ (R). Suppose that Eτ (R)

is an essential extension of a τ -completely decomposable (or equivalently τ -

complemented τ -injective) module A. Then, since A is uniform, A has to be

minimal τ -injective, hence τ -cocritical. It follows that AnnRA = p, where

p ∈ P , because R/p is τ -cocritical by Proposition 4.5.5. Hence AnnRA 6= 0,

a contradiction. Thus Eτ (R) is a τ -injective module that is not an essential

extension of any τ -completely decomposable module.

Corollary 4.5.7 Let R be commutative noetherian that is not a domain.

Consider the set P of all minimal prime ideals of R and put τ = τP . Then

every τ -injective module A is isomorphic to an essential extension of

(
⊕
i∈I

Eτ (R/pi))⊕ (
⊕
j∈J

E(R/qj)) ,

where each pi, qj ∈ Spec(R). Moreover, each pi ∈ P and each qj /∈ P.

Proof. By Theorem 4.5.6, A is an essential extension of a τ -complemented

τ -injective module B. By Theorem 4.3.8, B is τ -completely decomposable,

i.e. B is a direct sum of minimal τ -injective modules. By Theorem 3.1.3,

a τ -torsion minimal τ -injective module A is of the form A = Eτ (B), where

B ∈ AP and B is uniform. Since R is commutative noetherian, τ is stable and

thus Eτ (B) = E(B) by Proposition 2.1.9. Since B is uniform, A = E(B)

is isomorphic to E(R/p) for some p ∈ Spec(R). By Theorem 3.1.4, a τ -

torsionfree minimal τ -injective module is isomorphic to Eτ (R/q) for some

q ∈ Spec(R). Therefore every τ -injective module A is isomorphic to an

essential extension of

(
⊕
i∈I

Eτ (R/pi))⊕ (
⊕
j∈J

E(R/qj)) ,
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where each pi and each qj ∈ Spec(R). Moreover, each Eτ (R/pi)) is τ -

cocritical, hence each R/pi is τ -cocritical. Then by Proposition 4.5.5 and

by Lemma 1.4.7, each pi ∈ P and each qj /∈ P . �

References: J.L. Bueso, P. Jara, B. Torrecillas [15], [16], S. Crivei [33],

[34], K. Masaike, T. Horigome [74], S. Mohamed, B. Müller, S. Singh [78],

S. Mohamed, S. Singh [79], P.F. Smith, A.M. Viola-Prioli, J.E. Viola-Prioli

[104], [105], A.M. Viola-Prioli, J.E. Viola-Prioli [114], J. Zelmanowitz [119].

Notes on Chapter 4

The name of τ -completely decomposable module was coined by K. Ma-

saike and T. Horigome (1980), overtaking the terminology of completely de-

composable module, used by C. Faith and E. Walker [43] for a direct sum

of indecomposable injective modules. They characterized the rings for which

every τ -torsion τ -injective module is τ -completely decomposable and first

studied direct summands and extensions of τ -completely decomposable mod-

ules. J.L. Bueso, P. Jara and B. Torrecillas (1985) characterized the rings for

which every τ -torsionfree τ -injective module is τ -completely decomposable

and refined the result of K. Masaike and T. Horigome (1980) on when ev-

ery τ -injective module is an essential extension of a τ -injective τ -completely

decomposable module. S. Mohamed and S. Singh (1981) established a de-

composition theorem of the τ -injective hull of a finitely generated module

into a direct sum of uniform submodules. The author’s contribution is the

use of τ -complemented modules in order to give a solution in several cases

to a generalized Matlis’ problem on the τ -complete decomposability of direct

summands of τ -completely decomposable modules, and to determine torsion

theories such that every τ -injective module is an essential extension of a

τ -injective τ -completely decomposable module.



Chapter 5

τ-quasi-injective modules

τ -quasi-injective modules generalize quasi-injective modules in the relative

case of a torsion theory. Several properties similar to the case of quasi-

injective modules can be established, including the existence and uniqueness

up to an isomorphism of the τ -quasi-injective hull. In the final part, we will

use some of their properties to discuss relationships between certain condi-

tions on τ -injectivity and τ -quasi-injectivity for modules in the context of

τ -natural classes, that is, classes of modules closed under isomorphic copies,

submodules, direct sums and τ -injective hulls.

5.1 General properties

Definition 5.1.1 A module A is said to be τ -quasi-injective if whenever B

is a τ -dense submodule of A, every homomorphism B → A extends to an

endomorphism of A.

Lemma 5.1.2 (i) A module A is τ -quasi-injective if and only if

Ext1
R(A/B, A) = 0 for every τ -dense submodule B of A.

(ii) Every quasi-injective module and every τ -injective module is τ -quasi-

injective.

153
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(iii) R is τ -quasi-injective if and only if it is τ -injective.

(iv) Every τ -torsion τ -quasi-injective module is quasi-injective.

Proof. Immediate. �

Now let us give a characterization of τ -quasi-injective modules similar

to the well-known characterization of quasi-injective modules, that are fully

invariant submodules of their injective hulls.

Theorem 5.1.3 Let A be a module. Then A is τ -quasi-injective if and only

if A is a fully invariant submodule of Eτ (A).

Proof. We may suppose that A 6= 0. Denote K = EndR(Eτ (A)).

Assume first that A is τ -quasi-injective and let f ∈ K. Denote g = f |A
and B = g−1(A). Consider the following commutative diagram

0 // B
i //

u

��

A
j //

v

||y
y

y
y

y

g

����
��

��
��

��
��

��
��

Eτ (A)

f

||yy
yy

yy
yy

yy
yy

yy
yy

yy
yy

y
// Eτ (A)/A

A

k
��

Eτ (A)

where i, j, k are inclusion homomorphisms and u : B → A is defined by

u(b) = g(b) for every b ∈ B.

We will show that B is a τ -dense submodule of A. The homomorphism

g induces a monomorphism w : A/B → Eτ (A)/A, defined by w(a + B) =

g(a) + A for every a ∈ A. Then A/B is τ -torsion, because Eτ (A)/A is

τ -torsion. Hence B is a τ -dense submodule of A.

Since A is τ -quasi-injective, there exists v ∈ EndR(A) such that vi =

u. By the τ -injectivity of Eτ (A), there exists h ∈ K such that hj = kv.

Thus h(A) ⊆ A. Assume (h − f)(A) 6= 0. Then (h − f)(A) ∩ A 6= 0

and there exist x, y ∈ A, y 6= 0 such that y = (h − f)(x). It follows that
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(h − f)(x) = v(x) − f(x) = y, hence f(x) = v(x) − y ∈ A. Then x ∈ B

and y = v(x) − f(x) = 0, contradiction. Therefore (h − f)(A) = 0, i.e.

f(A) = h(A) ⊆ A. Hence A is a fully invariant submodule of Eτ (A).

Suppose now that A is a fully invariant submodule of Eτ (A). Let B

be a τ -dense submodule of A and let g : B → A be a homomorphism. The

module Eτ (A)/B is τ -torsion because Eτ (A)/A and A/B are τ -torsion. Then

g extends to h ∈ K because Eτ (A) is τ -injective. Since h(A) ⊆ A, g extends

to an endomorphism of A. Therefore A is τ -quasi-injective. �

The proof of the following corollary is immediate by Theorem 5.1.3. It

might be also obtained as a particular case of a forthcoming theorem.

Corollary 5.1.4 If every τ -injective module is injective, then every τ -quasi-

injective module is quasi-injective.

Another relationship between τ -injective and τ -quasi-injective modules

can be given.

Proposition 5.1.5 The following statements are equivalent:

(i) Every module is τ -injective.

(ii) Every module is τ -quasi-injective.

Proof. (i) =⇒ (ii) Obvious.

(ii) =⇒ (i) Let A be a module. Also, let I be a τ -dense left ideal of R and

let f : I → A be a homomorphism. Then A ⊕ I is τ -dense in A ⊕ R. Thus

the homomorphism g : A⊕ I → A⊕ R defined by g(a, r) = (f(r), 0) can be

extended to a homomorphism h : A ⊕ R → A by the τ -quasi-injectivity of

A. Now h|R extends f and thus A is τ -injective. �

By Theorem 5.1.3 and in a similar way as for quasi-injective modules, one

may prove immediately the following proposition.

Proposition 5.1.6 The class of τ -quasi-injective modules is closed under

direct summands and finite direct sums of copies.
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Proposition 5.1.7 Let 0 −→ A
f−→ B

g−→ C −→ 0 be a short exact

sequence of modules and let h : B → A ⊕ D be a monomorphism, where

D is a module. If (hf)(A) is a τ -dense submodule of A ⊕ D and A ⊕ D is

τ -quasi-injective, then the above sequence splits.

Proof. Let α : A → A⊕D be the canonical injection. Since (A⊕D)/(hf)(A)

is τ -torsion and A ⊕ D is τ -quasi-injective, there exists an endomorphism

θ : A⊕D → A⊕D such that θhf = α. Let p : A⊕D → A be the canonical

projection and define γ : B → A by γ = pθh. Then clearly γf = 1A, hence

the above sequence splits. �

Corollary 5.1.8 Let f : A → B be a monomorphism of modules. If B is

τ -torsion and A ⊕ B is τ -quasi-injective, then A ⊕ B is τ -injective if and

only if B is τ -injective.

Proof. The ”only if” part is obvious. For the ”if” part, in the Proposition

5.1.7, let h : B → A ⊕ B be the canonical injection. Since B is τ -torsion,

A and B/f(A) are τ -torsion. Hence (A ⊕ B)/(hf)(A) ∼= (A ⊕ B)/f(A) is

τ -torsion. By Proposition 5.1.7, f(A) is a direct summand of B, hence A is

τ -injective. Therefore A⊕B is τ -injective. �

Proposition 5.1.9 A module A is τ -injective if and only if A ⊕ Eτ (A) is

τ -quasi-injective.

Proof. The ”only if” part is obvious. Suppose now that A⊕Eτ (A) is τ -quasi-

injective. Also assume that A is not τ -injective. Consider the exact sequence

of modules:

0 // A
i // Eτ (A)

p // Eτ (A)/A // 0 (1)

where i is the inclusion homomorphism and p is the natural homomorphism.

Let α1 : A → A⊕ Eτ (A) be the canonical injection, β : A → A⊕ A defined

by β(a) = (0, a) for every a ∈ A, j = 1A ⊕ i : A ⊕ A → A ⊕ Eτ (A) and
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σ : A ⊕ A → A ⊕ Eτ (A) defined by σ(a1, a2) = (a2, a1). Now consider the

following diagram:

A
β //

α1

��

A⊕ A
j //

σ

xxqqqqqqqqqqq
A⊕ Eτ (A)

γ
tth h h h h h h h h

A⊕ Eτ (A)

Since A⊕A is τ -dense in Eτ (A⊕A) = Eτ (A)⊕Eτ (A), it follows that A⊕A

is τ -dense in A ⊕ Eτ (A). But A ⊕ Eτ (A) is τ -quasi-injective, hence there

exists a homomorphism γ : A⊕Eτ (A) → A⊕Eτ (A) such that γj = σ. Then

γjβ = σβ = α1. Let α2 : Eτ (A) → A⊕Eτ (A) be the canonical injection and

let π : A⊕Eτ (A) → A be the canonical projection. Note that α2i = jβ. Now

take δ = πγα2. Then we have δi = πγα2i = πγjβ = πα1 = 1A, hence the

sequence (1) splits. But this contradicts the fact that A � Eτ (A). Therefore

A is τ -injective. �

Lemma 5.1.10 Let A be a τ -quasi-injective module. If (Eτ (A))(I) is τ -

injective, then A(I) is τ -quasi-injective for every set I.

Proof. It is known that if B is a fully invariant submodule of a module A,

then B(I) is a fully invariant submodule of A(I) for every set I. Now apply

Theorem 5.1.3. �

We have seen that every quasi-injective module is τ -quasi-injective. The

converse does not hold, as the following example shows.

Example 5.1.11 Let R be a unique factorization domain such that every

maximal ideal of R is not principal. Then by Proposition 2.4.8 we know that

R is a non-injective τD-injective R-module. Hence R is τD-quasi-injective.

Since R is quasi-injective if and only if R is injective, it follows that R is not

quasi-injective.

In what follows let us discuss some further properties on τ -quasi-

injectivity for some particular torsion theories, namely τn.
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Clearly, if R is left τ -cocritical, then every τ -quasi-injective module is

quasi-injective. For the torsion theories τn we will see a couple of cases when

quasi-injectivity and τn-quasi-injectivity are the same.

Proposition 5.1.12 Let R be commutative. Then every τn-quasi-injective

module is quasi-injective provided R has one of the following properties:

(i) R is semiartinian.

(ii) R is a noetherian domain with dim R ≤ n + 1.

Proof. If (i) holds, clearly every τn-injective module is injective.

If (ii) holds, then by Proposition 2.4.4, every τn-injective module is injec-

tive. Now the result follows again by Corollary 5.1.4. �

We will end this section with a few results on quasi-injective modules

with respect to the Dickson torsion theory.

In the sequel, starting with a τD-quasi-injective module that is not τD-

injective, we will construct some other such modules. We need here the

Loewy series of a module (see Example 2.5.2).

Proposition 5.1.13 Let A be a τD-quasi-injective module which is not τD-

injective and denote M = EτD
(A). Consider the Loewy series of M/A

0 = S0(M/A) ⊆ S1(M/A) ⊆ · · · ⊆ Sα(M/A) ⊆ Sα+1(M/A) ⊆ . . .

where, for each ordinal α ≥ 0,

Sα+1(M/A)/Sα(M/A) = Soc((M/A)/Sα(M/A))

and if α is a limit ordinal, then

Sα(M/A) =
⋃

0≤β<α

Sβ(M/A) .

For every ordinal α ≥ 0, let Mα ≤ M be such that

Sα(M/A) = Mα/A .
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Then every non-zero proper submodule Mα of M is τD-quasi-injective, but

not τD-injective.

Proof. Let α ≥ 1 be an ordinal such that Mα is a proper submodule of

M and let f ∈ EndR(M). Since A is τD-quasi-injective, f(A) ⊆ A by

Theorem 5.1.3. Then f induces an endomorphism f ∗ ∈ EndR(M/A). Since

Mα/A = Sα(M/A) is fully invariant [40, 3.11, p.25], f ∗(Mα/A) ⊆ Mα/A,

therefore f(Mα) ⊆ Mα, i.e. Mα is τD-quasi-injective. On the other hand,

Mα is a proper submodule of EτD
(A) = M , hence Mα is not τD-injective. �

Proposition 5.1.14 Let S be a simple module which is not τD-injective and

denote M = EτD
(S). Consider the Loewy series of M

0 = S0(M) ⊆ S1(M) ⊆ · · · ⊆ Sα(M) ⊆ Sα+1(M) ⊆ . . .

where, for each ordinal α ≥ 0,

Sα+1(M)/Sα(M) = Soc(M/Sα(M))

and if α is a limit ordinal, then

Sα(M) =
⋃

0≤β<α

Sβ(M) .

Then every non-zero proper submodule Sα(M) of M is quasi-injective,

but not τD-injective.

Proof. Let α ≥ 1 be an ordinal such that Sα(M) is a proper submodule

of M . Then Sα(M) is a fully invariant submodule of M [40, 3.11, p.25],

therefore τD-quasi-injective by Theorem 5.1.3. Also Sα(M) is semiartinian

as a submodule of the semiartinian module M . It follows that Sα(M) is

quasi-injective. Since M = EτD
(S) is minimal τD-injective, Sα(M) is not

τD-injective. �
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5.2 τ-quasi-injective hulls

In this section, we introduce the notion of τ -quasi-injective hull and show

that every module has such a hull, unique up to an isomorphism.

Definition 5.2.1 A τ -quasi-injective hull of a module A is defined as a τ -

quasi-injective module Q such that A is a τ -dense essential submodule of Q

and is denoted by Qτ (A).

Throughout this section, for every module A, we denote S =

EndR(Eτ (A)) and

SA = {
n∑

i=1

fi(ai) | fi ∈ S, ai ∈ A, i ∈ {1, . . . , n}, n ∈ N∗} .

Proposition 5.2.2 Let A be a module. Then:

(i) A is τ -quasi-injective if and only if SA = A.

(ii) SA is a τ -quasi-injective module.

(iii) SA is the intersection of all τ -quasi-injective submodules of Eτ (A)

containing A.

Proof. (i) Suppose first that A is τ -quasi-injective. Then by Theorem 5.1.3,

for every f ∈ S, we have f(A) ⊆ A. Then SA ⊆ A and consequently

SA = A.

Conversely, suppose that SA = A. Let B a τ -dense submodule of A

and let f : B → A a homomorphism. Then f extends to a homomorphism

g : A → Eτ (A) and g extends to an endomorphism h ∈ S. Since SA = A, we

have h(A) ⊆ A, so that h|A : A → A extends f . Thus A is τ -quasi-injective.

(ii) We have A ⊆ SA ⊆ Eτ (A), hence A is a τ -dense essential submodule

of SA. Then Eτ (A) = Eτ (SA), whence

S = EndR(Eτ (A)) = EndR(Eτ (SA)) .

It follows that S(SA) = SA. By (i), SA is τ -quasi-injective.
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(iii) Denote by B the set of all τ -quasi-injective submodules of Eτ (A)

containing A. For every B ∈ B, we have A ⊆ B ⊆ Eτ (A), whence it follows

that A is a τ -dense essential submodule of B. But then Eτ (A) = Eτ (B), so

that S = EndR(Eτ (A)) = EndR(Eτ (B)).

Since A ⊆
⋂

B∈B B, we have SA ⊆ S(
⋂

B∈B B). Let f(b) be a generator of

S(
⋂

B∈B B) for some f ∈ S and b ∈
⋂

B∈B B. Then f(b) ∈ SB for every B ∈
B. But B is τ -quasi-injective, hence by (ii) it follows that f(b) ∈

⋂
B∈B B.

Thus S(
⋂

B∈B B) ⊆
⋂

B∈B B, whence SA ⊆
⋂

B∈B B.

For the converse inclusion, we know by (ii) that SA is τ -quasi-injective,

hence SA ∈ B. It follows that
⋂

B∈B B ⊆ SA. �

Lemma 5.2.3 Let A be a module, i : A → Qτ (A) be the inclusion homomor-

phism and f : A → Q be a τ -quasi-injective τ -dense extension of A. Then

there exists a monomorphism α : Qτ (A) → Q such that αi = f .

Proof. There exists a monomorphism g : Eτ (A) → Eτ (Q) such that

f(A) ⊆ g(Qτ (A)) ⊆ g(Eτ (A)) ⊆ Eτ (Q) .

Denote T = EndR(g(Eτ (A))) and U = EndR(Eτ (Q)). Since g(Eτ (A)) is a τ -

injective hull of the τ -quasi-injective module g(Qτ (A)), we have Tg(Qτ (A)) ⊆
g(Qτ (A)) (see the notation preceding Proposition 5.2.2). Since f(A) ⊆ Q ⊆
Eτ (Q), f(A) is τ -dense in Q. But f(A) ⊆ g(Eτ (A)), whence it follows that

g(Eτ (A)) is τ -dense in Eτ (Q). Hence every homomorphism h ∈ T extends

to a homomorphism h′ ∈ U . Since UQ ⊆ Q, we have h(Q) = h′(Q) ⊆ Q,

whence TQ ⊆ Q. Then

T (g(Qτ (A)) ∩Q) ⊆ g(Qτ (A)) ∩Q .

Since

f(A) ⊆ g(Qτ (A)) ∩Q ⊆ g(Eτ (A)) ,

g(Eτ (A)) is a τ -injective hull of g(Qτ (A)) ∩ Q, so that g(Qτ (A)) ∩ Q is τ -

quasi-injective. It follows that

A ⊆ g−1(g(Qτ (A)) ∩Q) ⊆ Eτ (A)
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and g−1(g(Qτ (A)) is τ -quasi-injective. Also,

g−1(g(Qτ (A) ∩Q) ⊆ g−1(g(Qτ (A))) = Qτ (A) ,

whence we have

g−1(g(Qτ (A) ∩Q) = Qτ (A) ,

because Qτ (A) is the least τ -quasi-injective submodule of Eτ (A) containing

A. Then g(Qτ (A)) ∩ Q = g(Qτ (A)), that is, g(Qτ (A)) ⊆ Q. It follows that

α = g|Qτ (A) : Qτ (A) → Q is a monomorphism such that αi = f . �

We have seen that every module has a τ -injective hull, unique up to an

isomorphism. Now we give the following result.

Theorem 5.2.4 Every module A has a τ -quasi-injective hull unique up to

an isomorphism.

Moreover, Qτ (A) = SA, that is, the intersection of all τ -quasi-injective

submodules of Eτ (A) containing A.

Proof. We have A ⊆ SA ⊆ Eτ (A), hence A is a τ -dense essential submodule

of SA. By Proposition 5.2.2, SA is τ -quasi-injective. Hence SA is a τ -quasi-

injective hull of A.

Denote Qτ (A) = SA and let i : A → Qτ (A) be the inclusion homomor-

phism. Suppose that there exists another τ -quasi-injective hull of A, say Q.

Let j : A → Q be the inclusion homomorphism. Then by Lemma 5.2.3, there

exist homomorphisms α : Qτ (A) → Q and β : Q → Qτ (A) such that αi = j

and βj = i.

We claim that βα = 1Qτ (A). If not, since A � Qτ (A), we have

(βα− 1Qτ (A))(Qτ (A)) ∩ A 6= 0 ,

say it contains an element a 6= 0. Since βα = βαi = βj = i and βα− 1Qτ (A)

is injective, it follows that a = 0, a contradiction. Hence βα = 1Qτ (A).

Similarly, αβ = 1Q. Therefore Qτ (A) is unique up to an isomorphism. �
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5.3 Direct sums and τ-natural classes of mod-

ules

Throughout this section, we will denote by K a class of modules closed under

isomorphic copies.

Recall that a class K is called a natural class if K is closed under submod-

ules, direct sums and injective hulls. For instance, R-Mod, any hereditary

torsionfree class of modules and any stable hereditary torsion class of modules

are examples of natural classes.

In the context of torsion theories, we introduce the following definition.

Definition 5.3.1 The class K is called a τ -natural class if K is closed under

submodules, direct sums and τ -injective hulls.

Remark. Clearly, every natural class is a τ -natural class. If τ is the improper

torsion theory, then every τ -natural class becomes a natural class.

Example 5.3.2 (1) R-Mod, any hereditary torsionfree class of modules and

any stable hereditary torsion class of modules are natural classes, hence τ -

natural classes.

(2) Let σ be a hereditary torsion theory such that τ ≤ σ. Then the class

of all σ-torsion modules is a τ -natural class, that is a natural class if and

only if σ is stable.

Following [90], denote by HK(R) the set of left ideals I of R such that

R/I ∈ K and consider the following generalized conditions, where K is a

natural class or a τ -natural class:

C1(K): Every direct sum of τ -injective modules in K is τ -injective.

C2(K): Every ascending chain I1 ⊆ I2 ⊆ . . . of τ -dense left ideals of R

such that each Ij+1/Ij ∈ K terminates.

C3(K): HK(R) has ACC on τ -dense left ideals.
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C4(K): Every direct sum of τ -quasi-injective modules in K is τ -quasi-

injective.

C5(K): Every τ -quasi-injective module in K is τ -injective.

C6(K): Every τ -injective module in K is
∑

-τ -injective.

C7(K): Every τ -quasi-injective module in K is
∑

-τ -quasi-injective.

C8(K): Every τ -injective module in K is injective.

C9(K): Every τ -quasi-injective module in K is quasi-injective.

They have been extensively studied when τ is the improper torsion theory

on R-Mod and K is the σ-torsionfree class for a hereditary torsion theory σ

or the σ-torsion class for a stable hereditary torsion theory σ.

We intend to establish here certain connections between the above con-

ditions for an arbitrary hereditary torsion theory τ .

Theorem 5.3.3 Let K be a τ -natural class. Then C2(K) =⇒ C3(K).

Proof. Let I1 ⊆ I2 ⊆ . . . an ascending chain of τ -dense left ideals in HK(R).

Then each R/Ij ∈ K. Since K is closed under τ -dense submodules, each

Ij+1/Ij ∈ K. By hypothesis, the above chain terminates, hence C3(K) holds.

�

Theorem 5.3.4 Let K be a τ -natural class. Then C1(K) =⇒ C2(K).

Proof. Suppose that I1 ⊂ I2 ⊂ . . . is a strictly ascending chain of τ -dense

left ideals of R such that each Ij+1/Ij ∈ K. By hypothesis,

E =
⊕

j

Eτ (Ij+1/Ij) ∈ K

is τ -injective. Let I =
⋃∞

j=1 Ij, let pj : Ij+1 → Ij+1/Ij be the natural homo-

morphism and let αj : Ij+1/Ij → Eτ (Ij+1/Ij) be the inclusion homomorphism

for each j. By the τ -injectivity of Eτ (Ij+1/Ij), it follows that there exists a
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homomorphism βj : R → Eτ (Ij+1/Ij) that extends αjpj. Hence we have the

following commutative diagram

0 // Ij+1
//

pj

��

R

βj

���
�
�

Ij+1/Ij αj

// Eτ (Ij+1/Ij)

We may define

f : I → E , f(x) = (βj(x))j .

It is easy to check that f is a well-defined homomorphism. Since I is τ -dense

and E is τ -injective, there exists a homomorphism g that extends f . Since

g(1) ⊆
∑n

j=1 Eτ (Ij+1/Ij) for some n, we have

f(I) = g(I) ⊆
n∑

j=1

Eτ (Ij+1/Ij) .

It follows that βj(x) = 0 for every x ∈ I and every j > n. If x ∈ In+1, then

0 = βn+1(x) = x + In. Hence In+1 = In, a contradiction. Therefore C2(K)

holds. �

Remark. Note that in the proof of Theorem 5.3.4 each Ij+1/Ij is τ -torsion.

Hence we used only the fact that every direct sum of τ -torsion τ -injective

modules in K is τ -injective.

Proposition 5.3.5 Let K be a τ -natural class. Suppose that every ascending

chain I1 ⊆ I2 ⊆ . . . of left ideals of R whose union is τ -dense in R such that

each Ij+1/Ij ∈ K terminates. Then C1(K) holds.

Proof. It is sufficient to prove that every countable direct sum of τ -injective

modules in K is τ -injective (see Theorem 2.3.8). Let A =
⊕∞

i=1 Ai be a direct

sum of τ -injective modules in K. Also let I be a τ -dense left ideal of R and

f : I → A a homomorphism. For each n denote

In = {x ∈ I | f(x) ∈
n⊕

i=1

Ai} .
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Clearly I1 ⊆ I2 ⊆ . . . and
⋃∞

j=1 Ij = I. We may consider the monomorphism

αn : In+1/In → (
n+1⊕
i=1

Ai)/(
n⊕

i=1

Ai)

defined by

αn(x + In) = f(x) + (
n⊕

i=1

Ai) .

Since the codomain of αn is isomorphic to An+1 ∈ K, we have In+1/In ∈
K. By hypothesis, there exists k such that Ik+j = Ik for each j. Then

f(I) ⊆
⊕k

i=1 Ai. Since
⊕k

i=1 Ai is τ -injective, there exists a homomorphism

g : R →
⊕k

i=1 Ai ⊆ A that extends f . Then A is τ -injective and thus C1(K)

holds. �

Corollary 5.3.6 Let K be a τ -natural class. If τ is noetherian, then

C1(K) ⇐⇒ C2(K).

Proof. The direct implication follows by Theorem 5.3.4. For the converse,

let I1 ⊆ I2 ⊆ . . . be an ascending chain of left ideals of R whose union

is τ -dense in R such that each Ij+1/Ij ∈ K. Since τ is noetherian, there

exists k such that Ik is τ -dense in R. Then In is τ -dense in R for every

n ≥ k. By C2(K), the chain Ik ⊆ Ik+1 ⊆ . . . terminates, hence the chain

I1 ⊆ I2 ⊆ . . . Ik ⊆ Ik+1 ⊆ . . . terminates. Now use Proposition 5.3.5. �

Theorem 5.3.7 Let K be a τ -natural class. Then C4(K) ⇐⇒ C1(K)+C5(K).

Proof. Suppose first that C4(K) holds. Let A ∈ K be a τ -quasi-injective

module. Since K is a τ -natural class, Eτ (A) ∈ K. By hypothesis, A⊕Eτ (A)

is τ -quasi-injective. Now by Proposition 5.1.9, A is τ -injective. Therefore

C5(K) holds. Now let A =
⊕

i∈I Ai, where each Ai is a τ -injective module

in K. Hence each Ai is a τ -quasi-injective module in K. By C4(K), A is a

τ -quasi-injective module in K. Since C5(K) holds as well, A is a τ -injective

module in K. Therefore C1(K) holds.



5.3. DIRECT SUMS AND τ -NATURAL CLASSES OF MODULES 167

Conversely, suppose that C1(K) and C5(K) hold. Let A =
⊕

i∈I Ai, where

each Ai is a τ -quasi-injective module in K. By C5(K), each Ai is a τ -injective

module in K. Now by C1(K), A is τ -injective module in K, hence A is τ -

quasi-injective module in K. Therefore C4(K) holds. �

We need the following lemma.

Lemma 5.3.8 [90, Lemma 7] Let A be a module and a1, . . . , an ∈ A. If all

homomorphic images of Ra1, . . . , Ran which are submodules of E(A) have

finite uniform dimension, then E(Ra1) + · · · + E(Ran) has finite uniform

dimension.

Recall the following definition, motivated by torsion theory context. For

a natural class K, a non-zero module A is said to be K-cocritical if A ∈ K
and for every non-zero proper submodule B of A, A/B /∈ K.

For instance, if K is a torsionfree class for a hereditary torsion theory τ ,

then a K-cocritical module means a τ -cocritical module. We will consider

the same definition for a τ -natural class as well.

The next two lemmas on K-cocritical modules will be useful.

Lemma 5.3.9 Let A be a K-cocritical module. Then A is uniform and

any non-zero homomorphism from a submodule of A to a module of K is

a monomorphism. In particular, the class of K-cocritical modules is closed

under non-zero submodules.

Proof. Let B be a non-zero submodule of A. There exists a submodule C of

A maximal with respect to the property B ∩ C = 0. Then C is closed in A

and B is isomorphic to an essential submodule of A/C. But B ∈ K, so that

A/C ∈ K. Since A is K-cocritical, we have C = 0. Thus B � A and A is

uniform. Now let f : B → D be a non-zero homomorphism for some D ∈ K.

Suppose that f is not a monomorphism. Then we have 0 6= B/Kerf ∈ K. Let

B′/Kerf be a submodule of A/Kerf maximal with respect to the property
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(B/Kerf) ∩ (B′/Kerf) = 0. Then B/Kerf is isomorphic to an essential

submodule of A/B′, whence A/B′ ∈ K. But then we have B′ = 0 or B′ = A,

a contradiction. �

Denote by HK(R) the set of left ideals I of R such that R/I ∈ K and

consider the following condition:

(∗) For every ascending chain I1 ⊆ I2 ⊆ . . . of left ideals in HK(R),

∞⋃
j=1

Ij ∈ HK(R) .

Lemma 5.3.10 If the condition (∗) holds, then every cyclic module in K
has a K-cocritical homomorphic image.

Proof. Let A ∈ K be a cyclic module. We may assume that A = R/I for

some I ∈ HK(R). Let A be the set of all left ideals J of R that contain I and

0 6= R/J ∈ K. By Zorn’s Lemma, A has a maximal element, say J . Then

R/J is a K-cocritical homomorphic image of A. �

Now we are able to prove the following theorem, connecting the conditions

C5(K) and C3(K), but only for a natural class K.

Theorem 5.3.11 Let K be a natural class. If the condition (∗) holds, then

C5(K) =⇒ C3(K).

Proof. Suppose that I1 ⊂ I2 ⊂ . . . is a strictly ascending chain of τ -dense

left ideals of HK(R). Then Ij+1/Ij ∈ K for each j. By Lemma 5.3.10, there

exist Uj and Vj+1 such that Ij ⊆ Uj ⊂ Vj+1 ⊆ Ij+1 and Vj+1/Uj is a cyclic

K-cocritical module. Since Ij is τ -dense in R, Vj+1 is τ -dense in R, so that

Vj+1/Uj is τ -dense in R/Uj. Now let αj : Vj+1/Uj → Eτ (Vj+1/Uj) be the

inclusion homomorphism for each j. By the τ -injectivity of Eτ (Vj+1/Uj),

there exists a homomorphism βj : R/Uj → Eτ (Vj+1/Uj) that extends αj.

Denote I =
⋃∞

j=1 Ij and A =
⊕

j Eτ (Vj+1/Uj). Since Eτ (Vj+1/Uj) ∈ K, we

have A ∈ K. We may define

f : I → A , f(x) = (βj(x + Uj))j .
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It is easy to check that f is a well-defined homomorphism. Let

Q = Qτ (A) =
∑

{h(A) | h ∈ EndR(Eτ (A))}

be the τ -quasi-injective hull of A (see Theorem 5.2.4). We have Eτ (A) ∈ K,

hence Q ∈ K. It follows that Q is τ -injective. Since I is τ -dense in R, there

exists a homomorphism g : R → Q such that the following diagram, where

the unspecified homomorphisms are inclusions, is commutative:

0 // I //

f

��

R

g

���
�
�

A // Q

Then we have

g(1) ∈ N =
t∑

k=1

s∑
j=1

hk(Eτ (Vj+1/Uj))

for some t and s. It follows that for every x ∈ I, f(x) = g(x) = g(1)x ∈ N ,

hence f(I) ⊆ N . By Lemma 5.3.9, hk(Vj+1/Uj) ∼= Vj+1/Uj is a cyclic K-

cocritical module. Moreover,

Eτ (hk(Vj+1/Uj)) = hk(Eτ (Vj+1/Uj)) .

By Lemma 5.3.8 and again by Lemma 5.3.9, N has finite uniform dimension.

On the other hand, Eτ (f(V2)) = Eτ (V2/U1) and

f(V2) ⊆ f(V3) ⊆ Eτ (V2/U1)⊕ V3/U2 .

Since f(V3) * Eτ (f(V2)) and all Vj+1/Uj are uniform, it follows that

Eτ (f(V3)) = Eτ (V2/U1)⊕ Eτ (V3/U2) .

Similarly, for each n we have

Eτ (f(Vn)) = Eτ (V2/U1)⊕ Eτ (V3/U2)⊕ · · · ⊕ Eτ (Vn+1/Un) .

But this means that E(f(I)) and thus f(I) has infinite uniform dimension,

a contradiction. Therefore C3(K) holds. �
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Proposition 5.3.12 Let σ be a hereditary torsion theory such that τ ≤ σ

and let K be the class of all σ-torsion modules. Then C5(K) =⇒ C3(K).

Proof. Clearly, K is a τ -natural class. Note also that the set of all σ-dense

left ideals of R is exactly HK(R), hence the condition (∗) holds for K. Let A

be a K-cocritical module. If there exists a non-zero submodule B of A, then

A/B is σ-torsion, i.e. A/B ∈ K, a contradiction. Hence A is simple and thus

uniform. Therefore every K-cocritical module is simple.

We mention that Lemma 5.3.10 holds for this particular τ -natural class

K, the proofs being identical. Note also that since every τ -torsion module is

σ-torsion, the set of τ -dense left ideals of R is contained in HK(R). Now the

result follows by the same arguments as in the proof of Theorem 5.3.11. �

Theorem 5.3.13 Let K be a τ -natural class. Then C7(K) =⇒ C3(K).

Proof. Let I1 ⊆ I2 ⊆ . . . be an ascending chain of τ -dense left ideals of R such

that each Ij ∈ HK(R). Denote Ej = Eτ (R/Ij) and A =
⊕∞

j=1 Ej. Clearly

each Ej ∈ K, hence A ∈ K. Let pj : A → Ej be the canonical projection

and consider the following diagram where the unspecified homomorphisms

are inclusions:

0 // Ej
// A //

pj

����
��

��
��

Eτ (A)

qj

vvn n n n n n n

Ej

Since A is τ -dense in Eτ (A) and Ej is τ -injective, there exists a homomor-

phism qj : Eτ (A) → Ej that extends pj. It follows immediately that Ej is a

direct summand of Eτ (A), hence Eτ (A) = Ej ⊕ Cj for some submodule Cj

of Eτ (A). We have

(Eτ (A))(N) ∼=
∞⊕

j=1

(Ej ⊕ Cj) = (
∞⊕

j=1

Ej)⊕ (
∞⊕

j=1

Cj) = A⊕ (
∞⊕

j=1

Cj) .
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By C7(K), (Eτ (A))(N) is τ -quasi-injective, hence A is τ -quasi-injective. De-

note I =
⋃∞

j=1 Ij. For each j define a homomorphism

fj : I/I1 → Ej , fj(x + I1) = x + Ij

for every x ∈ I. Then we may define a homomorphism

f : I/I1 → A , f(x + I1) = (fj(x))j

for every x ∈ I. It is easy to check that f is well-defined. Consider the

following diagram, where the unspecified homomorphisms are inclusions:

0 // I/I1
//

f

��

R/I1
// E1

��
A Ag

oo_ _ _ _ _ _ _ _ _

Note that I is τ -dense in R, hence I/I1 is τ -dense in R/I1. Clearly, R/I1

is τ -dense in E1. Further, A/E1
∼=
⊕∞

j=2 Ej is τ -torsion because each Ej =

Eτ (R/Ij) is τ -torsion. Hence E1 is τ -dense in A. It follows that I/I1 is τ -

dense in A. Now since A is τ -quasi-injective, there exists a homomorphism

g : A → A that extends f . It follows that f(I/I1) ⊆ g(R/I1) ⊆ A. Since

a = g(1 + I1) ∈ A, we have

f(I/I1) ⊆ Ra ⊆
n⊕

j=1

Ej

for some n. Then In+1 = In+2 = · · · = I. Therefore C3(K) holds. �

Theorem 5.3.14 Let K be a τ -natural class. Then C6(K) =⇒ C7(K).

Proof. Let A be a τ -quasi-injective module in K and let I be a set. By

hypothesis (Eτ (A))(I) is τ -injective. Then by Lemma 5.1.10, A(I) is τ -quasi-

injective. Hence A is
∑

-τ -quasi-injective. Therefore C7(K) holds. �

Theorem 5.3.15 Let K be a natural class. Then C8(K) ⇐⇒ C9(K).
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Proof. Suppose that C8(K) holds and let A be a τ -quasi-injective module

in K. By Theorem 5.1.3, A is a fully invariant submodule of Eτ (A). But

Eτ (A) = E(A). Hence A is a fully invariant submodule of E(A), i.e. A is

quasi-injective. Therefore C9(K) holds.

Suppose that C9(K) holds and let A be a τ -injective module in K. Then A

is a τ -quasi-injective module in K, hence A is quasi-injective by hypothesis.

Clearly, A ⊕ E(A) ∈ K. Moreover, A ⊕ E(A) is τ -injective, hence τ -quasi-

injective. By hypothesis, A ⊕ E(A) is quasi-injective. Now by Proposition

5.1.9 applied for the improper torsion theory, it follows that A is injective.

Therefore C8(K) holds. �

References: P. Bland [12], [13], S. Crivei [29], [35], J. Dauns [37], S.S. Page,

Y. Zhou [90], [91].

Notes on Chapter 5

The literature on τ -quasi-injective modules seems to be rather poor, some

basic properties appearing only in the work of P. Bland (1990, 1998). He

showed that every module has a τ -quasi-injective hull, which is unique up

to an isomorphism. Some other properties of quasi-injective modules have

torsion-theoretic versions. The concept of natural class of modules originates

into the work of J. Dauns on saturated classes from the early 1990’s. After-

wards, this was developed by S.S. Page and Y. Zhou (1994), who coined the

terminology of natural class. Later on, Y. Zhou continued their study, es-

tablishing results especially on the lattice of natural classes (1996). We have

used here the more general context of a τ -natural class in the study of some

injectivity-related properties.
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“Ovidius” 8, No. 2 (2000), 13–19.

[28] S. Crivei, Injective modules relative to the Dickson torsion theory, Viet-

nam J. Math. 29, No. 4 (2001), 329–338.

[29] S. Crivei, A note on τ -quasi-injective modules, Studia Univ. “Babeş-
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cureşti, 1982. (Romanian)

[97] N. Radu, Inele locale, vol.I, Ed. Academiei, Bucureşti, 1968. (Roma-
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