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Abstract

Zassenhaus Lemma can be easily proved in modular lattices. Consequently, the

dual result also holds even though it is nowhere mentioned ! However the group

theoretic version needs some comments.

1 Introduction

Recall that in an arbitrary lattice L two intervals A, B are called similar (or transposed)
if there are elements a, b ∈ L such that {A,B} = {[a ∧ b, a], [b, a ∨ b]} and projective

if there are intervals A = I0, I1, .., In = B such that Ik−1 and Ik are similar for every
1 ≤ k ≤ n.

Two chains

a = a0 ≤ a1 ≤ ... ≤ am = b (1)
a = b0 ≤ b1 ≤ ... ≤ bn = b (2)

between the same two elements a, b of L are called equivalent if m = n and there is a
permutation σ ∈ Sn such that the intervals [ai−1, ai] and [bσ(i)−1, bσ(i)] are projective.

In a modular lattice, every two similar and hence any two projective intervals are

isomorphic.
Indeed, the maps − ∨ b : [a ∧ b, a] → [b, a ∨ b] and a ∧ − : [b, a ∨ b] → [a ∧ b, a] are

lattice isomorphisms (inverse to each other).

First, let us state and prove the

Theorem 1.1 (Zassenhaus) Let a′ ≤ a, b′ ≤ b be elements in a modular lattice. The
intervals [a′ ∨ (a∧ b′), a′ ∨ (a∧ b)] and [b′ ∨ (a′ ∧ b), b′ ∨ (a∧ b)] are projective (and hence
isomorphic).

Proof. We shall show that the intervals [a′∨(a∧b′), a′∨(a∧b)] and [(a′∧b)∨(a∧b′), a∧b]
are similar. Symmetrically, [b′∨ (a′∧ b), b′∨ (a∧ b)] and [(a′∧ b)∨ (a∧ b′), a∧ b] are similar
and so the claim follows.

Actually (for groups, see [1]) the following diagram describes our situation (the ele-
ments in brackets refer to the proof of the next Theorem)
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a’

a’ /\ b

a’ V (a /\b’)

a’ (a/\b) b’ V (a /\ b)

b’ V (a’ /\ b)

b’

a /\ b’

The equality (a′∨ (a∧b′))∨ (a∧b) = a′∨ (a∧b) is straightforward, and (a′∨ (a ∧ b′))∧
(a ∧ b) = (a ∧ b′) ∨ (a′ ∧ (a ∧ b)) = (a ∧ b′) ∨ (a′ ∧ b) follows using modularity. �

Remark. For modules the isomorphism part can be (see [3]) also proved (and hence
in exact categories) using (two times) the 9-Lemma.

A refinement of a chain is a chain obtained from this by inserting new elements.
We obtain immediately the lattice version of :

Theorem 1.2 (Schreier) In a modular lattice, any two chains between the same two
elements have equivalent refinements.

Proof. For two chains a = a0 ≤ a1 ≤ .. ≤ am = b and a = b0 ≤ b1 ≤ .. ≤ bn = b

we denote by aij = (ai ∧ bj) ∨ bj−1 respectively bji = (bj ∧ ai) ∨ ai−1 for each i ∈
{1, 2, ..., m} , j ∈ {1, 2, ..., n} . Using (repeatedly) Zassenhaus theorem (just take a′ = ai−1,
a = ai respectively b′ = bj−1 , b = bj), [ai−1,j , aij] and [bj−1,i, bji] are projective. Hence,
from the chains (1) and (2) we obtain the chains

a = a01 ≤ a11 ≤ a21 ≤ ... ≤ am1 ≤ a12 ≤ ... ≤ amn = b (3)
a = b01 ≤ b11 ≤ b21 ≤ ... ≤ bn1 ≤ b12 ≤ ... ≤ bnm = b (4)

.

But ai = bni and bj = amj so that (4) is a refinement of (1) and (3) is a refinement of (2).
Moreover, (3) and (4) are equivalent. 2

Definition.- A chain between two elements a and b is called a composition chain if

a = a0 < a1 < .. < an = b

has no refinements (i.e. [ak−1, ak] = {ak−1, ak} for every 1 ≤ k ≤ n).
The last theorem now gives

Theorem 1.3 (Jordan-Hölder) In a modular lattice, any two composition chains between
the same two elements are equivalent. 2

Therefore in the above definition, n can be called the length of the interval [a, b]
denoted by l[a, b]. As a special case, in a modular lattice L with 0 and 1 we use the length
l(L) of the lattice L as l[0, 1] if a finite chain between 0 and 1 exists (in this case we say
that L has finite length).

Clearly (but nowhere mentioned in the literature) one dually proves the
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Theorem 1.4 (Zassenhaus dual) Let a′ ≤ a, b′ ≤ b be elements in a modular lattice.
The intervals [a ∧ (a′ ∨ b′), a ∧ (a′ ∨ b)] and [b ∧ (a′ ∨ b′), b ∧ (a ∨ b′)] are projective (and
hence isomorphic). �

Moreover, this dual makes possible a dual proof of Schreier theorem:

For the chains (1) and (2) we select the elements aij = bj ∧ (ai ∨ bj−1) and bji =
ai ∧ (ai−1 ∨ bj) . Now the refinements are described by the diagram

w = (a’ v b) /\ (a v b’)

a v b

ba

a’ b’

b /\ (a’ v b’)

b /\ (a v b’)a /\ (a’ v b)

a /\ (a’ v b’)

a’ v ba v b’

(b  )
j

(a  )
ij

(a       )
i−1,j

(b    )
j−1

(a    )
i−1

(b      )
j−1,i

(b   )
ji

(a  )
i

2 Back to groups

In the last generation books on group theory the reader can find more or less exactly
the above procedure in order to define the (sometimes called) composition length of a
group G (as consequence of the corresponding Jordan-Hölder theorem). Of course, this
procedure is also used for R-modules over a ring with identity R, in order to define the
length of the module.

The older books define the isomorphism in Zassenhaus Lemma and heavily check that
it is independent on the representatives selection...

The group version of the result we discuss is the well-known

Zassenhaus Lemma: Let H ′, H , K ′, K be subgroups of a group G such that H ′ is

normal in H and K ′ is normal in K. Then H ′(H∩K ′) is a normal subgroup of H ′(H∩K),
K ′(H ′ ∩K) is a normal subgroup of K ′(H ∩K) and the corresponding factor groups are

isomorphic, i.e.
H ′(H ∩K)

H ′(H ∩K ′)
≃

K ′(H ∩K)

K ′(H ′ ∩K)
.

Some comments about the corresponding proof.
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The isomorphism between the two factor groups is obtained using the above procedure
if someone ’covers’ in some way the normality of the subgroups involved. The normality
is indeed essential: only the sublattice of all the normal subgroups of an arbitrary group
is modular!

What about the isomorphisms pointed out above?

a ∧ − : [b, a ∨ b] → [a ∧ b, a] is now covered by (i) H ≤ G and K ′ ⊳ K imply
H ∩K ′ ⊳ H ∩K.

As for the isomorphism − ∨ b : [a ∧ b, a] → [b, a ∨ b] there are some troubles because
S ⊳ T implies NS ⊳ NT only if N is also normal in G (take for instance two subgroups
of order 2 resp. 3 in A4).

But luckily: H ′ ⊳ H and K ′ ⊳ K imply H ∩K ′ ⊳ H ∩K which are both subgroups
in H where H ′ is normal! So we can continue by H ′(H ∩ K ′) ⊳ H ′(H ∩ K) (and
symmetrically K ′(H ′ ∩K) ⊳ K ′(H ∩K)).

As for the intermediate factor group
H ∩K

(H ∩K ′)(H ′ ∩K)
both H ∩K ′ and H ′ ∩K are

normal in H ∩K so that (H ∩K ′)(H ′ ∩K) is (a subgroup and) normal in H ∩K.

Once again, in the group theory literature known to the author there is no Dual
Zassenhaus Lemma for groups. To a superficial analysis the reason is clear: for subgroups
H ′, H , K ′, K of a group G such that H ′ is normal in H and K ′ is normal in K, H ′K ′,
H ′K and HK ′ may not even be subgroups of G, so no question of H ∩ (H ′K ′) is a
normal subgroup of H ∩ (H ′K), K ∩ (H ′K ′) is a normal subgroup of K ∩ (HK ′) and the
corresponding isomorphism.

However, with a slight modification, this dual can be safeguarded!

Zassenhaus Dual Lemma: Let H ′ ≤ H , K ′ ≤ K be subgroups of a group G such

that H ′ and K ′ are normal in G. Then H ∩ (H ′K ′) is a normal subgroup of H ∩ (H ′K),
K ∩ (H ′K ′) is a normal subgroup of K ∩ (HK ′) and the corresponding factor groups are

isomorphic, i.e.
H ∩ (H ′K)

H ∩ (H ′K ′)
≃

K ∩ (HK ′)

K ∩ (H ′K ′)
.

Once again only the normality part needs comments:

if H ′ ⊳ G and K ′ ⊳ G then also H ′ ⊳ H and K ′ ⊳ K, H ′K ′ is a subgroup,
normal in H ′K respectively HK ′ and we obtain H ∩ (H ′K ′) ⊳ H ∩ (H ′K), symmetrically
K ∩ (H ′K ′) ⊳ K ∩ (HK ′) respectively H ′K ′ ⊳ (H ′K)(HK ′) for the intermediate factor
group.

3 Unfortunately, no Applications

Is the Dual Zassenhaus Lemma useful ?

1) Composition series are usually defined taking subnormal series. Consequently,
this result cannot be used in proving Schreier and hence Jordan-Hölder Theorems for
groups.
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2) In [2], subgroups U of direct products G = H ×K of two groups are characterized
using sections, isomorphisms and diagonals. Of special importance is the isomorphism

UK ∩H

U ∩H
≃

UH ∩K

U ∩K
.

Here again the isomorphism is defined and one heavily checks that it is independent
on the representatives selection.

Notice that part of this can be easily derived from the Zassenhaus Dual Lemma,
taking U = H ′K ′ (i.e., for the decomposable subgroups).

3) For modules and abelian groups, this gives for arbitrary submodules H ′ ≤ H and
K ′ ≤ K of an R-module M , the isomorphism

H ∩ (H ′ +K)

H ∩ (H ′ +K ′)
≃

K ∩ (H +K ′)

K ∩ (H ′ +K ′)
.

Using this one derives at once (take K = M and H ′ ≤ K ′) the second Nother
isomorphism Theorem.

References

[1] Robinson D.J.S., A Course in the Theory of Groups, Second Edition, Graduate Texts
in Mathematics, 80, Springer - Verlag, New York Inc., 1995.

[2] Schmidt R., Subgroup lattices of groups. de Gruyter Expositions in Mathematics, 14.
Walter de Gruyter.

[3] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, 1991.

5


