VOL. 3 (1970), 375-383.

Remarks on triples in enriched categories

H. Wiesler and G. Calugareanu jr

Let V be a symmetric monoidal closed category with equalizers. The V-triples T, T', ... in the enriched category A, together with suitably defined morphisms form a category V-Trip(A). The V-categories A^T , $A^{T'}$, ... and the V-functors $R:A^{T'} \to A^T$ which are compatible with the forgetful functors form a category V-Alg(A). In the subsequent note it is shown that V-Trip(A) is isomorphic to the dual of V-Alg(A) and that the morphisms of

0. Introduction

V-Alg(A) are inverse limit preserving V-functors.

In [5], Frei considers the category of the triples in a category A , and of the triple morphisms, $\operatorname{Trip}(A)$, and the category of the categories of algebras A^T , A^T' , ... and of the functors which are compatible with the forgetful functors, $\operatorname{Alg}(A)$. He shows that $\operatorname{Trip}(A)$ is isomorphic to the dual of $\operatorname{Alg}(A)$ and that the morphisms of $\operatorname{Alg}(A)$ preserve (inverse) limits.

Let V be a symmetric monoidal closed category, in the Eilenberg-Kelly [3] sense. In [3] the V-categories, which are also called enriched categories in Day-Kelly [2], are constructed. The V-triples in V-categories and the V-categories of algebras over V-triples are constructed in Bunge [1]. Then one can consider

Received 19 June 1970.

V-Trip(A), the category whose objects are the V-triples in a V-category A, and V-Alg(A), the category whose objects are the V-categories of V-algebras over A.

In this note, using the notion of V-limit in the Kelly sense [6] too, we extend in this enriched V-context all the results obtained by Frei.

1. Preliminaries

We use the notions of symmetric monoidal closed category V and V-category, in the Eilenberg-Kelly sense [3]. A V-triple $T=(T,\,\eta,\,\mu)$ in a V-category A consists of a V-functor $T:A\to A$ and two V-natural transformations $\eta:1_A\to T$, $\mu:TT\to T$ so that:

- (i) $\mu \cdot \mu T = \mu \cdot T \mu$, and
- (ii) $\mu \cdot T \eta = \mu \cdot \eta T = \mathbf{1}_{rr}$.

A V-triple morphism $\tau: T \to T'$ consists of a V-natural transformation $\tau: T \to T'$ so that:

- (i) $\tau \cdot \eta = \eta'$, and
- (ii) $\tau \cdot \mu = \mu' \cdot \tau T' \cdot T\tau$.

Let A_O be the underlying category of A. A V-triple in A is a triple in A_O too. Thus, one can construct the category of algebras A_O^T , whose objects are pairs $[A, \xi]$ where $A \in A$, $\xi \in A_O(TA, A)$, $\xi \cdot \eta_A = 1_A$, $\xi \cdot \mu_A = \xi \cdot T\xi$, and whose morphisms are $[f]: [A, \xi] + [B, \theta]$ where $f: A \to B$ in A_O and $f \cdot \xi = \theta \cdot Tf$. Bunge ([1], 2.2) shows that A_O^T has a V-category structure, if V has equalizers (in what follows we suppose this condition to be fulfilled), given by $A^T: \left(A_O^T\right)^{\mathrm{op}} \times A_O^T + V_O$; in this structure $U^T: A_O^T \to A_O$, given by $[A, \xi] \mapsto A$ and $[f] \mapsto f$, has a V-functor structure and has a V-adjoint F^T given at the underlying level by $A \mapsto [TA, \mu_A]$ and $f \mapsto [Tf]$. The functor A^T is given on

objects by $U_{[A,\xi][B,\theta]}^\intercal$: $A^\intercal([A,\xi][B,\theta]) \to A(A,B)$, the equalizer of the following pair

$$A(A, B) \xrightarrow{T_{AB}} A(TA, TB) \xrightarrow{A(TA, \theta)} A(TA, B)$$

$$A(\xi, B)$$

In this way the V-category A^T is well defined.

We recall that $R:\mathcal{B}\to A$ is a $\mathcal{B}-\text{adjoint}$ for $S:A\to \mathcal{B}$ if there exists a V-natural family of isomorphisms $n_{AB}:A(RB,A)\simeq \mathcal{B}(B,SA)$ in V0, for each $A\in A$, $B\in \mathcal{B}$.

Let $D: K \to A_O$ be a functor and let B be a V-category. The family of morphisms $\left\{L \xrightarrow{\lambda_K} DK\right\}_{K \in K}$ in B_O is a limit in B (or a V-limit) in the Kelly sense [6], if the family $\left\{B(B, L) \to B(B, DK)\right\}_{K \in K}$ is a limit in V_O , for each $B \in B$.

LEMMA 1.1. If a V-functor $T: A \rightarrow B$ has a V-adjoint $S: B \rightarrow A$ then T preserves the limits of A.

Proof. Let $\{L \to DK\}$ be a limit in A. Then $\{A(A, L) \to A(A, DK)\}$ is a limit in V_O , by the above definition, for each $A \in A$, and so $\{A(SB, L) \to A(SB, DK)\}$ are also limits in V_O , for each $B \in B$. Using the V-natural isomorphism n, the families $\{B(B, TL) \to B(B, TDK)\}$ are also limits in V_O . Hence $\{TL \to TDK\}$ is a limit in B. \square

2. The V-isomorphism theorem

PROPOSITION 2.1. There is a functor $G: V-{\rm Trip}(A) \to [V-{\rm Alg}(A)]^{\rm op}$ given by: $G(T) = A^T$ on objects, and on $\phi: T \to T'$ by a $V-{\rm functor}$ $G\phi: A^{T'} \to A^T$, given by $(G\phi)[A, \xi'] = [A, \xi'.\phi_A]$ and by a unique morphism in V_O

$$(G\phi)_{A,\xi',[B,\theta']}: A^{\mathsf{T}'}([A,\xi'][B,\theta']) \rightarrow A^{\mathsf{T}}([A,\xi',\phi_A][B,\theta',\phi_B])$$

for each $[A, \xi']$, $[B, \theta']$ in $A^{T'}$.

Proof. Using Diagram 1 on page 379, which commutes, since $U_{[A,\xi'],[B,\theta']}^{\mathsf{T'}}$ is an equalizer and since ϕ is V-natural, one can find

$$A(\xi'.\phi_A, B)U_{[A,\xi'][B,\theta']}^{T'} = A(TA, \theta'.\phi_B).T_{AB}.U_{[A,\xi'][B,\theta']}^{T'}$$

 $U\begin{bmatrix} I \\ A,\xi',\phi_A \end{bmatrix}\begin{bmatrix} B,\theta',\phi_B \end{bmatrix}$ being an equalizer it follows that there exists a unique morphism $(G\phi)_{A,F',[B,\theta']}$ so that

$$u_{\left[A,\xi'\right]\left[B,\theta'\right]}^{\mathsf{T'}} = u_{\left[A,\xi',\phi_{A}\right]\left[B,\theta',\phi_{B}\right]}^{\mathsf{T}}.(G\phi)_{\left[A,\xi'\right]\left[B,\theta'\right]}.$$

As in [1], the $G\phi$'s defining equality taking place also at the underlying level, it follows that $G\phi$ is a V-functor. Being compatible with the forgetful functors, $G\phi$ is a morphism in $\left[V-\mathrm{Alg}(A)\right]^{\mathrm{op}}$.

PROPOSITION 2.2. There is a functor $H:[V-Alg(A)]^{op} \to V-Trip(A)$ given by $H(A^T) = T$ and by $H(R): T \to T'$, a V-natural transformation given in A_o by the family, $H(R)_A^O = U_o a_{A,RF'A}^{-1} (\eta_A')$ where $U_o^T: A_o^T \to A_o$, $a_{A,RF'A}^{-1}: A_o(A,T'_oA) \approx A_o^T(FA,RF'A)$ are the underlying corresponding notions and we denote F^T and $F^{T'}$ simply by F, F'.

Proof. According to [5] it remains to show that H(R) is V-natural. Using the formula $a_{X,\lceil Y,\sigma \rceil}^{-1}(g) = [\sigma.Tg]$ for $g: X \to U^{\mathsf{T}}\big([Y,\,\sigma]\big) = Y$ and by the remark $R\big([X,\,\xi']\big) = \big[X,\,R(\xi')\big]$ one can show that $H(R)_A^{\mathsf{O}} = R_{\mathsf{O}}\big(\mu_A'\big).T_{\mathsf{O}}^{\mathsf{O}}_A'$. The V-naturality of H(R) follows now from the V-naturality of η' and μ' and from the V-functoriality of R and T ([3], I, 10.2).

THEOREM 2.3. The functors G and H are inverse to each other, that is, V-Trip(A) is isomorphic to $\left[V\text{-Alg}(A)\right]^{\operatorname{op}}$.

Proof. As in [5].

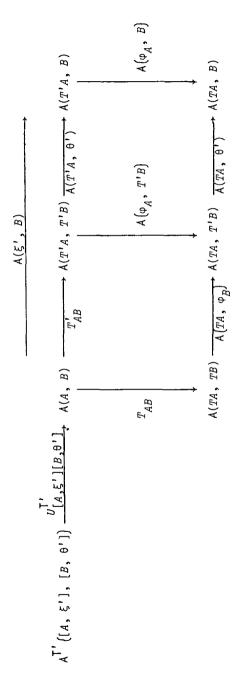


Diagram 1

3. The morphisms of V-Alg(A)

PROPOSITION 3.1. Let T be a V-triple in A and $U:A^T \to A$ be the corresponding underlying V-junctor. Then a V-functor $G:B \to A^T$ preserves limits in B iff UG does.

Proof. Using Lemma 1.1, the condition is easily seen to be necessary, $F^{\mathsf{T}}: \mathsf{A} \to \mathsf{A}^{\mathsf{T}}$ being a V-adjoint for U. Conversely, let W be an object in V_{O} , $[A,\,\xi]$ an object in $\mathsf{A}_{\mathsf{O}}^{\mathsf{T}}$ and $\alpha_K: W \to \mathsf{A}^{\mathsf{T}}\big([A,\,\xi],\,GK\big)$, $K \in K$ a compatible (in K) family of morphisms in V_{O} . We show that there exists a unique morphism $f: W \to \mathsf{A}^{\mathsf{T}}\big([A,\,\xi],\,GL\big)$ so that $\alpha_K = \mathsf{A}^{\mathsf{T}}\big([A,\,\mu],\,G_{\mathsf{O}}\lambda_K\big).f$.

In Diagram 2, on page 381, all the squares commute, since A(TA,-) is a functor, $G_0\lambda_K$ is an algebra morphism and since $\theta: TUGL \to UGL$ and $\theta_K: TUGDK \to UGDK$ are the T-structures of UGL and UGDK. Since UG preserves the limits of A, for each $A \in A$,

 $A(A, \mathit{UGL}) \xrightarrow{A\left(1, \ \mathit{U}_{O}G_{O}\lambda_{\mathit{K}}\right)} A(A, \mathit{UGDK}) \text{ is a limit in } \mathit{V}_{O} \text{. Since } \alpha_{\mathit{K}} \text{ is a}$ compatible family, there exists a unique morphism $g: \mathit{W} \to A(A, \mathit{UGL})$ so that $\mathit{U}.\alpha_{\mathit{K}} = A\left(1, \ \mathit{U}_{O}G_{O}\lambda_{\mathit{K}}\right).g$ and hence we have another commuting square in Diagram 2.

Now, we show that g equalizes the pair $A(\mathit{TA},\,\theta).T$ and $A(\xi,\,\mathit{UGL})$. Indeed we have

$$\begin{split} &A\left(\mathbf{1},\ \mathit{UG}\lambda_{K}\right).A(\xi,\ \mathit{UGL}).g \ = \ A(\xi,\ \mathit{UGDK}).A(\mathbf{1},\ \mathit{UG}\lambda_{K}).g \ = \ A(\xi,\ \mathit{UGDK}).U.\alpha_{K} \ = \\ &A\left(\mathit{TA},\ \theta_{K}\right).T.U.\alpha_{K} \ = \ A\left(\mathit{TA},\ \theta_{K}\right).T.A\left(\mathbf{1},\ \mathit{UG}\lambda_{K}\right).g \ = \ A\left(\mathbf{1},\ \mathit{UG}\lambda_{K}\right).A(\mathit{TA},\ \theta).T.g \ , \end{split}$$

and so the above statement follows from the fact that $A(1, UG\lambda_K)$ are limits in V_O . Hence there exists a unique morphism

$$f:W\to A^{\mathsf{T}}\big([A,\,\xi],\,GL\big)$$
 so that $g=U.f$. But,

$$U.\alpha_{K} = A(1, UG\lambda_{K}).g = A(1, UG\lambda_{K}).U.f = UA^{\mathsf{T}}(1, G_{0}\lambda_{K}).f ,$$

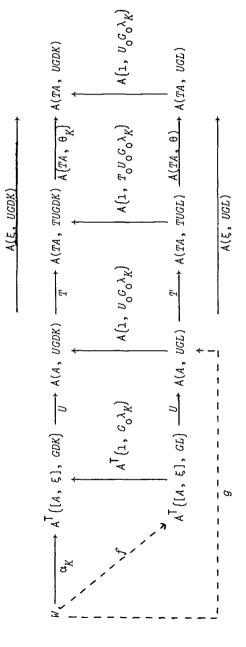


Diagram 2.

and so, U being monic, the triangle in Diagram 2 commutes. In this way we already have the existence of the morphism $W + A^{\mathsf{T}}([A,\,\xi],\,GL)$ we were looking for.

The uniqueness follows from the fact that g is unique for its defining commutation and from the fact that if $f \neq f'$ then $Uf \neq Uf'$ and hence $A(1, UG\lambda_K).U.f \neq A(1, UG\lambda_K).U.f'$, the motivation of this last fact being already mentioned above.

The theorem and corollary which follow are immediate consequences of the last proposition.

THEOREM 3.2. The morphisms in V-Alg(A) preserve limits.

COROLLARY 3.3. Let T be a V-triple in A, $(\gamma,\,\varepsilon): S \dashv T: B \to A \text{ a V-adjoint pair which generates T, and } L: B \to A^\mathsf{T}, \text{ the canonical V-functor given by } LB = \begin{bmatrix} TB, \ T\gamma_B \end{bmatrix} \text{ and by } L_{DB}, \text{ , as in 2.3 in [1], } L \text{ preserves limits.}$

References

- [1] Marta C. Bunge, "Relative functor categories and categories of algebras", J. Algebra 11 (1969), 64-101.
- [2] B.J. Day and G.M. Kelly, "Enriched functor categories", Reports on the Midwest Category Seminar III (Lecture notes in Mathematics, 106, 178-191. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [3] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 421-562. (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
- [4] Samuel Eilenberg and John C. Moore, "Adjoint functors and triples", Illinois J. Math. 9 (1965), 381-398.
- [5] A. Frei, "Some remarks on triples", Math. Z. 109 (1969), 269-272.

[6] G.M. Kelly, "Adjunction for enriched categories", Reports on the Midwest Category Seminar III (Lecture notes in Mathematics, 106, 166-177. Springer-Verlag, Berlin, Heidelberg, New York, 1969).

University of Cluj, Cluj, Roumania.