UNIT-REGULAR ELEMENTS AND JACOBSON RADICAL

GRIGORE CĂLUGĂREANU

Abstract

We show that zero is the only unit-regular element which belongs to the Jacobson radical. We also determine the rings all whose unit-regular elements are idempotents or units.

All rings we consider are associative and unital (i.e., with identity). As customarily we denote by $J(R)$ the Jacobson radical, by $U(R)$ the group of units, by $\operatorname{Id}(R)$ the set of idempotents and by $\operatorname{ureg}(R)$ the set of unit-regular elements of a ring R. By $I d^{*}(R)$ we denote the set of nonzero idempotents. Moreover, we denote by $\operatorname{sr} 1(R)$ the (left) stable range one elements of a ring R. The following inclusions are well-known: $\operatorname{Id}(R), U(R) \subseteq \operatorname{ureg}(R) \subseteq \operatorname{sr} 1(R)$ and $J(R) \subseteq \operatorname{sr} 1(R)$. Moreover, since $J(R)$ is an ideal $\neq R, U(R) \cap J(R)=\varnothing$ and since the Jacobson radical contains no nonzero idempotents $\operatorname{Id}(R) \cap J(R)=\{0\}$.

It is easy to see that
Proposition 1. The only unit-regular element which belongs to the Jacobson radical is zero.
Proof. Indeed, let $a \in \operatorname{ureg}(R) \cap J(R)$. If $a=a u a$ with $u \in U(R)$ then $a u \in J(R)$. As $a u$ is idempotent we get $a u=0$ and so $a=0$.

Therefore the situation is described below

Theorem 2. For a ring R, $\operatorname{ureg}(R)=I d(R) \cup U(R)$ iff R is connected or else $U(R)=\{1\}$.
Proof. Since $\operatorname{ureg}(R)=\{0\} \cup I d^{*}(R) U(R)$, the ring has the property iff $\{0\} \cup$ $I d^{*}(R) U(R)=I d(R) \cup U(R)$, and since $\operatorname{Id}(R), U(R) \subseteq I d(R) U(R)$ and $\operatorname{Id}(R) \cap$ $U(R)=\{1\}$, iff $I d^{*}(R) U(R) \subseteq U(R)$ or $I d(R) U(R) \subseteq I d(R)$. Equivalently, iff every product $e u$ with $e^{2}=e$ and $u \in U(R)$ is either a unit or an idempotent.

In the first situation, since $I d^{*}(R) \subseteq I d^{*}(R) U(R) \subseteq U(R)$, it follows that $\operatorname{Id}(R)=\{0,1\}$, that is, R is connected.

In the second situation, since $U(R) \subseteq \operatorname{Id}(R) U(R) \subseteq I d(R)$ it follows that $U(R)=\{1\}$.

The converses are straightforward: $\{0\} \cup U(R)=\operatorname{ureg}(R)$ in the first case and $I d(R)=\operatorname{ureg}(R)$ in the second case.

Remark. The rings with $U(R)=\{1\}$ are reduced and $\operatorname{char}(R)=2$.
Example. $R=\left[\begin{array}{cc}\mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q}\end{array}\right]$ has $J(R)=\left[\begin{array}{ll}0 & \mathbb{Q} \\ 0 & 0\end{array}\right]=N(R)$.
$I d^{*}(R)=\left\{I_{2}\right\} \cup\left\{\left[\begin{array}{ll}1 & b \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & b \\ 0 & 1\end{array}\right]: b \in \mathbb{Q}\right\}$ and $U(R)=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, c \in\{ \pm 1\}, b \in \mathbb{Q}\right\}$
(where $\left[\begin{array}{cc} \pm 1 & b \\ 0 & \pm 1\end{array}\right]^{-1}=\left[\begin{array}{cc} \pm 1 & \mp b \\ 0 & \pm 1\end{array}\right]$).
Finally, for $\operatorname{ureg}(R)$ we compute $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ which amounts to $a^{2} x=a, c^{2} z=c$ and $b(a x+c z)+a c y=b$ together with $x z= \pm 1$.

If $a \neq 0 \neq c$ then $x=\frac{1}{a}, z=\frac{1}{c}$ so $a c \in\{ \pm 1\}$ and arbitrary b, so we recover the units.

If both $a=c=0$ we recover the Jacobson radical. Finally, if (say) $a \neq 0$ and $c=$ 0 , then $\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\frac{1}{a} & y \\ 0 & a\end{array}\right]\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]$ so $\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \in \operatorname{ureg}(R)$ for every b. For instance $\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$ or $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ belong to $\operatorname{ureg}(R)$ but not to $I d^{*}(R) \cup U(R)$.

