Unipotent 2×2 matrices over commutative rings.

Grigore Călugăreanu

2017

A unit in a ring with identity is called *unipotent* if it has the form 1 + twith nilpotent t.

In what follows we consider 2×2 matrices over a commutative ring R.

Lemma 1 A 2×2 matrix U is unipotent iff det(U) = 1 and Tr(U) = 2.

Proof. By Cayley-Hamilton theorem, an invertible matrix U is unipotent iff

 $U - I_2$ has zero trace and zero determinant (i.e. is nilpotent in $\mathcal{M}_2(R)$). If we denote $U = (u_{ij})$ then for $U - I_2 = \begin{bmatrix} u_{11} - 1 & u_{12} \\ u_{21} & u_{22} - 1 \end{bmatrix}$ we have $\operatorname{Tr}(U-I_2) = \operatorname{Tr}(U) - 2$ and $\det(U-I_2) = \det(U) - \operatorname{Tr}(U) + 1$. The conditions above give $\operatorname{Tr}(U) = 2$ and $\det(U) = 1$.

Remark. 1) It is clear that powers of unipotents are also unipotents. In our special case this can also be seen by using the previous lemma.

If det(U) = 1 then clearly $det(U^n) = 1$. As for the traces, first recall that by Cayley-Hamilton theorem

$$U^2 = \operatorname{Tr}(U) \cdot U - \det(U)I_2 \qquad (*)$$

Multiplying (*) by U^{n-2} and computing the trace of both sides we obtain a recurrence formula

$$\operatorname{Tr}(U^n) = \operatorname{Tr}(U).\operatorname{Tr}(U^{n-1}) - \det(U).\operatorname{Tr}(U^{n-2})$$
(**)

This shows that traces of powers may be expressed in terms of the trace and determinant of the initial matrix. If Tr(U) = 2 and det(U) = 1 then also $\mathrm{Tr}(U^n) = 2.$

There is a relationship between unipotents and the order of units in $GL_2(R)$. Indeed we can prove the following

Proposition 2 If char(R) = 0 then the only finite order unipotent in $GL_2(R)$ is I_2 .

Proof. Since we are looking for trace 2 and determinant 1 matrices we can start with a matrix $U = \begin{bmatrix} a+2 & b \\ c & -a \end{bmatrix}$ with a(a+2) + bc = -1. Repeatedly using this last equality we get $U^2 = \begin{bmatrix} (a+2)^2 + bc & 2b \\ 2c & a^2 + bc \end{bmatrix} = \begin{bmatrix} 2a+3 & 2b \\ 2c & -2a-1 \end{bmatrix}$ and $U^3 = \begin{bmatrix} 3a+4 & 3b \\ 3c & -3a-2 \end{bmatrix}$. An easy induction shows (case n = 2 and n = 3 are displayed above) that for $U = \begin{bmatrix} a+2 & b \\ c & -a \end{bmatrix}$ and positive integer n we have $U^n = \begin{bmatrix} na+(n+1) & nb \\ nc & -na-(n-1) \end{bmatrix}$. Therefore $U^n = I_2$ iff b = c = 0 and na+(n+1) = 1 = -na-(n-1) which

happens iff a = -1. Hence $U^n = I_2$ iff $U = I_2$.

Alternative proof [Breaz]: Idempotents have the form $U = I_2 + N$ with $N^2 = 0_2$. Hence, using Newton's binomial, $U^n = (I_2 + N)^n = I_2 + nN$ for any positive integer n. Since this is $= I_2$ only for $N = 0_2$, the statement follows.

Examples. 1) $U_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. This is an order 2 unit, which is not unipotent.

2) $U_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. This is an infinite order unit, which is unipotent. $U_3 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$. This is an infinite order unit, which is not unipotent.