Unipotent 2×2 matrices over commutative rings.

Grigore Călugăreanu

2017

A unit in a ring with identity is called unipotent if it has the form $1+t$ with nilpotent t.

In what follows we consider 2×2 matrices over a commutative ring R.

Lemma $1 A 2 \times 2$ matrix U is unipotent iff $\operatorname{det}(U)=1$ and $\operatorname{Tr}(U)=2$.
Proof. By Cayley-Hamilton theorem, an invertible matrix U is unipotent iff $U-I_{2}$ has zero trace and zero determinant (i.e. is nilpotent in $\mathcal{M}_{2}(R)$).

If we denote $U=\left(u_{i j}\right)$ then for $U-I_{2}=\left[\begin{array}{cc}u_{11}-1 & u_{12} \\ u_{21} & u_{22}-1\end{array}\right]$ we have $\operatorname{Tr}\left(U-I_{2}\right)=\operatorname{Tr}(U)-2$ and $\operatorname{det}\left(U-I_{2}\right)=\operatorname{det}(U)-\operatorname{Tr}(U)+1$. The conditions above give $\operatorname{Tr}(U)=2$ and $\operatorname{det}(U)=1$.

Remark. 1) It is clear that powers of unipotents are also unipotents. In our special case this can also be seen by using the previous lemma.

If $\operatorname{det}(U)=1$ then clearly $\operatorname{det}\left(U^{n}\right)=1$. As for the traces, first recall that by Cayley-Hamilton theorem

$$
U^{2}=\operatorname{Tr}(U) \cdot U-\operatorname{det}(U) I_{2} \quad(*)
$$

Multiplying $\left(^{*}\right)$ by U^{n-2} and computing the trace of both sides we obtain a recurrence formula

$$
\operatorname{Tr}\left(U^{n}\right)=\operatorname{Tr}(U) \cdot \operatorname{Tr}\left(U^{n-1}\right)-\operatorname{det}(U) \cdot \operatorname{Tr}\left(U^{n-2}\right)
$$

This shows that traces of powers may be expressed in terms of the trace and determinant of the initial matrix. If $\operatorname{Tr}(U)=2$ and $\operatorname{det}(U)=1$ then also $\operatorname{Tr}\left(U^{n}\right)=2$.

There is a relationship between unipotents and the order of units in $G L_{2}(R)$. Indeed we can prove the following

Proposition 2 If $\operatorname{char}(R)=0$ then the only finite order unipotent in $G L_{2}(R)$ is I_{2}.

Proof. Since we are looking for trace 2 and determinant 1 matrices we can start with a matrix $U=\left[\begin{array}{cc}a+2 & b \\ c & -a\end{array}\right]$ with $a(a+2)+b c=-1$. Repeatedly using this last equality we get $U^{2}=\left[\begin{array}{cc}(a+2)^{2}+b c & 2 b \\ 2 c & a^{2}+b c\end{array}\right]=$ $\left[\begin{array}{cc}2 a+3 & 2 b \\ 2 c & -2 a-1\end{array}\right]$ and $U^{3}=\left[\begin{array}{cc}3 a+4 & 3 b \\ 3 c & -3 a-2\end{array}\right]$.

An easy induction shows (case $n=2$ and $n=3$ are displayed above) that for $U=\left[\begin{array}{cc}a+2 & b \\ c & -a\end{array}\right]$ and positive integer n we have $U^{n}=\left[\begin{array}{cc}n a+(n+1) & n b \\ n c & -n a-(n-1)\end{array}\right]$. Therefore $U^{n}=I_{2}$ iff $b=c=0$ and $n a+(n+1)=1=-n a-(n-1)$ which happens iff $a=-1$. Hence $U^{n}=I_{2}$ iff $U=I_{2}$.

Alternative proof [Breaz]: Idempotents have the form $U=I_{2}+N$ with $N^{2}=0_{2}$. Hence, using Newton's binomial, $U^{n}=\left(I_{2}+N\right)^{n}=I_{2}+n N$ for any positive integer n. Since this is $=I_{2}$ only for $N=0_{2}$, the statement follows.

Examples. 1) $U_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. This is an order 2 unit, which is not unipotent.
2) $U_{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. This is an infinite order unit, which is unipotent.
$U_{3}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$. This is an infinite order unit, which is not unipotent.

