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1 Introduction

There are formulas which give the coefficients of the characteristic polyno-
mial in terms of traces, but we were not able to find in the linear algebra
literature, formulas which give the traces of the positive integer powers of
2 × 2 matrices over commutative rings (and in particular, over domains or
even over integers) in terms of the trace and determinant of the given matrix.

Since such formulas are nice and notable we give them in this short note.

2 Prerequisites

0. In the sequel, A denotes a 2× 2 matrix over a commutative ring R.
First recall that by Cayley-Hamilton theorem

A2 = Tr(A) ·A− det(A)I2 (∗)

Computing the trace of both sides we get Tr(A2) = Tr(A)2 − 2 det(A).
Multiplying (*) by A and computing the traces we obtain Tr(A3) =

Tr(A).Tr(A2)− det(A).Tr(A) = Tr(A)3 − 3Tr(A) det(A).

In general, multiplying (*) by An−2 we obtain a recurrence formula

Tr(An) = Tr(A).Tr(An−1)− det(A).Tr(An−2) (∗∗)

This shows that traces of powers may be expressed in terms of the trace and
determinant of the initial matrix.

In order to state and prove a general formula for this, we next recall some
undergraduate algebra (e.g. see [1], [2], [3]).
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A. The recurrence an = aan−1 + ban−2, is an order-2 homogeneous lin-
ear recurrence with (two) constant coefficients, and the standard (known)
solution for this recurrence amounts to the characteristic equation of the
recurrence r2 − ar − b = 0. We solve for r to obtain the two roots λ1,
λ2: these roots are known as the characteristic roots or eigenvalues of the
characteristic equation. Different solutions are obtained depending on the
nature of the roots: If these roots are distinct, we have the general solution
an = Cλn

1 + Dλn

2 , while if they are identical (when a2 + 4b = 0), we have
an = Cλn + Dnλn. This is the most general solution; the two constants
C and D can be chosen based on two given initial conditions a0 and a1 to
produce a specific solution.

B. For each k ≥ 0, the complete symmetric polynomial is the sum of all
monomials of degree k: hk(x1, ..., xm) =

∑

d1+...+dm=k

xd1
...xdm .

In particular h0(x1, ..., xn) = 1.
For example, if m = 2 and k = n, we have hn(x1, x2) = xn

1 + xn−1
1 x2 +

...+ x1x
n−1
2 + xn

2 .
A special case of the fundamental theorem of symmetric polynomials

refers to such complete symmetric polynomials.
It can be proved that denoting by e1, e2, ... ek the elementary symmetric

polynomials, the following holds
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Here we have used the convention that ei(x1, ..., xm) = 0 for i < 0 or i > m.

3 The formula

Theorem 1 Let R be a commutative ring with identity, A ∈ M2(R) and let
n be a positive integer. Then the trace of An can be expressed in terms of

2



Tr(A) and det(A) in the form

Tr(An) = Tr(A)
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where the exponent (i) of each determinant denotes the number of rows (or

columns) and |∗|(0) = 1.
If R is a domain, char(R) 6= 2 and Tr(A)2 = 4det(A) then

Tr(An) = 2(
Tr(A)

2
)n.

Proof. Consider the recurrence an = aan−1 + ban−2 with a0 = 2 and a1 = a.
We are interested in finding the general term an expressed as a polynomial
in a and b over R. By repeatedly replacement, it is clear that such a formula
can be found and that this formula does not depend on the nature of the roots
of the characteristic equation of the recurrence.

Using A we distinguish two cases.
Case 1: ∆ 6= 0. From the initial conditions C+D = 2 andCλ1+Dλ2 = a,

so C =
2λ2 − a

λ2 − λ1

and D =
a− 2λ2

λ2 − λ1

.

Thus the general formula becomes

an =
2λ2 − a

λ2 − λ1

λn

1 +
a− 2λ2

λ2 − λ1

λn

2 = a
λn

2 − λn

1

λ2 − λ1

+ 2b
λn−1
2 − λn−1

1

λ2 − λ1

.

Since λ1 + λ2 = a and λ1λ2 = −b (these are precisely the elementary
symmetric polynomials in two variables), using the fundamental theorem of
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symmetric polynomials,
λn

2 − λn

1

λ2 − λ1
= λn−1

2 + λn−2
2 λ1 + ...+ λ2λ

n−2
1 + λn−1

1 can

be expressed as a polynomial in a and b.
Now using B, these are complete symmetric polynomials and since λ1 +

λ2 = a = Tr(A), and λ1λ2 = −b = det(A), the statement follows.
Case 2: ∆ = 0. We use the second formula, an = Cλn +Dnλn. In this

case C = a0 = 2 and (C + D)λ = a1 = a which gives D =
a− 2λ

λ
since

λ 6= 0 (otherwise a = b = 0, the trivial zero recurrence). But if ∆ = 0 then

(if char(R) 6= 2) λ =
a

2
and so D = 0. Hence an = 2(

a

2
)n (notice that if

b ∈ R then
a

2
∈ R).

Therefore, if Tr(A)2 = 4det(A) then

Tr(An) = 2(
Tr(A)

2
)n.

Examples. Tr(A2) = Tr(A)2 − 2 det(A);

Tr(A3) = Tr(A).
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−2 det(A) = Tr(A)3−Tr(A). det(A)−

2 det(A).Tr(A) = Tr(A)3 − 3Tr(A). det(A);

Tr(A4) = Tr(A).
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0 1 Tr(A)
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=

= Tr(A)[Tr(A)3−2Tr(A). det(A)]−2 det(A)[Tr(A)2−det(A)] = Tr(A)4−
4Tr(A)2 det(A) + 2 det(A)2.

Remarks. 1) It is easy to show that replacing det(A) = (
Tr(A)

2
)2 in

the formula obtained in Case 1, we get the special formula in Case 2. So
actually (as previously noticed) the formula obtained in Case 1 covers also
Case 2, and so does not depend on the nature of the roots of the characteristic
equation.

2) The form of the general term of the recurrence an = aan−1 + ban−2

with a0 = 2 and a1 = a depends on the parity of n. We obtain

a2k = a2k + 2ka2k−2b+ s
(k)
2 a2k−4b2 + s

(k)
3 a2k−6b3 + ... + s

(k)
k−1a

2bk−1 + 2bk

respectively

a2k+1 = a2k+1+(2k+1)a2k−1b+d
(k)
2 a2k−3b2+d

(k)
3 a2k−5b3+...+d

(k)
k−1a

2bk−1+(2k+1)abk
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where the coefficients si, di satisfy the recurrences
s
(k)
2 = s

(k−1)
2 + 4k − 5 beginning with s

(2)
2 = 2, d

(k)
2 = d

(k−1)
2 + 4k − 3

beginning with d
(1)
2 = 0,

s
(k)
3 = s

(k−1)
2 + 2k − 1, d

(k)
3 = s

(k)
3 + d

(k−1)
2 = d

(k−1)
2 + d

(k−2)
2 + 4k − 5 and

so on.
These recurrences may be easily solved. For instance we obtain
s
(k)
2 = k(2k−3) for k ≥ 2, d

(k)
2 = 2k2−k−1 for k ≥ 1, s

(k)
3 = 2k2−5k+4

for k ≥ 4, d
(k)
3 = 2(2k2 − 5k + 3) for k ≥ 4, and so on.
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