A characterization of Dedekind finite rings

Grigore Călugăreanu

Abstract

A unital ring R is called Dedekind finite if $b a=1$ whenever $a b=1$, for $a, b \in R$.

A ring R is called stably (or weakly) finite if $\mathcal{M}_{n}(R)$ is Dedekind finite for every natural number n. Since $n=1$ is allowed in this definition, clearly stably finite implies Dedekind finite.

A natural generalization would be obtained by replacing the (full) matrix ring $\mathcal{M}_{n}(R)$ by its subring $\mathcal{T}_{n}(R)$, which consists in all the upper triangular n by n matrices with entries in R.

In this short note we show that this generalization is too large: this class of rings coincides with the class of all Dedekind rings.

Actually we can prove Theorem 1 A ring R is Dedekind finite iff $\mathcal{T}_{2}(R)$ is Dedekind finite iff $\mathcal{T}_{n}(R)$ are Dedekind finite for every natural number n.

Proof. Suppose $A X=I_{2}$ with $A=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right], X=\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]$ for a DF ring R. Then $a x=c z=1, a y+b z=0$ and by DF, $x a=z c=1$ so these are (two-sided) units. By left multiplication with x and right multiplication by c, from $a y+b z=0$ we get $x b+y c=0$. Hence indeed $X A=I_{2}$. Conversely, for every six elements a, b, c, x, y, z, the conditions $a x=c z=1, a y+b z=0$ imply $x a=z c=1$ and $x b+y c=0$.

For given $a x=1$, take $c=z=1$ and $b=-a y$. Then $x a=1$, so R is DF. As for the second equivalence, an induction applies: we suppose that for a Dedekind finite ring $R, \mathcal{T}_{n-1}(R)$ is Dedekind finite and we show that $\mathcal{T}_{n}(R)$ is also Dedekind finite. We use block decompositions for n by n matrices, that is, in $\mathcal{T}_{n}(R)$ we take $A_{n}=\left[\begin{array}{cc}A_{n-1} & \alpha \\ 0 & a_{n}\end{array}\right]$ with triangular $A_{n-1} \in \mathcal{T}_{n-1}(R)$, $n-1$-column $\alpha=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n-1}\end{array}\right]$ and $a_{n} \in R$ and similarly B_{n} with blocks B_{n-1}, β and b_{n}.

Then $A_{n} B_{n}=I_{n}$ amounts to $A_{n-1} B_{n-1}=I_{n-1}, a_{n} b_{n}=1$ and
(1) $A_{n-1} \beta+\alpha b_{n}=0$.

Since R is DF and by induction hypothesis, $B_{n-1} A_{n-1}=I_{n-1}, b_{n} a_{n}=1$ and in order to get $B_{n} A_{n}=I_{n}$ we only need to show that
(2) $B_{n-1} \alpha+\beta a_{n}=0$.

The equalities are indeed equivalent: from (1) we get (2) by left multiplication with B_{n-1}, and right multiplication with a_{n}.

