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ABSTRACT

We study matrices over general rings which are sums of nilpotent
matrices. We show that over commutative rings all matrices with
nilpotent trace are sumsof threenilpotentmatrices.Wecharacterize 2-
by-2matriceswith integer entrieswhich are sumsof twonilpotents via
the solvability of a quadratic Diophantine equation. Some exemples
in the case of matrices over noncommutative rings are given.
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1. Introduction

The general question which asks to identify the elements of a ring which can be expressed
as a sum of elements which satisfy some special properties (e.g. are units or satisfy some
polynomial identities) has a long history, and various particular cases are used in order to
study important properties of the ring (e.g. clean rings, nil-clean rings etc.). For instance,
for a positive integer k, rings in which each element is the sum of k units were first
considered by Henriksen (see [1]), and Vámos (see [2]) called such rings k-good rings.
In [1] it was proved that for any ring R and any positive integer n > 1, the matrix
ring Mn(R) is k-good for k ≤ 3. Moreover, if R is an elementary division ring then
Mn(R) is 2-good. Similar problems can be stated by replacing units by idempotents or
nilpotents. For instance, in [3] itwas proved that over infinite-dimensional complexHilbert
spaces, every operator is a sum of at most five idempotents, respectively a sum of at
most five square-zero nilpotents. These results were recently generalized in[4], were it is
proved that every endomorphism of an infinite-dimensional vector space over a field is
the sum of four idempotents and is the sum of four square-zero endomorphisms. For
some similar results which involve square-zero nilpotent matrices we refer to [5] and
[6].

In this paper we study square matrices over general rings which are sums of nilpotent
matrices. It is easy to see that not all square matrices are sums of nilpotents (e.g. matrices
over fields have to have zero trace). However, there exist division rings D such that all
matrices over D are sums of nilpotents.[7] Therefore, it is interesting to find all matrices
which are sums of nilpotents (i.e. to describe the subgroup additively generated by all
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2 S. BREAZ AND G. CĂLUGĂREANU

nilpotent matrices), and for a fixed matrix A, to find minimal decompositions for A as
sums of nilpotents (i.e. with minimal number of summands). To simplify the writing we
shall use the following
Definition: Let k be a positive integer. An element in a ring is called (k-) nilgood if it is
the sum of (k) nilpotents.

The content of this paper is the following: Section 2 is dedicated to n× n matrices
(n > 1) over commutative rings. It is proved that a matrix is a sum of nilpotents if
and only if its trace is nilpotent, and all matrices with this property are 3-nilgood. In
the case of matrices over fields of zero characteristic every traceless matrix (i.e. zero
trace) is 2-nilgood, but this may not be true for some positive characteristics (if n is
the characteristic of a field then In is a traceless matrix which cannot be written as a sum
of two nilpotents). Therefore, we characterize 2-nilgood matrices over fields of positive
characteristic. Moreover, in the last part of this section we study 2 × 2 matrices over the
ring of integers. Such traceless matrices can be written as a sum of two nilpotent matrices
with rational coefficients, but this may fail if we restrict ourselves to nilpotents with integer
coefficients. Therefore 2-nilgood matrices over Z are characterized via the solvability of a
quadraticDiophantine equation. This characterization is used to construct somenumerical
examples which show that the problem of finding all 2-nilgood matrices over Z or to find
all decompositions of such traceless matrices as a sum of two nilpotents is more difficult
than it looks at a first sight. In Section 3, some results are given on nilgood matrices over
noncommutative rings. In particular it is proved that in the case of 2 × 2 matrices with
entries in the quaternion R-algebra, not all nilgood matrices are 2-nilgood. Moreover, if
D is a division ring which contains an element which is a sum of three commutators,
but is not a sum of two commutators, then there exists a 4-nilgood matrix which is not
3-nilgood.

Throughout, R denotes a nonzero (associative) ring with identity. The ring of n × n
matrices over R is denoted by Mn(R). All matrices we consider are square matrices. By
diag(a11, . . . , ann) we denote an n × n diagonal matrix (i.e. with only zero entries off the
diagonal). Whenever it is more convenient, we use the widely accepted shorthand “iff” for
“if and only if” in the text.

2. Matrices over commutative rings

Let R be a commutative ring. If n is a positive integer and A ∈ Mn(R), we denote
by χA = det (XIn − A) the characteristic polynomial associated to A. Recall that in a
commutative ring, nilgood elements are nilpotent.

If K is a field, we can deduce from [8] that for every n-tuple (a1, . . . , an) ∈ Kn and
for every polynomial f = Xn + rn−1Xn−1 + · · · + r1X + r0 ∈ K[X] such that rn−1 =
−a1 − · · · − an, there exists a matrixM which has on its diagonal the n-tuple (a1, . . . , an)
and χM = det (XIn − M) = f . By a similar technique to that used in[9], we can extend
this to commutative rings.
Lemma 1: Let R be a commutative ring. If a1, . . . , an ∈ R and f = Xn+ rn−1Xn−1+· · ·+
r1X + r0 ∈ R[X] is a monic polynomial such that rn−1 = −a1 − · · · − an, then there exists
an (n− 1)-tuple (b1, . . . , bn−1) ∈ Rn−1such that the characteristic polynomial associated to
the matrix
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LINEAR ANDMULTILINEAR ALGEBRA 3

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 0 0 · · · 0 b1
1 a2 0 · · · 0 b2
0 1 a3 · · · 0 b3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · an−1 bn−1
0 0 0 · · · 1 an

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Mn(R)

is χM = f .
Proof: Weprove this by induction on n. For n = 1 the property is obvious. So we suppose
that the property is true for n − 1 (with n ≥ 2) and we prove it for n.

Let a1, . . . , an be elements from R and let f = Xn + rn−1Xn−1 + · · · + r1X + r0 ∈ R[X]
be a monic polynomial such that rn−1 = −a1 − · · · − an. We have to find elements
b1, . . . , bn−1 ∈ R such that

∣∣∣∣∣∣∣∣∣∣∣∣

X − a1 0 0 · · · 0 −b1
−1 X − a2 0 · · · 0 −b2
0 −1 X − a3 · · · 0 −b3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · X − an−1 −bn−1
0 0 0 · · · −1 X − an

∣∣∣∣∣∣∣∣∣∣∣∣
= f .

This is equivalent to the equality

(X − a1)

∣∣∣∣∣∣∣∣∣∣∣∣

X − a2 0 0 · · · 0 −b1
−1 X − a3 0 · · · 0 −b2
0 −1 X − a4 · · · 0 −b3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · X − an−1 −bn−1
0 0 0 · · · −1 X − an

∣∣∣∣∣∣∣∣∣∣∣∣
− b1 = f .

Using the remainder theorem for unital commutative rings, there exists a polynomial
g = Xn−1 + cn−2Xn−2 + · · · + c0 ∈ R[X] of degree n − 1 and an element b ∈ R such
that f = (x − a1)g + b. Moreover cn−2 = −a2 − · · · − an. By our hypothesis there exist
b2, . . . , bn−1 ∈ R such that

∣∣∣∣∣∣∣∣∣∣∣∣

X − a2 0 0 · · · 0 −b2
−1 X − a3 0 · · · 0 −b3
0 −1 X − a4 · · · 0 −b4

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · X − an−1 −bn−1
0 0 0 · · · −1 X − an

∣∣∣∣∣∣∣∣∣∣∣∣
= g ,

and if we choose b1 = −b, the proof is complete. �
Having this, we can state and prove the main result of this note.

Theorem 2: The following conditions are equivalent for a matrix A over a commutative
ring:
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4 S. BREAZ AND G. CĂLUGĂREANU

(a) A is 3-nilgood;
(b) A is nilgood;
(c) The trace of A is nilpotent.

Proof: (a) ⇒ (b) is obvious.
(b) ⇒ (c) Over commutative rings, Almkvist proved in [10] that for any matrix A ∈

Mn(R), Am+1 = 0n implies Tr(A)mn+1 = 0. Therefore, traces of nilpotent matrices are
nilpotent and so are traces of nilgood matrices.

(c)⇒ (a) Let t be the trace ofA. By theprevious lemma, there exists amatrixM ∈ Mn(R)

with the same diagonal as A such that χM = Xn − tXn−1. Using the Cayley-Hamilton
Theorem (see[11], for matrices over commutative rings), it follows that M is nilpotent.
Moreover A−M has only 0 on its diagonal, hence it splits as a sum of its upper-triangular
and lower-triangular components. Therefore, A−N is a sum of two nilpotent matrices.
Hence A is a sum of three nilpotent matrices. �

As an example in the proof of the previous theorem, consider a diagonal diag(a; b; c),
whose trace is nilpotent, say a + b + c = t ∈ N(R), and take

N =
⎡
⎣a 0 a2(b + c)
1 b ab + ac + bc
0 1 c

⎤
⎦

whose characteristic polynomial is X3 − (a+ b+ c)X2. ThusN is nilpotent, and all entries
on the diagonal of A−N are 0, so A−N is a sum of two nilpotent matrices.

Note that in general this decomposition is not unique. Using a different completion
result, proved in[12], we can give an explicit nilpotent completion, namely

N ′ =
⎡
⎣a ab − 1 a + b + a(1 − (a + b)2)
1 b 1 − (a + b)2

0 1 t − a − b

⎤
⎦ .

For a direct computation, first replace N ′ with a conjugate Nt = UN ′U−1 with U =⎡
⎣1 −a 0
0 1 0
0 0 1

⎤
⎦, that is, Nt =

⎡
⎣0 −1 s
1 s 1 − s2

0 1 t − s

⎤
⎦ where s = a + b. Then it suffices to observe

that N3
t = t

⎡
⎣0 s ∗
0 1 − s2 ∗
1 t − s ∗

⎤
⎦.

It is worthwhile mentioning that the 3-nilgood decomposition given in the previous
theorem is not always the best (minimal number of nilpotents).
Proposition 3: Let F be a field and let A be any traceless n × n matrix over F.

(i) If char(F) = 0 or char(F) does not divide n, then A is 2-nilgood.
(ii) If char(F) divides n, then all traceless matrices are 3-nilgood, and a matrix A is not

2-nilgood iff A = λIn for λ �= 0.

Proof:

(i) In,[13] it is proved (see the comment after Theorem 2) that each non-scalar n ×
n matrix, over any field, is similar to a matrix with prescribed diagonal entries.
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LINEAR ANDMULTILINEAR ALGEBRA 5

Therefore, if a non-zero matrix A is traceless and gcd (char(F), n) = 1, then it is a
non-scalarmatrix, and so it is similar to an (also traceless)matrix with zero diagonal
entries. Hence it is 2-nilgood.

(ii) The first statement is just a special case of Theorem 2.

For the second statement, we use again [13] to obtain the direct implication. Conversely,
if A = λIn for λ �= 0, then for every nilpotent matrix N it is not hard to see that A−N is
invertible, hence A is not 2-nilgood. �

In the sequel we investigate the case of 2 × 2 matrices over Z. A matrix is nilgood iff it
is traceless, and (by Theorem 2) every traceless matrix is a sum of three nilpotent matrices.
However, despite the fact that the characteristic of Z is 0, there are traceless 2× 2 matrices
over Z which are not sums of two nilpotents.
Example:

(1) If a is odd and b, c are even then the matrix A =
[
a b
c −a

]
is not a sum of two

nilpotent matrices over Z, since if we consider these matrices over Z/2Z then A
represents the identity.

(2) On the other side, there exists A of the above form such that 2A is 2-nilgood. A
simple example is:

[
2 0
0 −2

]
=

[
1 −1
1 −1

]
+

[
1 1

−1 −1

]
.

Thus a natural question is to obtain necessary and sufficient conditions for a traceless

matrix A =
[
a b
c −a

]
with integer entries to be 2-nilgood over Z. Moreover, observe that

if a, b, and c do not satisfy the conditions in the first example above, then for every prime
p, the matrix A represents a matrix over Z/pZ which is 2-nilgood, but we will show that
this is not sufficient in order to conclude that A is 2-nilgood over Z.

Now, suppose that A =
[
a b
c −a

]
is any traceless matrix over Z. Since nilpotents in

M2(Z) have the form N =
[
s x
y −s

]
with s2 + xy = 0, A is 2-nilgood iff there exist

x, y, s ∈ Z which satisfy the system

{
s2 + xy = 0
2as + by + cx = −δ,

where δ = −a2 − bc, i.e. A−N is nilpotent.
Using this, we obtain the following characterization for 2-nilgood matrices over Z:

Theorem 4: A traceless matrix A =
[
a b
c −a

]
∈ M2(Z), with a �= 0, is 2-nilgood iff the

Diophantine equation

c2X2 − (4δ + 2bc)XY + b2Y2 + 2cδX + 2bδY + δ2 = 0 (*)

has solutions in Z.

D
ow

nl
oa

de
d 

by
 [

G
ri

go
re

 C
al

ug
ar

ea
nu

] 
at

 1
3:

13
 3

1 
M

ar
ch

 2
01

6 



6 S. BREAZ AND G. CĂLUGĂREANU

In this case, for every solution (x, y) of ( ∗ ), if

s = −cx−by−δ

2a then the matrices N =
[
s x
y −s

]
and A−N are nilpotent.

Proof: Suppose A is 2-nilgood. Then there exist x, y, s ∈ Z which verify (S). Since a �= 0
we can write the first equality as (2as)2 + 4a2xy = 0, further eliminate 2as and obtain the
Diophantine equation (∗).

Conversely, suppose x and y are solutions for the equation ( ∗ ). If we consider the
corresponding equality, and we reduce it modulo 4a2 we obtain

c2x2 + b2y2 + 2bcxy + 2cδX + 2bδY + δ2 ≡ 0 mod 4a2,

hence 2a | cx + by + δ.
It follows that s = −cx−by−δ

2a ∈ Z, and x, y and s verify the equalities in (S). Hence A is
2-nilgood. �
Remark: The previous theorem can be extended to integral domains whose characteristic
is not 2.

Using Proposition 4 together with a computer algorithm for solving quadratic Dio-
phantine equations, we can decide if a matrix is 2-nilgood, and obtain the corresponding
decompositions. We list here some simple examples, using [14]:
Example:

(1) Take a = 1, b = c = 3. Then the matrix A =
[
1 3
3 −1

]
is 2-nilgood iff the

(symmetric) equation

9X2 + 22XY + 9Y2 − 60X − 60Y + 100 = 0

has solutions.
A family of solutions (xn, yn), n ∈ Z, of this equation is given by the recursive
formulas ⎧⎨

⎩
x0 = 5, y0 = −5
xn+1 = −14xn − 27yn + 63
yn+1 = 27xn + 52yn − 117

In this case we obtain s0 = 5 and in general

sn+1 = −3xn+1 − 3yn+1 + 10
2

= ( − 39xn − 75yn + 172)/2.

We obtain the decomposition
[
1 3
3 −1

]
=

[
5 5

−5 −5

]
+

[−4 −2
8 4

]
.

(2) In the case a = 2, b = c = 3 we obtain the (symmetric) equation

9X2 + 31XY + 9Y2 − 78X − 78Y + 169 = 0

which has solutions.
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LINEAR ANDMULTILINEAR ALGEBRA 7

The general solution (xn, yn), n ∈ Z, of this equation is given by the recursive
formulas ⎧⎨

⎩
x0 = −49, y0 = 16
xn+1 = −116xn − 405yn + 783
yn+1 = 405xn + 1414yn − 2727

In the case n = 0 we obtain s0 = 28, so
[
2 3
3 −2

]
=

[
28 −49
16 −28

]
+

[−26 52
−13 26

]
.

(3) In order to find a 2-nilgood decomposition for the matrix A =
[
3 4
5 −3

]
we have to

solve the Diophantine equation

25x2 + 76xy + 16y2 − 290x − 232y + 841 = 0.

This equation has four principal solutions:

(x0, y0) ∈ {(29,−116), (−725, 261), (528529,−2322576), (−14250625, 5067001)}.

The general solution is given by the formula
{
xn+1 = Pxn + Qyn + K
yn+1 = Rxn + Syn + L,

where

P = −33826519, Q = −95135040, K = 305490640,
R = 148648500, S = 418064921 L = −1342459300

or

P = −418064921, Q = −95135040, K = 1073967444
R = 148648500, S = 33826519, L = −381863295.

In particular, we obtain the following “big” decomposition:
[
3 4
5 −3

]
=

[
1107948 528529

−2322576 −1107948

]
+

[−1107945 −528525
2322581 1107945

]
.

Note that using the general methods presented in[14], we can reduce the equation (∗)
to the generalized Pell equation

U2 + 4δa2V2 − 4c2δa2 = 0,

where U = 2c2x − (4δ + 2bc)y + 2cδ, and V = 2y − c. It is well known (see [15]) that
though this equation has a trivial solution (U = 0 , V = ±c), it is hard to decide if there
exist solutions U and V such that the corresponding solutions x and y are integers. For
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8 S. BREAZ AND G. CĂLUGĂREANU

instance, the above mentioned trivial solution is suitable only if c | a2. Moreover, there are
matrices A which are not the identity modulo 2 and are not 2-nilgood.
Example:

(1) For a = 1, b = 2, c = −3, we obtain the matrix
[

1 2
−3 −1

]
, which is not 2-nilgood

since the corresponding equation,

9x2 − 8xy + 4y2 − 30x + 20y + 25 = 0

has no solutions.
In this case the corresponding Pell equation is U2 + 20V2 − 180 = 0 has the
solutions (U ,V) = (0,±3), respectively (U ,V) = {(ε · 10, η · 2) | ε, η ∈ {1,−1}}.
In the first case we obtain y = 0 and 18x − 30 = 0 or y = −3 and 18x − 6 = 0,
hence x /∈ Z. In the second case, since V = ±2, 2y must be odd, hence y /∈ Z.

(2) However, even for the elliptic case, it is possible to have solutions. For instance, if
a = 1, b = 3, c = −3, we have the equation 9x2−14xy+9y2−48x+48y+64 = 0,
which has exactly two solutions (2,−2), and (1,−1). Then there exists a unique
decomposition for A:

[
1 3

−3 −1

]
=

[
2 2

−2 −2

]
+

[−1 1
−1 1

]
.

In some cases it is easy to obtain a decomposition: if a = b = c, it is easy to check[
a a
a −a

]
=

[
a a

−a −a

]
+

[
0 0
2a 0

]
: such matrices are 2-nilgood.

The following result characterizes 2-nilgood 2× 2 traceless upper triangular matrices over
Z. The proof given here is independent from the previous theorem.

Proposition 5: A triangular matrix T(a, b) =
[
a b
0 −a

]
over Z is not 2-nilgood iff a is odd

and b is even.
Proof: If a is odd and b is even then passing T(a, b) to Z/2Z we obtain I2, which is not
2-nilgood.

Conversely, suppose that a is even or b is odd and let d = gcd (a, b). Denote a = a′d
and b = b′d. Then three cases are possible:

I. Suppose b = 0. Then

T(a, 0) =
[

a/2 a/2
−a/2 −a/2

]
+

[
a/2 −a/2
a/2 −a/2

]
.

II. Suppose b is odd. Then d + b′ is even and

T(a, b) =
[ 1

2a
′(d + b′) [ 12 (d + b′)]2
−a′2 − 1

2a
′(d + b′)

]
+

[ 1
2a

′(d − b′) −[ 12 (d − b′)]2
a′2 − 1

2a
′(d − b′)

]
.

III. Suppose b �= 0 is even. Then a is even, hence d is also even. If b′ is even, then we
can take the same matrix as in (II).
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LINEAR ANDMULTILINEAR ALGEBRA 9

If b′ is odd then T(a, b) = dT(a′, b′) , and the matrix T(a′, b′) is a sum of two nilpotent
matrices by (II). �

3. Matrices over noncommutative rings

In this section, we investigate matrices over noncommutative rings. Recall that in the case
of division rings it was proved in [7, Proposition 2] that a matrix is a sum of nilpotents
iff its trace is a sum of commutators, i.e. a sum of elements of the form [a, b] = ab − ba.
In this context, it is natural to mention a somewhat similar study, done by K. Mesyan in
[16] . In his paper, a (noncommutative) ring is called a commutator ring if all its elements
are sums of commutators. Among other things, for an arbitrary ring R, it is proved that a
matrix A ∈ Mn(R) is a sum of commutators iff the trace of A is a sum of commutators.

One of the ingredients used in [7, Proposition 2] holds for any ring.
Proposition 6: Let R be any ring, n > 1 and A ∈ Mn(R). The matrix A is nilgood iff
diag(0, . . . , 0, Tr(A)) is nilgood.

Moreover, if diag(0, . . . , 0, Tr(A)) is k-nilgood then A is (n + 1 + k)-nilgood.
Proof: Denote A = [

aij
]
, 1 ≤ i, j ≤ n. There is a decomposition

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 . . . 0 a11
0 0 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 0
−a11 0 . . . 0 −a11

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
0 a22 . . . 0 a22
...

... . . .
...

...

0 0 . . . 0 0
0 −a22 . . . 0 −a22

⎤
⎥⎥⎥⎥⎥⎦

+ . . .

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...

0 0 . . . an−1,n−1 an−1,n−1
0 0 . . . −an−1,n−1 −an−1,n−1

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 a12 . . . a1,n−1 a1n − a11
0 0 . . . a2,n−1 a2n − a22
...

... . . .
...

...

0 0 . . . 0 an−1,n − an−1,n−1
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
a21 0 . . . 0 0
...

... . . .
...

...

an−1,1 an−1,2 . . . 0 0
an1 + a11 an2 + a22 . . . an,n−1 + an−1,n−1 0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
0 0 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 0
0 0 . . . 0 Tr(A)

⎤
⎥⎥⎥⎥⎥⎦

.
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Now the conclusion is obvious. �
Corollary 7: If R is any ring and n > 1, then

(a) every traceless matrix A ∈ Mn(R) is (n + 1) -nilgood;
(b) if Tr(A) is k-nilgood then A is (n + k + 1) -nilgood.
(c) if Tr(A) is a sum of k commutators then A is (n + 2k + 1)-nilgood.

Proof: The statements (a) and (b) are obvious.
For (c), recall from the proof of the mentioned result from[7, Proposition 1], that for

every commutator x, the matrix diag(0, . . . , 0, x) is a sum of four nilpotent matrices, and
two of them are strictly triangular matrices. �

We were not able to extend Harris’s characterization from division rings to general
rings. A first obstruction is the fact that, while in the commutative case the matrices with
nilpotent trace are nilgood (see Theorem 2), in the general case, a matrix A may not be
nilgood when Tr(A)k is a sum of commutators for some positive integer k.
Example: Let H be the quaternion division ring. It is not hard to see that a quaternion
q �= 0 is a sum of commutators iff it is purely imaginary. Therefore, a matrix over H is
nilgood iff its trace is 0 or purely imaginary. On the other side, (1 + i)2 = 2i, but clearly a
matrix whose trace is 1 + i is not nilgood.

Often a better (fewer summands) decomposition is available.
Proposition 8: Suppose k > 1. A matrix is k-nilgood whenever its diagonal entries are k
-nilgood.
Proof: For an n × n matrix A = [

aij
]
, decompose the entries on the diagonal into

k nilpotents. Then decompose the matrix into k diagonal matrices with only nilpotent
entries on the diagonal and add to the first and second such matrices the strictly upper
triangular respectively strictly lower triangular parts of A, i.e. if aii = ∑k

m=1 tim for every
1 ≤ i ≤ n,

A =⎡
⎢⎢⎢⎢⎢⎣

t11 a12 . . . a1,n−1 a1n
0 t21 . . . a2,n−1 a2n
...

... . . .
...

...

0 0 . . . tn−1,1 an−1,n
0 0 . . . 0 tn1

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

t12 0 . . . 0
a21 t22 . . . 0
...

... . . .
...

an−1,1 an−1,2 . . . 0
an1 an2 . . . tn2

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

t13 0 . . . 0 0
0 t23 . . . 0 0
...

... . . .
...

...

0 0 . . . tn−1,3 0
0 0 . . . 0 tn3

⎤
⎥⎥⎥⎥⎥⎦

+ · · · +

⎡
⎢⎢⎢⎢⎢⎣

t1k 0 . . . 0 0
0 t2k . . . 0 0
...

... . . .
...

...

0 0 . . . tn−1,k 0
0 0 . . . 0 tnk

⎤
⎥⎥⎥⎥⎥⎦

.

�
Next, consider 2 × 2 matrices over a division ring D. First recall from [17] that if D is a

division ring, then nilpotent 2 × 2 matrices over D can be of the form
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N(z) =
[
0 0
z 0

]
or N(y, z) =

[ −yz y
−zyz zy

]
,

with y, z ∈ D.

Assume a �= 0 is an element in D and let A =
[−a 0

0 0

]
∈ M2(D). Suppose that A has

the form
A = N(y1, z1) + · · · + N(yk, zk) + N(z), where y1z1, . . . , ykzk are non-zero elements

from D, and z ∈ D.
Then we obtain the equalities

⎧⎪⎪⎨
⎪⎪⎩

y1z1 + y2z2 + · · · + ykzk = a
z1y1 + z2y2 + · · · + zkyk = 0
y1 + y2 + · · · + yk = 0
z1y1z1 + z2y2z2 + · · · + zkykzk − z = 0.

Using the first three equalities we deduce
{
y1(z1 − zk) + · · · + yk−1(zk−1 − zk) = a
(z1 − zk)y1 + · · · + (zk−1 − zk)yk−1 = 0.

In particular a is a sum of k − 1 commutators, and we are ready to prove the following
special case.
Proposition 9: Assume a �= 0 is an element of D which is a sum of commutators, but not

a sum of two commutators. Then A =
[−a 0

0 0

]
∈ M2(D) is not 3-nilgood.

Proof: Suppose by contradiction that A is a sum of three nilpotents. Therefore, we have
a decomposition as in the above discussion with k ≤ 3. In particular a can be written as a
sum of at most two commutators, a contradiction. �

As the previous proposition shows, in order to prove that there are nilgood matrices
over division rings which are not 3-nilgood, it would suffice to find an example of a division
ringD and an element a ∈ D which is a sum of three commutators but is not a sum of two
commutators. We are not aware of any example.

In closing, recall that all nilgood matrices over fields of characteristic 0 are 2-nilgood.
In the case of division rings of 0 characteristic, this is no longer true.

Example. The matrix A =
[
i 0
0 0

]
∈ M2(H) is nilgood since its trace is a commutator but

is not 2-nilgood.
Indeed, supposeA is 2-nilgood.ThenA = N(y1, z1)+N(z)orA = N(y1, z1)+N(y2, z2).

In the first case we obtain y1z1 = −i and z1y1 = 0, a contradiction. If we suppose that
A = N(y1, z1) + N(y2, z2) we obtain the equalities y1(z1 − z2) = −i and (z1 − z2)y1 = 0,
a contradiction.
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