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Strictly Invariant Submodules

Simion Breaz, Grigore Călugăreanu and Andrey Chekhlov

Abstract. If M is an R-module, we study the submodules K ≤ M with
the property that K is invariant with respect to all monomorphisms
K → M . Such submodules are called strictly invariant. For the case of
Z-modules (i.e. Abelian groups), we prove that in many situations these
submodules are invariant with respect to all homomorphisms K → M ,
submodules which were called strongly invariant.
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1. Introduction

Let K be a submodule of a module M , and let X be a class of homomorphisms
such that f(K) makes sense for all f ∈ X . We say that K is invariant with
respect to the class X if the inclusion f(K) ≤ K holds for all f ∈ X . For in-
stance, K is fully invariant, injective invariant, respectively, characteristic, if
K is invariant with respect to the class X , where X is End(M), Mon(M) (i.e.
the set of all monic endomorphisms of M), respectively Aut(M). In module
theory, there are important classes of modules which can be characterized by
the invariance of some submodules with respect to some classes of homomor-
phisms. For instance, a module M is quasi-injective (pseudo-injective) if and
only if it is fully invariant (characteristic) as a submodule of the injective hull
of M , cf. [13] (respectively, [12]). We refer to [19] for some general statements
about modules which are invariant with respect to classes of endomorphisms
of injective hulls.

Injective invariant subgroups of Abelian groups were termed
S-characteristic and left invariant, respectively, in [2] or [16]. These were
used in [4] for the study of (co)Hopfian modules.

The submodules K which are invariant with respect to X = Hom(K,M)
are called strongly invariant, and these are studied in [6], with a special atten-
tion to the case of Abelian groups. We will say that the submodule K of M
is strictly invariant if it is invariant with respect to the set X = Mon(K,M)
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of all monomorphisms K → M . Clearly, strongly invariant submodules are
strictly invariant and strictly invariant submodules are characteristic.

For reader’s convenience we mention that the same notions are dis-
cussed in the case of non-Abelian groups in [22], where strongly invariant
(normal) subgroups are termed homomorph containing and strictly invariant
subgroups are termed isomorph containing.

In the next section, we study general properties of strictly invariant
submodules. Among these it is proved that the set of all strictly invariant
submodules of a module is a complete lattice with respect to the inclusion
relation, Proposition 10. Moreover, if the additive group of the module has
no elements of order 2, then every strictly invariant submodule is invariant
with respect to idempotent endomorphisms, Proposition 17.

In the third section, we study strictly invariant subgroups of Abelian
groups. We mention that in Example 4 it is proved that there exist strictly
invariant submodules which are not strongly invariant. However, we were not
able to construct such an example for the case of Abelian groups. Therefore,
we are focussed on finding conditions (as general as possible) on the group
and/or on the subgroup, which imply that the strictly invariant subgroups
are strongly invariant, to argue the enunciation of the following conjecture:
every strictly invariant subgroup of an Abelian group is strongly invariant.
Very large classes of Abelian groups are shown to support this conjecture.

In this context, we mention that in the case of Abelian groups, all
pseudo-injective groups are quasi-injective [21]. A similar situation occurred
in [4]: denoting by Q(G), the family of all subgroups N ≤ G such that every
homomorphism N −→ G extends to an endomorphism of G and by P(G),
the family of all subgroups N ≤ G such that every injective homomorphism
N −→ G extends to an endomorphism of G, though we strongly suspect
that Q(G) = P(G) for Abelian groups, the proof which shows that finitely
generated subgroups from P(G) are also in Q(G) was already very hard (and
the general question is still open).

Notice that for noncommutative groups it is easy to give examples of
strictly invariant subgroups which are not strongly invariant: the dihedral 2-
groups of order at least 8 and the infinite dihedral group. The order 8 group
D8 has a unique cyclic maximal subgroup H (of order 4) which clearly is
strictly but not strongly invariant in D8. Indeed, there are other two order 4
subgroups which are Klein, and all the other order 2 subgroups are (clearly)
cyclic.

We finally mention that, starting from [3], Dikranian, Giordano Bruno,
Goldsmith, Salce, Virili and Zanardo defined and studied fully inert sub-
groups of Abelian groups in [8–11,17,18]. Replacing fully invariant subgroups
by strongly invariant subgroups, led the first and second authors to study the
strongly inert subgroups of Abelian groups in [5]. A natural continuation of
all these (kindly suggested by the referee) would be to study the strictly in-
ert subgroups and compare these with strongly inert subgroups. We postpone
this to a forthcoming paper.



MJOM Strictly Invariant Submodules Page 3 of 14   103 

All modules we consider are over a unital ring denoted R. F2 denotes
the field with two elements and Z2 the Abelian group with two elements. For
other notations for Abelian groups we refer to [14,15].

2. General Properties

Using the above definitions, we obtain the following chart:

strongly invariant
(∗)
=⇒ fully invariant

⇓ (4) ⇓ (1)

strictly invariant
(1)
=⇒ injective invariant

(3)
=⇒ characteristic

The following examples (the numbering corresponds to these) show that
all reversed implications fail ((2) presents fully invariant subgroup which is
not strictly invariant; as for (*), such examples are given in [6]).

First, an injective invariant subgroup which is not strictly invariant.

Example 1. Let G = 〈a1〉 ⊕ 〈a2〉 ⊕ 〈a3〉 with o(ai) = 2i, and H = 〈2a2〉 ⊕
〈a1 + 2a3〉. Since G is finite, characteristic and injective invariant subgroups
coincide (because injective functions from G to G are bijective). It is proved
in [15, p. 9] that H is characteristic, and it is easy to see that H is not strictly
invariant (e.g. take 2a2 
−→ a1 and a1 +2a3 
−→ a2). Moreover, it is not fully
invariant.

Example 2. If p is a prime, the subgroup pZ of Z is not strictly invariant but
it is fully invariant.

Other examples may be found in [6] or [7].

Next, a characteristic subgroup which is not injective invariant.

Example 3. By [1, Theorem 2.14], for every prime p there exists a torsion-
free Abelian group G of rank 2 with endomorphism ring isomorphic to R =
Z[

√−p]. Since the units of R are ±1 , it follows that all subgroups are charac-
teristic. Moreover, Q⊗R is a division ring, hence all non-zero endomorphisms
of G are injective. Let x ∈ G be a non-zero element, and let f and g be two
endomorphisms of G which are Q-independent in Q ⊗ R. Suppose f(x) and
g(x) are not Z-independent. Then there exist two non-zero integers m and n
such that mf(x) = ng(x) and so mf − ng is not injective. Hence, mf = ng,
a contradiction. Thus, for every non-zero element x of G, the subgroup Rx
has to be of rank 2; hence, the subgroup 〈x〉 is not injective invariant.

Next, we present an example of strictly invariant submodule which is
not strongly invariant.

Example 4. Let R be a ring such that there exist non-isomorphic simple
modules S1, S2 and T such that

1. the endomorphism rings of these modules are isomorphic to F2;
2. there are non-splitting exact sequences

0 → S1 → K → T → 0, and 0 → S2 → K → T → 0.
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Using the pullback diagram

0

��

0

��
S2

��

S2

��
0 �� S1

�� M
ψ ��

ϕ

��

L ��

��

0

0 �� S1
�� K ��

��

T ��

��

0

0 0

we construct a module M such that the set of its submodules is {0, S1, S2, S1⊕
S2,M} and M/S1 ⊕ S2

∼= T (this module is also used in [20, Lemma 2]).
Let ϕ : M → K be a non-zero homomorphism. Then ϕ(S2) = 0. If

ϕ(S1) = 0 then ϕ induces a non-zero homomorphism T → M , which is
impossible. We obtain that ϕ(S1) �= 0, and it follows that ϕ|S1 is the inclusion
map. Therefore, if ϕ1, ϕ2 : M → K are two non-zero homomorphisms then
the restrictions of these homomorphisms to S1 ⊕ S2 coincides. It follows that
(ϕ1 − ϕ2)(S1 ⊕ S2) = 0; hence, ϕ1 = ϕ2. This way Hom(M,K) = {0, ϕ} and
in the same way we obtain Hom(M,L) = {0, ψ}.

It is easy to see that if ρ : M → K × L is the homomorphism in-
duced by ϕ and ψ then ρ is a monomorphism. Since Hom(M,K × L) ∼=
Hom(M,K) × Hom(M,L), it follows that ρ is the only monomorphism from
M into K ×L. We conclude that ρ(M) is strictly invariant. Since there exists
an epimorphism M→K, and K × 0 is not contained in ρ(M), it follows that
ρ(M) is not strongly invariant.

For reader’s convenience, we recall the concrete example described in
[19, Example 3.1].

Let R =

⎛
⎝

F2 F2 F2

0 F2 0
0 0 F2

⎞
⎠. Then the right R-module

M =

⎛
⎝

F2 F2 F2

0 0 0
0 0 0

⎞
⎠ satisfies the required conditions: the simple sub-

modules are S1 =

⎛
⎝

0 F2 0
0 0 0
0 0 0

⎞
⎠ and S2 =

⎛
⎝

0 0 F2

0 0 0
0 0 0

⎞
⎠ , and it is easy

to see that the simple R-module M/(S1 ⊕ S2) is not isomorphic to S1 or S2.
In what follows, we study the basic properties of strictly invariant sub-

modules. First, observe that strict invariance is not a transitive property.
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Example 5. To show this, we observe that if S and T are non-isomorphic
simple modules, 0 → S → K → T → 0 is a non-splitting exact sequence and,
if M = K ⊕ S then S ⊕ 0 is strictly invariant in K ⊕ 0, K ⊕ 0 is strictly
invariant in M , but S ⊕ 0 is not strictly invariant in M .

For the case of Abelian groups, consider G = H ⊕ L = Z2∞ ⊕ Z2 with
K = Z(2) < H. Then K = S(H), the socle, is strongly and so strictly
invariant in H. It is not strictly invariant in G since the composition of the
isomorphism K ∼= L with the injection ιL : L −→ G does not map K into
K. Finally, H is a fully invariant direct summand—as the divisible part of
G—and so strongly and strictly invariant in G.

Next, if H ≤ L ≤ M and H is strictly invariant in M then L might
not be strictly invariant in M .

Example 6. It suffices to take K as in Example 5, M = K ⊕ K, H = S ⊕ S
and K = K ⊕ S.

Proposition 7. Let M be a module and let H ≤ K be submodules of M . If H
is strictly invariant in M and K/H is strongly invariant in M/H, then K is
strictly invariant in M .

Proof. Let f : K −→ M be an injective homomorphism. Since H is strictly
invariant in M , the map f̃ : K/H −→ M/H, f̃(k + H) = f(k) + H is
well defined and a homomorphism. Since K/H is strongly invariant in G/H,
f̃(K/H) ⊆ K/H which shows that f(K) ⊆ K. �

Notice that we cannot weaken the hypothesis “K/H is strongly invariant
in M/H” only to strictly invariant, as the example below shows.

If H ≤ K ≤ M and K is strictly invariant in M then K/H might not
be strictly invariant in M/H .

Example 8. For instance, if M = H ⊕ K = Z2 ⊕ Z4, the socle H + 2K is
strictly invariant in M but (H + 2K)/2K ∼= Z2 is not strictly invariant in
M/2K ∼= Z2 ⊕ Z2.

Further, the intersection of a family of strictly invariant submodules is
not (in general) strictly invariant.

Example 9. To prove this, we use the same module as in Example 5. It is
easy to see that the socle S⊕S of M and K are strictly invariant submodules
of M , but S ⊕ 0 = (S ⊕ S) ∩ K is not strictly invariant.

For the case of Abelian groups we can consider G = D⊕R, where D is a
divisible p-group and R is a reduced p-group. Then D and G[p] = D[p]⊕R[p]
are strongly invariant subgroups; however, the subgroup D ∩ G[p] = D[p]
is not strictly invariant in G (this covers the missing example in [6], where
an example of two strongly invariant subgroups with not strongly invariant
intersection was not given).

Intersections of strictly invariant subgroups may not be strictly invariant
also in torsion-free groups. To see this we use Example 2 (p. 107, [7]). We
recall some details about this example.



  103 Page 6 of 14 S. Breaz, G. Călugăreanu and A. Chekhlov MJOM

Let E1, E2, E3 and E4 be torsion-free groups of rank 1, let p, q, p2
and p3 be distinct primes, let the types of the groups E1, E2, and E3 be
pairwise incomparable, and let E1

∼= E4, p2E2 = E2, p3E3 = E3, pE1 �= E1,
pE2 �= E2, pE3 �= E3, p2E1 �= E1, p2E3 �= E3, p3E1 �= E1, p3E2 �= E2,
qE1 �= E1, qE2 �= E2, qE3 �= E3.

The group G is constructed as subgroup of a divisible torsion-free group,
using a vector space over the field of rational numbers. Write A =
〈E1, E2, p

−∞(e1 + e2)〉, B = 〈E3, E4, q
−∞(e3 + e4)〉 and G = A ⊕ B, where

0 �= ei ∈ Ei, i ∈ {1, 2, 3, 4} and p−∞a is the infinite set p−1a, p−2a,... If
t(Ei) denotes the type of Ei, it is shown that A and E1 ⊕E4 = G(t(E1)) are
strongly invariant in G but E1 = A∩G(t(E1)) ∼= E4 is not strictly invariant.

In the sequel, we prove some basic properties of strictly invariant sub-
modules. We denote by T (M) the set of all strictly invariant submodules of
M .

Proposition 10. Let M be an R-module. If {Si}i∈I is a family of submodules
from T (M) then

∑
i∈I Si ∈ T (M). Consequently, (T (M),⊆) is a complete

lattice.

Proof. Let {Si}i∈I be a family of strictly invariant submodules of a module
M and let f :

∑
i∈I Si −→ M be an injective homomorphism. Denoting by ιi :

Si −→
∑

i∈I Si (i ∈ I) the inclusions, the compositions f ◦ ιi : Si −→ G are
also injective. By hypothesis, (f ◦ ιi)(Si) ⊆ Si and so f(

∑
i∈I Si) ⊆

∑
i∈I Si,

as required.
The existence of inf’s now follows because an ordered set A is a complete

lattice if and only if for every subset B ⊆ A, there exists supB . �

Using Example 9, we observe that in general the infimum of a family
{Si}i∈I from T (M) is not the intersection of these submodules, that is, the
complete lattice (T (M),⊆) above is not a complete sublattice of the lattice
of all submodules of M .

Let M be an R-module. If K ≤ M , we denote by MM (K) the sum
of all submodules f(K), where f ranges all monomorphisms f : K → M .
We denote by S(M) the lattice of all submodules of M and MM (S(M)) =
{MM (K) : K ≤ M}.

Proposition 11. Let M be an R-module. Then MM (−) : S(M) → S(M) is
an idempotent decreasing operator, and MM (S(M)) = T (M).

Proof. If f : MM (K) → M is an injective homomorphism, then for every
monomorphism g : K → M , since g(K) ≤ MM (K) ≤ M , we can consider
f ◦ g : K → M , which is also a monomorphism. Then (f ◦ g)(K) ≤ MM (K),
and we conclude that f(MM (K)) ≤ MM (K). Finally, for every submodule
K of M we have MM (K) ∈ T (M) and the equality follows from the fact
that K ∈ T (M) clearly implies MM (K) = K. �

Corollary 12. Let M be an R-module and K ≤ M .
1. If f : K → M is a homomorphism and f(K) � MM (K) then for every

α : K → MM (K) there exists x ∈ K such that f(x) = α(x).
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2. f(K) ∩ MM (K) �= 0 for every 0 �= f ∈ Hom (K,M).
3. If H ≤ M is a submodule of M such that H ∩ MM (K) = 0, then

Hom (K,H) = 0.

Proof. 1. The image of f − α is not contained in MM (K). Then f − α is not
a monomorphism.

For 2 and 3, we apply 1 taking for α the inclusion map. �

Corollary 13. Let H be a strictly invariant submodule of M . Then
1. f(H) ⊆ H for every non-zero homomorphism f : H → M such that

f(f(H) ∩ H) = 0.
2. f(H) ∩ H �= 0 for every 0 �= f ∈ Hom (H,M).
3. Hom(H,L) = 0 for every L ≤ M such that L ∩ H = 0.

Proof. 1. Suppose there exists f : H → M , f �= 0, such that f(f(H)∩H) = 0
and consider f : H → M , f(h) = h+f(h) for every h ∈ H. If h+f(h) = 0 then
h ∈ f(H)∩H; hence, f(h) = 0 and so h = 0. Therefore, f is a monomorphism
and f(H) ⊆ H by strictly invariance.

The statements 2 and 3 are consequences of 1. �

Corollary 14. A direct summand is strictly invariant if and only if it is fully
invariant.

For any pair A, N of modules, denote by SA(N) =
∑

f∈Hom(N,A) f(N)
the N -socle of A, a submodule of A.

Proposition 15. Let M = A ⊕ B be an R-module. If K ≤ A and L ≤ B are
submodules such that K ⊕ L is strictly invariant in M then

1. K is strictly invariant in A.
2. L is strictly invariant in B.
3. SA(L) ≤ K and SB(K) ≤ L.

Proof. Let f : K → A be a monomorphism. Then f = f⊕ιL : K⊕L → A⊕B
is a monomorphism (ιL : L → B denotes the inclusion map) and, since K ⊕L
is strictly invariant, the inclusion f(K) ≤ K follows.

Any homomorphism f : L → A induces a homomorphism f : K ⊕ L →
A ⊕ B, f(k + �) = k + f(�) + � for every k ∈ K, � ∈ L. If k + f(�) + � = 0
then � = 0 and we also obtain k = 0. Therefore, f is injective, and it is easy
to see that f(�) ∈ K for every � ∈ L. �

In the following result, for any (finite or infinite) cardinal k, M (k) de-
notes the direct sum of k copies of M .

Corollary 16. Let H be a strictly invariant submodule of M . Then the fol-
lowing conditions are equivalent:

1. H2 is a strictly invariant submodule of M2.
2. H(k) is a strictly invariant submodule of M (k) for every cardinal
number k.
3. H(k) is a strongly invariant submodule of M (k) for every cardinal
number k.
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4. H is a strongly invariant submodule of M .

Proof. (1) ⇒ (4) Follows from Proposition 15.
(4) ⇒ (3) Since H is strongly invariant in M , by [6], H(k) is strongly
invariant in M (k) for any finite k. For any infinite cardinal k, since every
element of M (k) belongs to a direct summand isomorphic to M (n) for
some finite n, H(k) is also strongly invariant in M (k).
(3) ⇒ (2) Obvious.
(2) ⇒ (1) Obvious. �

Proposition 17. Let M = A ⊕ B be a module such that the additive group A
has no elements of order 2. If a submodule H ≤ M is strictly invariant then
there exist K ≤ A, L ≤ B such that

1. H = K ⊕ L.
2. K is strictly invariant in A and L is strictly invariant in B.
3. SA(L) ≤ K and SB(K) ≤ L.

Proof. By Proposition 15, it suffices to prove that H = K ⊕ L with K ≤ A
and L ≤ B.

Let πA : M → A and πB : M → B be the projections and suppose H is
strictly invariant in M . If π ∈ {πA, πB} and π(H) � H, there is 0 �= h ∈ H
such that π(h) /∈ H. Therefore, (π+1)(h) /∈ H and so the restriction (π+1)|H
is not injective (otherwise H is not strictly invariant). Hence, ker ((π+1)|H) �=
0 and if π(x) = −x for 0 �= x ∈ H then π(x) = −π(x), i.e. 2π(x) = 0, a
contradiction.

It follows that πA(H) ≤ H, and similarly πB(H) ≤ H. Therefore, H =
M ⊕ N , where M = πA(H) ≤ A and N = πB(H) ≤ B. �

Remark 18. The previous proposition is not valid if both A and B have
elements of order 2. This follows from the construction used in Example 4.

3. Strictly Invariant Subgroups

As mentioned in Sect. 1 for fairly large classes of groups, we show that our
conjecture, “strictly invariant subgroups of Abelian groups are strongly in-
variant”, holds.

We start the investigation of strictly invariant subgroups of Abelian
groups with a consequence of Proposition 15 (in this section, unless otherwise
stated, “group” means “Abelian group”). By P we denote the set of all prime
numbers and for an Abelian group G and a prime p, Gp = {x ∈ G : ∃n ∈
N, pnx = 0} denotes the p -component of G. For an element x ∈ G, the
p-height of x, denoted hp(x), is the largest integer n such that x ∈ pnH. If
x ∈ pnH for all positive integers n then we say that x is of infinite height.

If G is an Abelian group, we denote by D(G) its divisible part. Moreover,
if p is a prime then Dp(G) denotes the p-component of D(G).
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Corollary 19. Let H be a strictly invariant subgroup of a group G. Then

1. D(H) = D(G) whenever D(H) is not a torsion group.
2. Dp(H) = Dp(G) whenever p is a prime and Dp(H) �= 0.

Proof. We chose a decomposition H = H0⊕D(H). Using [14, Theorem 21.2],
we can find a direct decomposition G = K ⊕ D(H) such that H0 ≤ K. By
Proposition 15, SK(D(H)) ≤ H0. Since H0 is reduced and every image of a
divisible group is divisible, it follows that SK(D(H)) = 0.

1. If D(H) is not torsion then it has a direct summand isomorphic to Q,
hence for every non-reduced group L we have non-zero homomorphisms
D(H) → L. It follows that K is reduced, hence D(H) = D(G).

2. If Dp(H) �= 0 then D(H) has a direct summand isomorphic to Z(p∞).
From SK(D(H)) = 0 it follows that Dp(K) = 0, hence Dp(H) = Dp(G).

�

Theorem 20. Let G be a group and let H be a p-subgroup of G. Then H is
strictly invariant in G if and only if it satisfies one of the following conditions:

1. H = Gp.
2. there exists a non-negative integer n such that H = G[pn].
3. there exists a non-negative integer n such that H = G[pn] + Dp(G).

Proof. Suppose H is strictly invariant. Since H is a p-group, we can suppose
that G is also a p-group.

As in the proof of Corollary 19, we can find direct decompositions G =
K ⊕ D(H) and H = H0 ⊕ D(H) with H0 ≤ K. Using Proposition 15, it
follows that H0 is strictly invariant in K. Therefore, we can assume w.l.o.g.
that H is reduced.

Case I: H is not bounded. We will prove that H = G. Let us fix an
element y ∈ G. We can assume w.l.o.g that there exists u, the smallest
positive integer such that puy ∈ H.

If puy = 0, we chose 〈x〉 a direct summand of H such that ord(x) ≥
ord(y). If H = 〈x〉⊕L then 〈x+y〉+L = 〈x+y〉⊕L and ord(x+y) = ord(x).
It follows that 〈x+y〉+L ∼= H, and we obtain that x+y ∈ H; hence, y ∈ H.

Suppose that puy �= 0 and we can find non-zero elements in 〈puy〉 whose
heights computed in H are infinite. Let ⊕n>0Bn be a basic p-subgroup of
H, where for every n the group Bn is isomorphic to a direct sum of cyclic
groups of order pn (see [14, Theorem 32.4]). Since H has an unbounded basic
subgroup, there exists n > 0 such that pn > ord(y) and Bn �= 0. Since all
non-zero elements of Bn are of finite height, it follows that 〈puy〉 ∩ Bn = 0;
hence, we can find a Bn-high subgroup C ≤ H such that 〈puy〉 ≤ C. By
the proof of [14, Proposition 27.1] it follows that H = B ⊕ C. Therefore,
there exists a decomposition H = 〈x〉 ⊕ L such that ord(x) ≥ ord(y) and
puy ∈ L. Write H = 〈x〉 ⊕ L, and consider the homomorphism f : H → G,
f(mx + �) = mx + my + �, for all m ∈ Z and � ∈ L. If kx + ky + � = 0,
it follows that ky ∈ H; hence, pu divides k. Therefore, ky + � ∈ L; hence,
kx = 0. Since ord(x) ≥ ord(y), we obtain ky = 0, and it follows that � = 0.
Finally, f is a monomorphism and it is easy to conclude that y ∈ H.
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If puy �= 0 and all non-zero elements of 〈puy〉 are of finite heights (com-
puted in H) then by [14, Theorem 33.4], there exists a basic subgroup B of H
such that 〈puy〉 ≤ B. Since B is unbounded, we can find a cyclic direct sum-
mand 〈x〉 of B; hence, of G, such that ord(x) ≥ ord(y), and 〈x〉 ∩ 〈puy〉 = 0.
Then there exists a decomposition H = 〈x〉 ⊕ L such that puy ∈ L, and we
can repeat the proof used in the previous case to conclude that y ∈ H.

Case II: H is bounded. If pn = expH then clearly H ≤ G[pn]. Assume
that H < G[pn] and let x ∈ H be such that ord(x) = pn. Since G[pn] is
generated by the elements of order pn in G, there exists y ∈ G[pn] such that
ord(y) = pn and y /∈ H. By [14, Theorem 27.1], there exist K,L ≤ G such that
G[pn] = 〈x〉⊕K = 〈y〉⊕L. By Dedekind’s law, H = H∩G[pn] = 〈x〉⊕(H∩K).
Since L ∼= K, there exists L1 ≤ L such that L1

∼= H ∩ K and it follows that
〈y〉⊕L1 and 〈x〉⊕ (H ∩K) = H are isomorphic. Since y /∈ H this contradicts
the fact that H is strictly invariant in G. Thus, H = G[pn], as desired.

As for the converse, it is enough to observe that if H verifies any of the
conditions 1–3 then it is strongly invariant. �

Remark 21. For the case p �= 2, the above result can also be proved using
Proposition 17.

Namely, if H has an unbounded basic subgroup, we write G = Dp(G)⊕R
with reduced R and H = Dp(G)⊕K with K ≤ R. Let k be a positive integer.
There exists a cyclic direct summand C ∼= Z(pn) of R with n ≥ k. Applying
Proposition 17 for the direct decomposition G = (Dp(G) ⊕ C) ⊕ L, it follows
that SL(Dp(G) ⊕ C) = SL(C) ≤ H. It is easy to see that G[pn] ≤ H; hence,
G[pk] ≤ H for all k and the proof is complete.

From now on, starting with the next corollary, the results are all in the
line of the conjecture, stating that every strictly invariant subgroup of an
Abelian group is strongly invariant.

First, we are able to show that

Corollary 22. Every torsion strictly invariant subgroup of any group is
strongly invariant.

Proof. It is proved in [6] that a torsion subgroup is strongly invariant if and
only if all its primary components are strongly invariant. Using Theorem
20, the conclusion now follows. Indeed, all subgroups from the theorem, Gp,
G[pn] and G[pn] + Dp(G) are strongly invariant. �

In the following proposition, rp(K) denotes the p-rank of K. We will
prove that if the divisible part of a group is large enough, then all strictly
invariant subgroups are strongly invariant.

Proposition 23. Let G = D(G) ⊕ R be a group and rp(D(G)) ≥ max{rp(R),
ℵ0} for every p ∈ P ∪ {0}. Then every strictly invariant subgroup of G is
strongly invariant.

Proof. Let H be a strictly invariant subgroup of G. Then H = D(G)⊕K (we
use Corollary 19) and we can suppose that K ≤ R. It suffices to prove that K
is strongly invariant in R. To do this, let us fix a homomorphism f : K → R.
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By the rank hypotheses, it follows that K can be embedded in D(G)
and D(G) ∼= D(G)⊕D(G). Therefore, there exists a monomorphism α : H →
D(G). We consider the homomorphism g : H → G, defined by g(d + k) =
α(d + k) + f(k) for all d ∈ D(G) and k ∈ K. It is easy to see that g is a
monomorphism. Therefore, f(k) ∈ K for all k ∈ K and the proof is complete.

�
The following results refer to torsion-free subgroups or torsion-free

groups.

Proposition 24. Let H be a strictly invariant torsion-free subgroup of a group
G. If H is of finite rank then it is strongly invariant.

Proof. Let f : H → G be a homomorphism. We claim that there exists a
positive integer k such that for all x ∈ H we have f(x) �= kx.

By contradiction, suppose that the above claim fails. Then for every
positive integer k there exists xk ∈ H such that f(xk) = kf(xk). We will
prove by induction on the cardinality of S that every non-empty finite subset
S ⊆ {xk : k ∈ N

�} is linearly independent. Since for |S| = 1 the prop-
erty is obvious, suppose that all non-empty subsets S ⊆ {xk : k ∈ N

�} of
cardinality at most n are linearly independent. Let {xk1 , . . . , xkn+1} be a sub-
set of cardinality n + 1, and suppose that there exist integers α1, . . . , αn+1

such that
∑n+1

i=1 αixki
= 0. Applying f we obtain

∑n+1
i=1 kiαixki

= 0, and
so

∑n
i=1(ki − kn+1)αixki

= 0. By the induction hypothesis, it follows that
(ki − kn+1)αi = 0 for all i ∈ {1, . . . , n}, and now it is easy to conclude that
{xk1 , . . . , xkn+1} is linearly independent. Hence, the rank of H is infinite, a
contradiction.

Let k be a positive integer such that for all x ∈ H we have f(x) �= kx.
Then the map g : H → G, g(x) = kx + f(x) is a monomorphism. Using the
strictly invariance of H, it follows that g(H) ⊆ H; hence, f(H) ⊆ H, and
the proof is complete. �
Proposition 25. If G is torsion free and all rank 2 pure subgroups of G are
indecomposable, then every strictly invariant subgroup of G is strongly in-
variant.

Proof. Suppose there exists a non-injective homomorphism f : H → G. Then
there is a non-zero element x ∈ H such that f(x) = x. Indeed, let f ∈
Hom(H,G) and f(H) � H. If g is the embedding of H in G then (f −g)H �

H, so there exists a non-zero x ∈ H such that f(x) = x . Take y a non-zero
element from the kernel of f , and let L be the pure subgroup generated by x
and y. For every non-zero element z ∈ L, we have a relation kz = mx+ny with
k �= 0. Then kf(z) = mx, and so kf2(z) = mx = kf(z). From the torsion-free
hypothesis, we can view f as an idempotent endomorphism of L whose image
has rank 1. It follows that L is not indecomposable, a contradiction. �

Examples of such groups include the purely indecomposable groups de-
termined by Griffith in the reduced case (see Theorem 88.5 [15]) and in
particular the so-called cohesive groups considered by Dubois (see Exercise
17, § 88, [15]).
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Next, it is easy to see that the only strictly invariant subgroups of rank
1 torsion-free groups are the trivial ones (i.e. 0 or the whole group). This is
clear for Z and follows from Corollary 19 for Q. By Theorem 20, this also
holds for Z(p)N.

Proposition 26. A subgroup of a completely decomposable group is strictly
invariant if and only if it is a fully invariant direct summand.

Proof. Let G = ⊕i∈IGi be a completely decomposable group, where all
groups Gi are of rank 1. If H is a strictly invariant subgroup of G, then
using Proposition 17 it follows that for all i ∈ I we have πi(H) ≤ H, where
πi : G → Gi denotes the projection. Then H = ⊕i∈I(H ∩ Gi), and, using
Proposition 15, H ∩ Gi is a strictly invariant subgroup of Gi for every i ∈ I.
By the preceding paragraph, H = ⊕j∈JGj , where J is the set of all j ∈ I
such that H ∩ Gj = Gj . The conclusion is now a consequence of Corollary
14. �

Corollary 27. Let G be a separable torsion-free group and H a non-zero
strictly invariant subgroup. Then H is strongly invariant.

Proof. Let f : H −→ G be a homomorphism. If x ∈ H then there exists
a finite rank completely decomposable G1 ⊕ · · · ⊕ Gn direct summand of
G such that x, f(x) ∈ G1 ⊕ · · · ⊕ Gn. Using Proposition 17, it follows that
K = H ∩ (G1 ⊕ · · · ⊕ Gn) is a strictly invariant subgroup of G1 ⊕ · · · ⊕ Gn.
Then by Proposition 26, K is strongly invariant, whence f(x) ∈ H. �

Finally, we show that the groups, all whose subgroups are strictly in-
variant, coincide with those all whose subgroups are strongly invariant.

Theorem 28. The only groups in which every subgroup is strictly invariant
are the direct sums of cocyclic groups, at most one, for each prime number.

Proof. The proof in [6] holds verbatim with obvious changes for torsion
groups. Indeed, a subgroup H of a torsion group G is strictly invariant if
and only if the p-component Hp is strictly invariant in Gp for each prime p,
in a p-group G every subgroup is strictly invariant if and only if G is cocyclic,
and in a torsion group every subgroup is strictly invariant if and only if each
p-component has this property.

Further, there are no torsion-free nor (genuine) mixed groups with only
strictly invariant subgroups. Indeed, using the multiplication with 1

p for a
suitable prime p, it is easy to see that rank 1 torsion-free groups are strictly
invariant simple (i.e. have only trivial strictly invariant subgroups). There-
fore, no torsion-free groups have only strictly invariant subgroups.

As for (genuine) mixed groups G, the torsion part T (G) must be as in the
strongly invariant case and so is a direct summand (see [6]). If G = T (G)⊕F ,
we continue with F as above. �
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