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1. Introduction. Introduced in 1933 by F. Levi (see [6]) for groups, the role of the
fully invariant subobjects in several algebra categories (and especially for groups) is
well-known. Suppose H ≤ K are subgroups of a group G and let f be an endomorphism
of G. If H is fully invariant in G then, by restriction, f induces an endomorphism of H
and more, f naturally induces an endomorphism f of K/H (defined by f̃ (kH) = f (k)H).
Now, if we start with a homomorphism f : K −→ G, in order to induce (also by
restriction) an endomorphism of H and more, to naturally induce (i.e., f̃ (kH) = f (k)H)
a homomorphism f : K/H −→ G/H, a stronger property for H is needed: this property
is defined and studied in the sequel.

The following properties are also well-known:
FI1) Fully invariance is transitive.
FI2) It is possible to have H ≤ K ≤ G with H fully invariant subgroup of G but

not a fully invariant subgroup of K [intermediate subgroup property].
FI3) The class of all the fully invariant subgroups of a group G forms a complete

sublattice of the subgroup lattice of G.
FI4) The class is commutator closed: if H, K are fully invariant subgroups of G,

so is the commutator [H, K ].
FI5) If H ≤ K ≤ G with H fully invariant in G and K/H fully invariant in G/H,

then K is fully invariant in G [quotient transitive].
FI6) If H is fully invariant in G, then in any finite direct power of Gn, the

corresponding direct power Hn is fully invariant.
Also well-known and largely used, as a consequence of FI4, the derived (or

commutator) subgroup G′ = [G, G] and all terms of the lower central series as well
as the derived series are fully invariant.

A subgroup N of a group G will be called strongly invariant in G, if f (N) ≤ N
for every group homomorphism f : N −→ G. As first examples, the center of the
quaternion group Q8 is a strongly invariant subgroup of Q8, but any 4-elements
subgroup in Q8 is not strongly invariant (see diagram on the fourth page of this article).
As an Abelian group example consider the rational group Qp = {m

n ∈ Q| gcd(n; p) = 1}.
The multiplication with 1

p shows that pQp – which is fully invariant in Qp - is not strongly
invariant in Qp.
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For any endomorphism of G, just taking the restriction to the subgroup N, shows
that every strongly invariant subgroup is fully invariant. Therefore, we deal only with
normal subgroups.

As the previous example shows, the converse fails. The derived subgroup of the
dihedral group D16 is another example: it is fully invariant but not strongly invariant.

For any subgroup N there are some trivial group morphisms which agree with
our definition: for the trivial homomorphism N −→ G obviously {1} ≤ N and for the
inclusion iN : N −→ G, so is N ≤ N. Moreover, {1} and G are clearly strongly invariant
in G.

Since this is a proper subclass of the class of all fully invariant subgroups of a
group, our first concern is what happens with the properties FI1-6 listed above. There
are plenty of differences (these statements may be found on the Internet-SubWiki [10]
- under an alternative name: homomorph-containing subgroup):

SI1) Strongly invariance is not transitive.
SI2) If H ≤ K ≤ G with H a strongly invariant subgroup of G then H is also a

strongly invariant subgroup of K .
SI3) The class of all the strongly invariant subgroups of a group is closed under

arbitrary joins, but not under intersections.
SI4) The class of all the strongly invariant subgroups of a group is not commutator

closed.
SI5) If H ≤ K ≤ G with H strongly invariant in G and K/H strongly invariant in

G/H, then K is strongly invariant in G.
SI6) If H is strongly invariant in G, then in any finite direct power of Gn, the

corresponding direct power Hn is strongly invariant.
To this list we can add the following properties
SI7) If H ≤ K ≤ G and H is strongly invariant in a group G, then K might not be

strongly invariant in G (take the quaternion group Q8),
SI8) If H ≤ K ≤ G and K is strongly invariant in a group G, then H might not be

strongly invariant in G (in Z2 ⊕ Z4 take the socle and a subsocle),
SI9) If H ≤ K ≤ G and K is strongly invariant in a group G, then K/H might

not be strongly invariant in G/H (again in G = H ⊕ K = Z2 ⊕ Z4, the socle H + 2K
is strongly invariant in G but (H + 2K)/2K = Z2 is not strongly invariant in G/2K =
Z2 ⊕ Z2 (see diagram on the fourth page of this article).

We add here an important property

PROPOSITION 1. Fully invariant direct factors are strongly invariant.

Proof. Let H be a fully invariant direct factor of G, that is, G = HK , H ∩ K = {1},
and let f : H −→ G be any homomorphism. By hypothesis the composition f ◦ pH :
G −→ G (here pH denotes the projection), maps H into H. Hence so does f . �

Hence

{fully inv. direct factors} ⊆ {strongly inv.} ⊆ {fully inv.}

In this paper we study the strongly invariant subgroups of Abelian groups and
determine two extreme classes of Abelian groups related to this notion. Finally, some
open questions are stated.
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For notions, notations and results in the noncommutative case we refer to [8]
and [9], and for those in the Abelian case, to [2] and [3]. To simplify the writing, we
abbreviate strongly invariant by s-i.

2. Preliminary results and examples. The following characterisation (ii) will be
useful

LEMMA 2. The following conditions are equivalent

(i) N is s-i in G,
(ii) for any subgroup H of G, H ≤ N whenever a subgroup epimorphism N −→ H

exists,
(iii) for every group morphism f : N −→ G the composition with the projection pN :

G −→ G/N is the trivial homomorphism.

COROLLARY 3. Let N be a proper subgroup of a group G and x ∈ G − N. If there
exists an epimorphism N −→ 〈x〉 then N is not s-i.

We already know – Proposition 1 – that fully invariant direct factors are s-i and,
both fully invariant and direct factor are, separately transitive properties. That’s why
we can combine these properties

LEMMA 4. If T ≤ H ≤ G with T fully invariant direct factor of H and H s-i in G
then T is s-i in G.

Proof. Let f : T −→ G be a group morphism and H = T × L. Since H is s-i in
G, the composition f ◦ pH

T : H −→ G maps H into H. Thus, as endomorphism of H,
(f ◦ pH

T )(T) ≤ T (because T is fully invariant) and so f (T) ≤ T . �

Notice that this result also shows that the class of all s-i subgroups, is closed under
fully invariant direct factors.

The second possible combination would be
If T ≤ H ≤ G with T s-i in H and H fully invariant direct factor in G then T is s-i

in G.
However this fails: to see this consider G = H ⊕ L = Z(2∞) ⊕ Z(2) with K =

Z(2) < H. Then K = S(H), the socle, is s-i in H. On the contrary, it is not s-i in
G, since the composition of the isomorphism K ∼= L with the injection iL : L −→ G
does not map K into K . Finally, since Hom(H, L) = Hom(Z(2∞), Z(2)) = 0, for any

homomorphism H
f−→ G, the projection on the second factor L = Z(2), is trivial.

Hence f (H) ≤ H and so H is s-i in G.
This Abelian example can be also used to prove SI1.
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2.1. Diagram examples. In the quaternion group Q8, the center is s-i but none of
the (cyclic) subgroups A, B or C is.

Q

Z(Q

A B C

8

8
)

In G = H ⊕ K = Z2 ⊕ Z4 the subgroup 2K is not s-i but H + 2K is.

H

K

D

D’

G

0

2K

H+(2K)

From the already mentioned Internet reference [10], here are
some examples of s-i subgroups: the normal Sylow subgroups, the normal Hall

subgroups, subgroups defined as the subgroup generated by elements of specific orders
(for Abelian groups these are denoted G[n]), the omega subgroups (i.e., �j(G) = {x ∈
G|xpj = 1}) of a group of prime power order and the perfect core of a group, and,

some non-examples: the derived subgroup (two element subgroup) of M16 (i.e.,〈
a, x|a8 = x2 = 1, xax = a5

〉
- see diagram on the eleventh page of this article), the

normal Klein four-subgroup of the symmetric group S4, and S2 in S3. The only
Abelian nonexample given is Z2 in V4 = Z2 ⊕ Z2 (the Klein group).
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We may also add some fully invariant nonexamples (which clearly are also s-i
nonexamples [10]): A3 in A4, or A5, or S4; A4 in A5; S2 in S3 or in S4.

Remarks.
(1) It is well-known that N is normal and maximal in G whenever |G : N| = 2.

However, there are subgroups of index two which are not s-i: take A, B or C in
Q8 (see previous diagram).

(2) Let A be any group and B a subgroup of C with A ∼= B. Since the endomorphism

A × C
pA−→ A

∼=−→ B
∼=−→ {1} × B −→ A × C does not map A into A, A is not

fully invariant (and so nor s-i) in A × C. Hence there are not (nontrivial) groups
which are fully invariant in every containing group. Same for s-i.

3. S-i subgroups of Abelian groups.

3.1. Preliminaries. For easy reference, we first mention two results (the second is
SI3)

LEMMA 5. In any group G, for any positive integer n, the subgroup G[n] is s-i in G.

However, in a p-group, any proper subsocle is not s-i. Indeed, for a proper subsocle
an epimorphism onto an ‘outside’ direct summand can be constructed.

LEMMA 6. Sums of s-i subgroups are also s-i.

Further, since s-i subgroups are fully invariant we adapt a well-known result
(Lemma 9.3, [2]) as follows

PROPOSITION 7. Let N be a s-i subgroup of a group G = H ⊕ K. Then N = (N ∩
H) ⊕ (N ∩ K) and N ∩ H, N ∩ K are s-i in H and K respectively. Conversely, if H1 and
K1 are s-i subgroups of H and K respectively, then H1 ⊕ K1 is s-i in G if and only if for
every δ : H1 −→ K, δ(H1) ≤ K1 and for every γ : K1 −→ H, γ (K1) ≤ H1.

Proof. In order to check that N ∩ H is strongly invariant in H, let f : N ∩ H −→
H be a group morphism. This can be extended to N with zero on N ∩ K and so
gives a group morphism f : N −→ G. Since N is strongly invariant in G, f (N) ≤ N
and so f (N ∩ H) ≤ N. Hence f (N ∩ H) ≤ N ∩ H. For the converse, just notice that

every morphism f : H1 ⊕ K1 −→ G is determined by a 2 × 2 matrix [
α γ

δ β
] with α :

H1 −→ H, γ : K1 −→ H, δ : H1 −→ K and β : K1 −→ K and by hypothesis α(H1) ≤
H1 and β(K1) ≤ K1. Hence f (H1 ⊕ K1) ≤ H1 ⊕ K1 if and only if for every δ : H1 −→ K ,
δ(H1) ≤ K1 and for every γ : K1 −→ H, γ (K1) ≤ H1. �

These necessary and sufficient conditions can be simplified using the following

Definition. For any pair of groups G, H, the G-socle of H is SG(H) = ∑{imf |f :
G −→ H}.

Using it, H1 ⊕ K1 is s-i in G if and only if SH1 (K) ≤ K1 and SK1 (H) ≤ H1.
Therefore in order to find the s-i subgroups of a direct sum we need to find the s-i

subgroups of the components, and after this, select among these accordingly.
As special cases, H1 ⊕ K1 is s-i in G if both H1, K1 are s-i in G (use Lemma 6), or

if Hom(H1, K) = 0 = Hom(K1, H).
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In [9], subgroups of a direct sum are classified as direct sums of subgroups and
diagonals. The previous Proposition shows that the diagonals are not s-i subgroups.

Using early results of Kaplansky [4], we can easily dispose of s-i subgroups of
divisible groups.

PROPOSITION 8.
(a) Torsion-free divisible groups are s-i simple.
(b) The only s-i subgroups of a divisible p-group G are the subgroups G[pn] for positive

integers n.
(c) The s-i subgroups of a divisible group G are G itself and the s-i subgroups of

its torsion part T(G), i.e. (see Proposition 11 below), direct sums of G[pn] for
different prime numbers p and positive integers n.

Actually, in [4] (exercises 66–69), similar results are proven for characteristic (and
fully invariant) submodules of modules over principal rings.

As for (b) notice that since divisible p-groups are direct sums of Z(p∞), and since
the functorial subgroup G[n] commutes with direct sums, the s-i subgroups of a divisible
p-group are direct sums of copies of the same Z(pn).

Using Proposition 7, we reduce the determination of s-i subgroups to reduced
groups

COROLLARY 9. Let G = D(G) ⊕ R be a decomposition of a group G with D(G) its
divisible part and R a reduced group. Every s-i subgroup N of G has the form N = D1 ⊕ R1

with D1 s-i subgroup in D(G), R1 s-i subgroup in R. Conversely, a direct sum D1 ⊕ R1

with D1 s-i subgroup in D(G), R1 s-i subgroup in R is a s-i subgroup in G if and only if
SD1 (R) ≤ R1 and SR1 (D(G)) ≤ D1.

Since s-i subgroups of divisible groups are listed above, and G-socles commute
with direct sums, we finally obtain

COROLLARY 10. A direct sum D1 ⊕ R1 �= G with D1 s-i subgroup in D(G), R1 s-i
subgroup in R is a s-i subgroup in G if and only if SR1 (Q) = 0 and, for every prime
number p, if D1 = ⊕

Z(pn), then SR1 (Z(p∞) ≤ Z(pn) and SD1 (R) ≤ R1.

3.2. Torsion groups. First of all, if A is a subgroup of a torsion group G, then
both A and G decompose into p-components.

PROPOSITION 11. Let A be a subgroup in a torsion group G. Then A is s-i in G if and
only if for every prime p, Ap is s-i in Gp.

Proof. For an arbitrary prime p, let Ap
δp−→ Gp be a group morphism. Since Ap is

a direct summand, we trivially extend this to an A −→ Gp and further to A −→ G,
so that δp(Ap) ≤ A. Since δp(Ap) ≤ Gp we also have δp(Ap) ≤ A ∩ Gp = Ap. Conversely,

let A
δ−→ G be a group morphism. Since we can decompose it into A = ⊕

p
Ap

⊕δp−→
⊕

p
Gp = G and by hypothesis, δp(Ap) ≤ Ap, finally, δ(A) ≤ A. �

This is similar to: fully invariant (or characteristic) subgroups of torsion groups
are direct sums of fully invariant (characteristic) p-subgroups.
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So the problem of determining the s-i subgroups in a torsion group reduces to
p-groups. Further, using Corollary 7, the study reduces to reduced p-groups.

While an elaborate theory was needed in order to characterise (Kaplansky) fully
invariant subgroups in special (fully transitive) classes of p-groups, determining the s-i
subgroups of a reduced p-group is far more easy.

PROPOSITION 12. The only (reduced) s-i subgroups of a reduced p-group are the
subgroups G[pn] for all positive integers n.

Proof. One way is just Lemma 5. Conversely, suppose a subgroup N of a p-group
G has not the form G[pn]. Then two cases are possible.

Case 1. N is bounded (effectively) by pn (i.e., maxa∈N(orda) = pn) but G[pn] � N.
In this case N is a direct sum of cyclic p-groups, bounded by pn and at least one
summand has order pn. More, there exists an element x ∈ G − N of order pn. Denote
C a direct summand of order pn and let N = C ⊕ (

⊕
i∈I

Ci). Define f : N −→ G by

the zero morphism
⊕
i∈I

Ci −→ G and the isomorphism C −→ 〈x〉 −→ G followed by

inclusion. Then x ∈ f (N) and so f (N) � N. Hence the subgroup N is not a s-i subgroup.
Case 2. N is unbounded. Using the early (fundamental) Kulikov theorems, we

infer that if a reduced p-group has elements of arbitrary high orders, then it also has
cyclic direct summands of arbitrary high orders. Let N be reduced and let x ∈ G − N.
In N we choose a direct summand C of order ≥ ord(x). More precisely, let |C| = pn

and let ord(x) = pm with n ≥ m. Since cyclic torsion groups are quasi-injective, we
can extend the isomorphism pn−mC −→ 〈x〉 −→ G followed by inclusion, to a group
morphism f : C −→ G which still has x in its image. Finally if N = C ⊕ E, the previous
morphism and the zero morphism E −→ G define a morphism f : N −→ G with
x ∈ f (N) = f (N). Again, the subgroup N is not a s-i. �

3.3. Torsion-free groups. Here too, using Corollary 9, we deal only with reduced
(torsion-free) groups. Since we already noticed that rank 1 torsion-free groups have no
(proper) s-i subgroups, in the sequel we consider only groups of rank 2 or more.

A slight generalisation in the negative direction is the following

PROPOSITION 13. Suppose A is a subgroup in a reduced torsion-free group G and
r(A) < r(G). If A contains a free direct summand F then A is not s-i.

Proof. Owing to the rank inequality, there is an element b ∈ G − A with A ∩ 〈b〉 = 0
and so 〈b〉 � A. Since we can construct epimorphisms F −→ Z =〈b〉, and extend them
to epimorphisms A −→ 〈b〉, the statement follows using Corollary 3. �

COROLLARY 14. Torsion-free groups (r(G) ≥ 2) have no cyclic s-i subgroups.

COROLLARY 15. Torsion-free groups (r(G) ≥ 2) have no rational s-i subgroups.

Since for Hom(A, Z) with torsion-free A, rk(Hom(A, Z)) ≥ n if and only if A has
a free direct summand of rank n (Lewis [7]), we cam rephrase the previous Proposition
as follows

PROPOSITION 16. In any reduced torsion-free group G, subgroups A with r(A) < r(G)
and Hom(A, Z) �= 0 are not s-i.
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Since in Proposition 26, very large classes of torsion-free groups will be found with
no proper s-i subgroups, in what follows, we point out some positive results.

First recall that, in a nonhomogeneous torsion-free group G, the subgroups G(t) are
pure and (proper) s-i. Hence, using Lemma 6, sums of subgroups G(t) are also s-i.

Since the subgroups G∗(t) = 〈{a ∈ G|t(a) > t}〉 are not always pure, we point out

PROPOSITION 17. If the subgroup G∗(t) is pure then it is s-i.

Proof. Let f : G∗(t) −→ G be a group morphism. Obviously we have
f (〈{a ∈ G|t(a) > t}〉) = 〈f ({a ∈ G|t(a) > t})〉 = 〈{f (a)|a ∈ G : t(a) > t}〉, so for
f (G∗(t)) ≤ G∗(t) we need tG(a) ≤ tG(f (a)). Generally we only have tG∗(t)(a) ≤ tG(f (a))
and tG∗(t)(a) ≤ tG(a). If G∗(t) is pure, the inequality required follows because
tG∗(t)(a) = tG(a). �
Example. If G is separable then for every type t, G∗(t) is pure in G and so also s-i.

A nice Conjecture would be: any torsion-free s-i subgroup is a sum of subgroups
G(t). A study of such subgroups is not known (so far) to the author.

3.4. Mixed groups. First of all, we can dispose of torsion subgroups in mixed
groups. Indeed

PROPOSITION 18. Let N be a subgroup of a mixed group G. Then T(N) is s-i subgroup
of T(G) if and only if T(N) is s-i subgroup of G.

Proof. One way is (SI2): if T(N) is s-i in G, it is also s-i in T(G). Conversely,
let f : T(N) −→ G be a group morphism. Clearly, f (T(N)) ≤ T(G) and so we can
consider the morphism f̃ : T(N) −→ T(G) obtained from f by codomain restriction.
By hypothesis f̃ maps T(N) into T(N). Hence so does f . �

COROLLARY 19. Let N be a torsion subgroup of a mixed group G. Then N is s-i in G
if and only if it is s-i in T(G).

COROLLARY 20. The torsion s-i subgroups in a mixed group are only the subgroups
G[n] for all positive integers n.

Further, according to Proposition 7, in a splitting mixed group, the determination
of the s-i subgroups reduces to the previous two subsections. Therefore infinite cyclic
subgroups are not s-i. Actually, this can be proved for arbitrary mixed groups.

LEMMA 21. No infinite cyclic subgroup is s-i in a (genuine) mixed group.

Proof. Indeed, in a genuine mixed group, let a, b ∈ G with orda = ∞ and ordb = p.
There is a canonical subgroup epimorphism γ : 〈a〉 −→ 〈b〉 and so 〈a〉 is not s-i. �

Again we can generalise this at once to

PROPOSITION 22. If in a (genuine) mixed group a subgroup contains a free direct
summand, it is not s-i.

Finally, torsion-free s-i subgroups abound in mixed groups, splitting or not. More,
one can construct lots of fully invariant torsion-free subgroups in the following ways.

Splitting groups G = T ⊕ H with torsion-free p-divisible H for each prime p such
that the p-component Tp is (nonzero) reduced, or, extensions of the type 0 −→ H −→
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G −→ U −→ 0 with torsion-free p-divisible H, for a given prime p, such that U is
p-reduced (e.g., see [1]).

4. Two extreme classes. In this section our goal is to determine two extreme
classes of Abelian groups: the s-i simple groups (i.e., groups without proper s-i
subgroups) and the groups in which every subgroup is s-i.

Since

strongly invariant =⇒ fully invariant =⇒ characteristic =⇒ normal

we derive

simple =⇒ charact. simple =⇒ fully inv. simple =⇒ strongly inv. simple.

It is well-known (e.g., see [8]) that an arbitrary finite group – or even a group with
a minimal normal subgroup – is characteristically simple if it is either simple or it is a
direct product of isomorphic simple groups.

Examples. Z(2) ⊕ Z(2) is s-i simple but Z(2) ⊕ Z(4) is not.
From now on, G denotes an Abelian group. Notice that for a group endomorphism

f : G −→ G, clearly f (nG) = nf (G) ≤ nG and so nG is a fully invariant subgroup of G.
However, for the subgroup nG of a group G and a group morphism f : nG −→ G, if
nG �= G, the equality f (nG) = nf (G) makes no sense because f is not defined on the
whole group G. More

LEMMA 23. In any torsion-free group G, a subgroup nG is s-i in G if and only if
nG = G.

Proof. Only one way needs justification. If nG �= G, take the group morphism
t 1

n
: nG −→ G given by t 1

n
(ng) = g for every g ∈ G. Then t 1

n
(nG) = G � nG and so nG

is not s-i. �

4.1. Fully invariant simple Abelian groups. Since the torsion part, the socle, the
primary components and the divisible part of an Abelian group are fully invariant
subgroups, we can easily dispose of fully invariant-simple Abelian groups.

PROPOSITION 24.
(i) No genuine mixed group is fully invariant simple.

(ii) The only torsion groups which may be fully invariant simple are the p-groups.
(iii) A p-group is fully invariant simple if and only if it is elementary.
(iv) A torsion-free group G is fully invariant simple if and only if it is divisible, i.e., a

direct sum of Q.

Proof. (iii) Indeed, in a nontrivial p-group, the socle G[p] is a nontrivial fully
invariant subgroup. If G is fully invariant simple we must have G[p] = G, i.e., G is
elementary. Conversely, no proper subsocle is fully invariant, so elementary p-groups
are fully invariant simple.

(iv) Indeed, all the subgroups {nG|n ∈ Z} being fully invariant, we must have
nG = G for each n ∈ N∗ and hence G is divisible, i.e., a direct sum of copies of Q.
Conversely, recall that a torsion-free group G is said to be fully transitive if for any two
nonzero elements a, b with characteristics χ (a) ≤ χ (b), there exists an endomorphism
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f ∈ End(G) such that f (a) = b. It is not hard to prove that any homogeneous separable
torsion-free group is fully transitive (see [5]).

Moreover (p.198 [5]), the fully invariant subgroups of a torsion-free group G
coincide with the subgroups of the form nG (n ∈ Z) if and only if G is a homogeneous
fully transitive group of idempotent type. The combination of these two results shows
that any torsion-free divisible group is fully invariant simple. �

Remarks.
(1) An Abelian group is characteristically simple if and only if it is fully invariant

simple.
Indeed, from (iii) and (iv) above, we just have to notice that these classes are
both vector spaces over Z(p) and Q respectively, and so, also characteristically
simple.

(2) Actually more can be proved (see [4], exercise 66): any torsion-free divisible
module over any principal ideal ring is characteristically simple.

4.2. S-i simple Abelian groups. As first examples, both Z and Q are s-i simple
(use Lemma 23 for the first).

On the contrary, in a cyclic group, every subgroup is fully invariant.
Again, since the socle, the torsion part, the divisible part and some special (pure)

subgroups (in the torsion-free case) of a group are s-i, mostly all of the possible cases
are easily covered.

PROPOSITION 25.

(i) Genuine mixed groups are not s-i simple.
(ii) A torsion group is s-i simple if and only if it is an elementary p-group (i.e., if and

only if it is fully invariant simple).
(iii) Any s-i simple group is either divisible or reduced.
(iv) Any s-i simple torsion-free group is homogeneous.
(v) Any torsion-free divisible group is s-i simple.

Proof.
(i) For a genuine mixed group, i.e., 0 �= T(G) �= G, the torsion part T(G) is s-i.

(ii) As in the fully invariant case, s-i simple torsion groups must be p-groups. Since
the socle of a p-group is s-i (and 0 �= G[p]), only p-groups with G = G[p], that
is, elementary p-groups, can be s-i simple. Finally, elementary p-groups are s-i
simple because every proper subsocle is not s-i (e.g., use Lemma 2).
An alternative proof can be given using Proposition 12.

(iii) For a group G, the divisible part D(G) is a fully invariant direct summand. As
such (see Lemma 1), it is also s-i. Thus, groups with 0 �= D(G) �= G are not s-i
simple. So only D(G) = G (divisible) or D(G) = 0 (reduced) are possible.

(iv) For a torsion-free group G and a given type t, consider the fully invariant (pure)
subgroup G(t) = {a ∈ G|t(a) ≥ t}. Since group morphisms do not decrease
heights, it is readily seen that this subgroup is also s-i (but the purity of
this subgroup is essential: heights, characteristics or types computed in G(t)
are equal to those computed in G). Since there is at least one type t with
G(t) �= 0, the s-i simple torsion-free groups must verify G = G(t). Hence these
are homogeneous.
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(v) These groups are fully invariant simple (see (iv) in the previous list) and so also
s-i simple.

�
Therefore what remains is to single out the reduced homogeneous torsion-free s-i

simple groups.
None of the tools above can be used in this case: proper nG are generally not s-i,

G[n] are s-i but equal zero in the torsion-free case and G(t) = G in the homogeneous
case.

It is easy to check that completely decomposable reduced homogeneous groups are
also s-i simple. But we can do better since there are large classes of fully transitive
(torsion-free) groups which are s-i simple.

PROPOSITION 26. Fully transitive (torsion-free) homogeneous groups of idempotent
type are s-i simple.

Proof. The claim follows since the fully invariant subgroups of a torsion-free group
G, coincide with subgroups of the form nG (n ∈ Z) if and only if G is homogeneous
fully transitive of idempotent type, and (see Lemma 23) nG is s-i in a torsion-free group
G if and only if nG = G. �

Among fully transitive torsion-free groups we mention the separable and algebraic
compact groups.

Since (so far) there is no structure theorem for fully transitive homogeneous groups
of idempotent type, a structure theorem for reduced torsion-free s-i simple groups seems
(so far) out of reach.

A noncommutative example: consider M16 = 〈
a, x|a8 = x2 = 1, xax = a5

〉
. Here is

its subgroup lattice

M
16

1

A
1

A
2

A
3

C
2

C
3

C
1

B
1 B

3 B
2

Clearly, A1
∼= A2

∼= A3 as order 2 cyclic subgroups. Suitable isomorphisms
composed with inclusions, give epimorphisms as in Corollary 3. Since Ai ∩ Aj = 1
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for every i, j ∈ {1, 2, 3}, none of these atoms is s-i. So are B2 and B3 (see Introduction),
as order 4 cyclic subgroups, respectively C2 and C3, as order 8 cyclic subgroups. Finally,
take the projections B1 −→ A2 (Klein-cyclic) and C1 −→ B2 (Z2 ⊕ Z4 −→ Z4). These
are clearly epimorphisms and again Corollary 3 shows these are not s-i. Hence, M16 is
s-i simple.

4.3. Groups in which every subgroup is s-i. Using the denial of Lemma 2, if the
subgroup lattice L(G) has two isomorphic atoms, none of them is s-i in G. Hence

PROPOSITION 27. In a p-group G every subgroup is s-i if and only if G is cocyclic.

Proof. Since the subgroup lattice of a cocyclic group is a chain, the condition is
sufficient. It is also necessary because a p-group is cocyclic if and only if it has a unique
smallest nonzero subgroup. (An alternative proof can be given using Proposition 8). �

Further

PROPOSITION 28. In a torsion group every subgroup is s-i if and only if each p-
component has this property.

Proof. By SI2, the condition is necessary. Conversely, let H be a subgroup of
a torsion group G and let H = ⊕

p
Hp ≤ ⊕

p
Gp = G be the primary component

decompositions. A group morphism f : H −→ G decomposes as f = ⊕
p

fp :
⊕

p
Hp −→

⊕
p

Gp with group morphisms fp : Hp −→ Gp. By hypothesis fp(Hp) ≤ Hp and so

f (H) = f (
⊕

p
Hp) = ⊕

p
fp(Hp) ≤ ⊕

p
Hp = H because Hom(Hp, Hq) = 0 for different

prime numbers p, q. �
Finally,

PROPOSITION 29. There are no nonzero torsion-free nor genuine mixed groups with
the above property.

Proof. Indeed, let G be a torsion-free group. If the rank of G is at least two, pick
a, b ∈ G with orda = ordb = ∞ and 〈a〉 ∩ 〈b〉 = 0. According to (the denial of) Lemma
2, none of 〈a〉, 〈b〉 is s-i. In the remaining case, we already proved (previous subsection)
that rank one torsion-free groups are s-i simple.

Now let G be a genuine mixed group. We can find elements a, b ∈ G with orda = ∞,
ordb = p (for a suitable prime number p) and a nontrivial epimorphism 〈a〉 −→ 〈b〉.
Hence, by Corollary 3, 〈a〉 is not s-i. �

Therefore

COROLLARY 30. The only Abelian groups in which every subgroup is s-i, are the direct
sums of cocyclic groups, at most one for each prime number.

5. Open questions.
(1) Since fully invariant direct summands are strongly invariant, we may wonder

whether fully invariant pure (called pfi in [5], see. p. 36) subgroups are also s-i. If
this is not true, we may wonder whether fully invariant balanced subgroups are
s-i.
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For instance, in a torsion-free group G, for a type t, G(t) is fully invariant pure
(generally not direct summand) and strongly invariant.

(2) Since (see FI2) fully invariant subgroups have not the intermediate subgroup
property, subgroups that are fully invariant in every intermediate subgroup,
may be considered and studied.

Since s-i subgroups share the intermediate subgroup property (i.e., SI2), for
subgroups in an arbitrary group we have

s-i =⇒ interm. fully invariant-subgroup =⇒ fully invariant.

Examples show these classes are different. Indeed, in the above given diagram, for
G = M16 take the Klein subgroup H = B1. This is not s-i in G but is fully invariant
in C1 (Klein is fully invariant in Z2 ⊕ Z4) and in G. As for the second (proper)
inclusion, take the commutator D′

8 = 〈
s2

〉
which is fully invariant in the dihedral group

D8 = 〈
s, t; s4 = t2 = 1, sts = t

〉
but not fully invariant in any of the Klein intermediate

subgroups (K1 and K2 in the following diagram).

1

D
8

K
1 K

2

D
8
’
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