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Abstract. For 2 × 2 matrices over commutative rings, we prove a charac-
terization theorem for left stable range 1 elements, we show that the stable
range 1 property is left-right symmetric (also) at element level, we show that
all matrices with one zero row (or zero column) over Bézout rings have sta-
ble range 1. Using diagonal reduction, we characterize all the 2 × 2 integral
matrices which have stable range 1 and discuss additional properties including
Jacobson’s Lemma for stable range 1 elements. Finally, we give an example of
exchange stable range 1 integral 2× 2 matrix which is not clean.

1. Introduction

Recall that a (unital) ring R has (left) stable range 1 provided that for any
a, b ∈ R satisfying Ra + Rb = R, there exists y ∈ R such that a + yb is left
invertible. This condition is left-right symmetric. In a ring with stable range 1,
all one-sided inverses are two-sided, and so in the definition a+ yb must be a unit.
Equivalently, R has stable range 1 if for any a, x, b ∈ R satisfying xa+ b = 1, there
exists y ∈ R such that a+ yb is a unit. For any positive integer n, the matrix ring
Mn(R) has stable range 1 if and only if R has stable range 1.

It follows from the definition that stable range 1 rings have an adequate supply
of units. That’s why, rings with only few units do not have this property (e.g. Z,
the ring of the integers).

In the sequel R denotes a unital ring, U(R) denotes the set of all the units of R
and J(R) the Jacobson radical of R. By Eij we denote the n × n matrix with all
entries zero, excepting the (i, j)-entry, which is 1. Whenever it is more convenient,
we will use the widely accepted shorthand “iff” for “if and only if” in the text.

In [3] we can find the following
Definition. An element a in a ring R is said to have left stable range 1 (for

short lsr1) if whenever Ra + Rb = R for some b ∈ R, there is an element y such
that a+ yb ∈ U(R).

As already mentioned, a has lsr1 iff whenever xa + b = 1 for some a, x, b ∈ R,
there exists y ∈ R such that a + yb ∈ U(R). Equivalently (we can eliminate b), a
has lsr1 iff for every x there exists y such that a+ y(xa− 1) is a unit.

A symmetric definition can be given on the right. An element has stable range
1 if it has both left and right stable range 1.

To simplify the wording, the element y will be called a unitizer for a, depending
on x.

We abbreviate the property ”stable range 1” by ”sr1” and when useful, sr1(R)
denotes the set of all the both left and right stable range 1 elements in a ring R.
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An element in a ring is said to be clean if it is a sum of an idempotent and a unit.
A ring is called clean if so are all its elements. A clean element is called nontrivial
clean if the idempotent in its decomposition is nontrivial (i.e. 6= 0, 1).

An element a ∈ R is called (left) exchange if there exists m ∈ R such that
a+m(a− a2) is idempotent.

Any clean element (or ring) is exchange (see [10]), but both converses fail. Ex-
amples of exchange rings which are not clean were given by G. Bergman (see [6],
Example 1) and by J. Šter (see [11], Example 3.1).

An element a in a ring R is called unit-regular if there exist a unit u ∈ U(R)
such that a = aua.

In this note we deal with 2×2 matrices over commutative rings. Our results are:
we prove a characterization theorem for left stable range 1 elements, and we show
that the stable range 1 property is left-right symmetric (also) at element level. We
show that all matrices over Bézout rings with one zero row or one zero column have
stable range 1.

Using diagonal reduction, we characterize all the 2 × 2 integral matrices which
have stable range 1, precisely as the matrices whose determinant is in {−1, 0, 1}.
This characterization permits to address some additional properties for stable range
1 elements, like the ”complementary property” and Jacobson’s Lemma.

We describe on one example, the hard process of finding unitizers for given
matrices. Finally, we give in M2(Z), an example of exchange stable range 1 element
that is not clean.

2. Main results

In any ring R, 0, all units and all elements of the Jacobson radical have sr1. As
for the latter, since a ∈ J(R) iff 1 − xa is left invertible for any x ∈ R, we choose
the unitizer y = −(1−a)(1−xa)−1. The only sr1 elements of Z are the units {±1}
and zero.

Next, a useful

Lemma 1. (i) If a has lsr1 and u ∈ U(R) then ua has lsr1.
(ii) If a has lsr1, so is −a.
(iii) Left sr1 elements are invariant to conjugations.
(iv) If a has lsr1 and u ∈ U(R) then au has lsr1.
(v) Left sr1 elements are invariant to equivalences.

Proof. (i) Suppose x(ua) + b = 1. There is y such that a + yb ∈ U(R). By left
multiplication with u we get ua+ uyb ∈ U(R), as desired.

(ii) Just take u = −1 in (i).
(iii) For every x there is a y such that a + y(xa − 1) ∈ U(R). Then u−1[a +

y(xa− 1)]u ∈ U(R) but we can write this as u−1au+ u−1yu[(u−1xu)(u−1au)− 1],
as desired.

(iv) If a has lsr1 and u ∈ U(R) then u−1au has lsr1, by (ii). Then by (i),
u(u−1au) = au has lsr1.

(v) Follows from (i) and (iii). �

A symmetric statement holds for right sr1 elements.

A result which supersedes all properties in the previous lemma (see [4], Lemma
17) is the following



ON STABLE RANGE ONE MATRICES 3

Proposition 2. Any finite product of left (or right) stable range 1 elements has
left (or right) stable range 1.

Since this result simplifies a lot, some of our proofs, we shall use it subsequently.

Working with square matrices, A ∈ M2(R) has left stable range 1 iff whenever
XA+B = I2 there exists Y ∈ M2(R) such that A+ Y B is a unit.

Equivalently, A ∈ M2(R) has left stable range 1 iff for every X ∈ M2(R) there
is (a unitizer) Y ∈ M2(R) such that A+ Y (XA− I2) is invertible.

In the sequel, we use the notation diag(r, s) :=

[

r 0
0 s

]

.

Next, we record another useful

Lemma 3. (i) A matrix A has left sr1 iff the transpose AT has right sr1.
(ii) diag(r, s) has left (or right) sr1 iff diag(s, r) has left (respectively right) sr1.
(iii) diag(r, s) has left (or right) sr1 iff diag(r,−s) has left (respectively right)

sr1.

Proof. (i) Indeed, (A+ Y (XA− I2))
T = AT + (ATXT − I2)Y

T is also a unit.
(ii) Follows from (iii), the previous lemma, by conjugation with the involution

E12 + E21.
(iii) Follows from (v), the previous lemma, since diag(r,−s) is equivalent to

diag(r, s). �

Remark. When dealing with integral diagonal matrices diag(n,m), with respect
to left (or right) sr1, we can suppose 0 ≤ n ≤ m.

The case of diagonal matrices is of utmost importance because of the following
Definition. Let R be a commutative unital ring. An n × n matrix A has a

diagonal reduction if there exist units U , V such that UAV = diag(d1, d2, ..., dn) is
a diagonal matrix, such that di divides di+1 for every 1 ≤ i ≤ n− 1.

Following Kaplansky, a ring R is called an elementary divisor ring if every matrix
admits a diagonal reduction. Any diagonal reduction of A is called the Smith normal
form of A. Every PIR (principal ideal ring) is an elementary divisor ring (see [1])
and in particular, Z is an elementary divisor ring.

In Lemma 1, we saw that having stable range 1 property is invariant to equiva-
lences. Hence

Proposition 4. Let R be an elementary divisor ring and A ∈ Mn(R). Then A has
stable range 1 iff the Smith normal form of A has stable range 1.

Therefore, over an elementary divisor ring, the determination of the matrices
which have sr1, reduces to diagonal matrices.

As our first main result, we characterize the 2 × 2 left stable range 1 matrices
over any commutative ring.

Theorem 5. Let R be a commutative ring and A ∈ M2(R). Then A has left stable
range 1 iff for any X ∈ M2(R) there exists Y ∈ M2(R) such that

det(Y )(det(X) det(A) − Tr(XA) + 1) + det(A(Tr(XY ) + 1))− Tr(Aadj(Y ))

is a unit of R. Here adj(Y ) is the classical adjoint.
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Proof. As already mentioned, A has lsr1 in M2(R) iff for every X =

[

a b
c d

]

∈

M2(R) there is Y =

[

x y
z t

]

∈ M2(R) such that A + Y (XA − I2) is invertible.

Since the base ring is supposed to be commutative, A + Y (XA − I2) is invertible

in M2(R) iff det(A + Y (XA − I2)) is a unit of R. For A =

[

a11 a12
a21 a22

]

, the

computation amounts to the determinant of the 2× 2 matrix with columns

C1 =

[

a11 + (aa11 + ba21 − 1)x+ (ca11 + da21)y
a21 + (aa11 + ba21 − 1)z + (ca11 + da21)t

]

and

C2 =

[

a12 + (aa12 + ba22)x+ (ca12 + da22 − 1)y
a22 + (aa12 + ba22)z + (ca12 + da22 − 1)t

]

.

In computing this determinant, there are several terms we gather as follows:
the coefficient of xz: (aa11+ba21−1)(aa12+ba22)−(aa11+ba21−1)(aa12+ba22),

which equals zero,
the coefficient of xt: (aa11+ba21−1)(ca12+da22−1)−(ca11+da21)(aa12+ba22) =

det(X) det(A)− aa11 − ba21 − ca12 − da22 + 1
the coefficient of yz: (ca11+da21)(aa12+ba22)−(aa11+ba21−1)(ca12+da22−1) =

− det(X) det(A) + aa11 + ba21 + ca12 + da22 − 1
the coefficient of yt: (ca11+da21)(ca12+da22−1)−(ca11+da21)(ca12+da22−1),

which equals zero,
and another five terms
a11[(aa12 + ba22)z +(ca12 + da22 − 1)t], a22[(aa11 + ba21 − 1)x+(ca11 + da21)y],
−a12[(aa11+ba21−1)z+(ca11+da21)t], −a21[(aa12+ba22)x+(ca12+da22−1)y],
det(A).
Then this determinant is

det(Y )(det(X) det(A)− aa11 − ba21 − ca12 − da22 + 1)+
+a11[(aa12 + ba22)z + (ca12 + da22 − 1)t]+
+a22[(aa11 + ba21 − 1)x+ (ca11 + da21)y]−
−a12[(aa11 + ba21 − 1)z + (ca11 + da21)t]−

−a21[(aa12 + ba22)x+ (ca12 + da22 − 1)y] + det(A)

or
det(Y )(det(X) det(A)− aa11 − ba21 − ca12 − da22 + 1)+

+det(A)(ax + bz + cy + dt+ 1)− a11t+ a12z + a21y − a22x
.

Finally this gives the condition in the statement. �

Corollary 6. Let R be a commutative ring and A ∈ M2(R). Then A has left stable
range 1 iff A has right stable range 1.

Proof. Using the properties of determinants, the properties of the trace and the
commutativity of the base ring, it is readily seen that changing A,X, Y into trans-
poses and reversing the order of the products does not change the condition in the
previous theorem. �

Using this characterization, some special cases are worth mentioning. Since in
the sequel, the base ring for the matrices we consider is commutative, according to
the previous corollary, we will drop the ”left” or ”right” word before 2 × 2 stable
range 1 matrices.
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Proposition 7. Let R be any ring.
(a) Idempotents have sr1.
(b) In Mn(R), n ≥ 2, all matrices rEij with 1 ≤ i, j ≤ n and r ∈ R, have sr1.

Proof. (a) Idempotents are unit-regular and unit-regular elements have sr1 (see
Theorem 3.2 in [8]).

(b) Since sr1 is invariant to equivalences, using two permutation matrices (inter-
change first and i-th row, interchange of first and j-th column), it suffices to show
that rE11 has sr1. For every n × n matrix X we indicate a unitizer Y such that
rE11 + Y (X(rE11)− In) has determinant (−1)n.

Take Y =















0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 (−1)na1















, where col1(X) =







a1
...
an






. Then we

obtain rE11 + Y (X(rE11)− In) =















r(1 + an) 0 · · · 0 −1
ran−1 0 · · · −1 0

...
...

. . .
...

...
ra2 −1 · · · 0 0

ra1(1 + an)− 1 0 · · · 0 (−1)na1















.

A simple computation shows that det[rE11+Y (X(rE11)−In)] = (−1)n, as desired.
�

Remarks. 1) The property (b) above is an Exercise in [9] (Section 24, Exercise
19, (3) A). The above proof is our solution.

2) For the 2× 2 cases, rE11, rE12, rE21, rE22 and X =

[

a b
c d

]

, unitizers are
[

0 1
1 a

]

,

[

1 0
c 1

]

,

[

1 b
0 1

]

and

[

d 1
1 0

]

, respectively.

Corollary 8. Let R be any ring. In M2(R), units, idempotents, and matrices with
three zeros, all have sr1.

Recall that a commutative ring is called Bézout if any two elements have a
greatest common divisor that is a linear combination of them.

Our second main result is the following

Theorem 9. Let R be any Bézout ring. All matrices in M2(R) with (at least) one
zero row or zero column have sr1.

Proof. By Lemma 3, it suffices to prove the claim for matrices with zero second
row.

Let A =

[

r s
0 0

]

with r, s ∈ R. Replacement in the characterization theorem

(a11 = r, a12 = s, det(A) = 0) amounts to

det(Y )(1 − ra− sc)− rt+ sz = ±1.

We go into two cases: (i) gcd(r; s) = 1, and (ii) gcd(r; s) 6= 1.
(i) Since r, s are coprime, z, t can be chosen for −rt+sz = 1 (say z0, t0). Choosing

x = y = 0 (and so det(Y ) = 0) we get a unitizer of form Y =

[

0 0
z0 t0

]

(which is

independent of a, b, c, d).
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(ii) In the remaining case, suppose 1 6= d and let r, s be coprime. Then A =
[

dr ds
0 0

]

=

[

d 0
0 0

] [

r s
0 0

]

is sr1, as product of sr1 matrices (by Proposition

7 (b) and (i), this theorem). �

Remarks. 1) Matrices of the form

[

a ab
0 0

]

are sr1 over any (possibly not

commutative) ring R. To see this, we decompose

[

a ab
0 0

]

=

[

a 0
0 0

] [

1 b
0 0

]

.

Both are sr1 by Proposition 7 (the right one is idempotent) and the fact that sr1(R)
is multiplicatively closed.

2) When it comes to find a unitizer in case (ii), the difficulties which occur are
described in the next section, on a special case.

3) For r = s, one can also use another unitizer: Y =

[

1 0
a+ c+ 1 1

]

. Similarly,

for r = −s: Y =

[

1 0
−a+ c− 1 1

]

.

4) If r, s are co-prime then

[

r s
0 0

]

is unit regular (see [7]) and thus has stable

range one. This is an alternative proof of case (i) of the previous theorem (not
providing unitizers).

In our third main result, we characterize the integral sr1 matrices. We first
discuss a special case.

Lemma 10. An integral diagonal matrix A = nI2 has sr1 iff n ∈ {−1, 0, 1}.

Proof. According to the remark after Lemma 3, suppose 1 ≤ n. For every multiple
of I2, we have to indicate an X for which no Y exists such that A + Y (XA − I2)
has determinant ±1.

Since for n = 1, I2 is a unit, we take A = nI2 for n ≥ 2 and consider X =
−(n+1)I2. Then Y (XA−I2) = −(1+n+n2)Y and we can compute the determinant
in the ring Z/(1+n+n2)Z. The characterization becomes n2 congruent to ±1 mod
(1+n+n2), which is impossible since n ≥ 2. Hence multiples nI2 with n ≥ 2 have
not sr1. �

Since units are known to have sr1, we have the following

Theorem 11. Let R = M2(Z). Then a matrix A ∈ R\U(R) has sr1 iff det(A) = 0.

Proof. As mentioned before, since Z is an elementary divisor ring, by Proposition 4,
we may assume that A is diagonal, say diag(n,m), where m,n ≥ 0. If det(A) = 0,
then Proposition 7, (b) shows that A has sr1. Conversely, assume that det(A) 6= 0.
Then m,n ≥ 1. If A has sr1, by Lemma 3, (ii), diag(m,n) has also sr1, and so is
their product, nmI2. As A /∈ U(R), we have mn ≥ 2 and this is impossible by the
previous lemma. �

Corollary 12. In M2(Z) all idempotents and all nilpotents have stable range 1.

Remarks. 1) Naturally, for R = Z, Theorem 9 follows since all matrices have
zero determinant.

2) Matrices Muv =

[

1 u
v uv

]

have sr1 over any commutative ring.
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Indeed, having zero determinant, the characterization yields det(Y )(1−a− vb−
uc− uvd)− t+ uz + vy − uvx = ±1 for which the unitizer

Y =

[

0 1
−1 1− a− vb − uc− uvd

]

gives +1. Again, for R = Z, this follows

since such matrices have zero determinant.
3) The results in this section yield simple examples which show that sr1(M2(Z))

is not closed under addition.
Indeed, E11, I2 both are sr1 but the (diagonal) sum is not.
4) The previous characterization can be also obtained as follows. As every matrix

over Z has a Smith normal form and stable range one is invariant under multipli-

cation by units, it suffices to see which matrices of the form

[

a 0
0 b

]

over Z have

stable range one. It is not hard to see that this is the case when either one of the
a, b is zero or both a and b are units.

Another consequence of the previous theorem is the following

Corollary 13. (i) In M2(Z), stable range 1 elements do not have the ”complemen-
tary property”.

(ii) In M2(Z), AB has stable range 1 iff so has BA.
(iii) Jacobson’s Lemma holds for stable range 1 matrices in M2(Z).

Proof. (i) Indeed, in M2(Z), −I2 is a unit, so has sr1. However, I2 − (−I2) = 2I2
has not sr1.

(ii) Suppose AB has sr1, i.e. det(AB) ∈ {−1, 0, 1}. Then det(BA) ∈ {−1, 0, 1}.
(iii) In M2(Z) we have to verify whether det(I2 − AB) ∈ {−1, 0, 1} implies

det(I2 −BA) ∈ {−1, 0, 1}. Since det(I2 −M) = 1+ det(M)−Tr(M) holds for any
2×2 matrix M , we deduce det(I2−AB) = 1+det(AB)−Tr(AB) = 1+det(BA)−
Tr(BA) = det(I2 −BA) and so the claim follows. �

Jacobson’s Lemma holds for units, regular or unit-regular elements, π-regular or
strongly π-regular elements.

Since unit-regular elements have stable range 1, at least for this subset, Jacob-
son’s Lemma generally holds.

3. Finding unitizers

In Theorem 9, the unitizers were found by observation (with computer aid). In
this section we show that in case (v), finding a unitizer is not so easy. We focus on

A =

[

6 10
0 0

]

=

[

2 0
0 0

] [

3 5
0 0

]

which is sr1, as product of sr1 matrices.

For any given X =

[

a b
c d

]

we are looking for a unitizer Y =

[

x y
z t

]

, such

that det(Y )(1− 6a− 10c)− 6t+ 10z is 1 or −1.

Having some examples in Theorem 9, we made by computer some attempts: to
look for unitizers with zero first row, or for unitizers with x = t = 1 and y = 0.
Since these did not (seem to) cover all situations (“seem”, because of given bounds
for the entries of X and Y , respectively), we decided to concentrate on unitizers

(already used in some cases) of form Y =

[

0 ±1
∓1 t

]

, that is, with det(Y ) = 1,
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where t is to be found depending on a and c, since computer seemed to cover all
situations.

We go into two cases.
Case 1. z = −1, x = 0, y = 1. The characterization gives 1−6a−10c−6t−10 =

±1, which we split into two subcases.
(a) 1 − 6a − 10c − 6t − 10 = 1, which we write 3t + 5c + 3a = −5. This is a

linear Diophantine equation with three unknowns, solvable since gcd(3; 5; 3) = 1
divides −5. The general solution is t = 5 + 5k −m, c = −4 − 3k, a = m, whence
t = 5(k + 1)− a and c ≡ 2 (mod 3).

(b) 1 − 6a − 10c − 6t − 10 = −1, which we write 3t + 5c + 3a = −4. Again a
Diophantine equation; the general solution is t = 2+ 5k −m, c = −2− 3k, a = m,
whence t = 2 + 5k − a and c ≡ 1 (mod 3).

Case 2. z = 1, x = 0, y = −1. The characterization gives 1−6a−10c−6t+10 =
±1, which again we split into two subcases.

(i) 1 − 6a − 10c − 6t + 10 = 1, which we write 3t + 5c + 3a = 5. The general
solution is t = 5k −m, c = 1− 3k, a = m, whence t = 5k − a and c ≡ 1 (mod 3).

(ii) 1− 6a− 10c− 6t+ 10 = −1, which we write 3t+ 5c+ 3a = 6. The general
solution is t = 2+ 5k−m, c = −3k, a = m, whence t = 2+ 5k− a and c ≡ 0 (mod
3).

Therefore, there are (slightly) different unitizers, corresponding to the reminder
of the division of c by 3. More precisely,

if c ≡ 0 (mod 3) the unitizer is Y =

[

0 −1

1 2− a−
5

3
c

]

,

if c ≡ 1 (mod 3) there are two possible unitizers: Y =

[

0 −1

1
5

3
− a−

5

3
c

]

, or

Y =

[

0 1

−1 −
4

3
− a−

5

3
c

]

,

if c ≡ 2 (mod 3) the unitizer is Y =

[

0 1

−1 −
5

3
− a−

5

3
c

]

.

4. Exchange stable range 1, 2× 2 matrices, may not be clean

Given an exchange ring, for this to be clean, one needs units in addition to
idempotents. The stable range 1 condition is known to be excellent in helping to
produce units. That is why it is natural to raise the following

Question: If an exchange ring R has stable range one, is R necessarily a clean
ring?

In what follows, using computer aid, we show that, at element level, this fails for
R = M2(Z). Clearly, the existence of such examples should not entirely dash our
hopes for a positive answer to this question. This is because, in working with the
question, we are under the stronger assumption that all (not just some) elements
of R are exchange and have stable range one.

We shall use the following (for a proof, see e.g. Theorem 3, [2])
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Theorem 14. A 2 × 2 integral matrix A =

[

a b
c d

]

is nontrivial clean iff the

system
{

x2 + x+ yz = 0 (1)
(a− d)x+ cy + bz + det(A)− d = ±1 (±2)

with unknowns x, y, z, has at least one solution over Z. If b 6= 0 and (2) holds, then
(1) is equivalent to

bx2 − (a− d)xy − cy2 + bx+ (d− det(A)± 1)y = 0 (±3).

Here E =

[

x+ 1 y
z −x

]

is the (nontrivial) idempotent of a clean decomposition

of A (i.e., A− E is a unit).
While it is easy to use this characterization of clean matrices, and the charac-

terization of sr1 matrices, it is hard to check the exchange property for matrices.
Therefore, computer aid was again necessary.

Our example is A =

[

5 5
7 7

]

.

1. A is exchange. Indeed, A + M(A − A2) =

[

5 5
−4 −4

]

is an idempotent

(determinant = zero, trace = 1) for M =

[

0 0
3 −2

]

.

2. A is not clean. We use the theorem above: for a = b = 5, c = d = 7 (and
detA = 0) the Diophantine equations are

5x2 + 2xy − 7y2 + 5x+ (7± 1)y = 0 (±3)

and the corresponding linear equations are

−2x+ 7y + 5z − 7 = ±1 (±2).

The equations (±3) have only the solutions (0, 0) and (−1, 0). None verifies
(±2), so A is not clean.

3. A has stable range 1, by Theorem 11, since detA = 0.
Remarks. 1) Using different references and results, another example can be

provided. In [7], the matrix

[

12 5
0 0

]

is given as an example of unit-regular

matrix which is not clean. Therefore, this example suits well, if we mention that
unit-regular elements are exchange and sr1 (see [5] and [8]).

2) Incidentally, these two examples are similar: if we take U =

[

3 −2
−7 5

]

then UAU−1 =

[

12 5
0 0

]

.

In closing, just to have an idea of the ”density” of such examples, out of 1988 sr1
matrices with entries bounded in absolute value by 9, all were also exchange and
80 were not clean (verification made with entries bounded in absolute value by 6).

This suggested to ask the following

Question. Are all 2× 2 integral stable range one matrices, exchange?

Using the results in our paper, we can give a negative answer.
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Indeed, by Theorem 11, we have to check that units are exchange, which is true
since units are clean and so exchange, and, that zero determinant matrices are
exchange. However this fails.

Indeed, one can show that the matrices

[

2k + 1 0
0 0

]

are not exchange for any

k /∈ {−1, 0}.

Acknowledgement 15. Thanks are due to Tsit Yuen Lam for suggestions, com-
pletions and his kind permission to use material from the forthcoming [9] and to
the referee whose corrections and comments improved our presentation.
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