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Department of Mathematics, Babeş-Bolyai University, 1 Kogălniceanu Street, Cluj-Napoca, Romania
Faculty of Mechanics and Mathematics, Tomsk State University, Tomsk, Russia

eceived 29 December 2019; received in revised form 3 July 2020; accepted 8 July 2020

Abstract

Since solitary subgroups of (infinite) Abelian groups are precisely the strictly invariant
ubgroups which are co-Hopfian (as groups), and strictly invariant subgroups turn out to be
trongly invariant for large classes of Abelian groups we determine the solitary subgroups for
hese classes of groups.
c 2020 Elsevier GmbH. All rights reserved.
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1. Introduction

Kaplan and Levy [13] gave the following definition: a subgroup K is solitary in a
roup G if G contains no another subgroup isomorphic to K (i.e., for any subgroup H
f G, K ∼= H implies K = H ). Solitary subgroups and related subjects were investigated
n [1,8,13] and [16], but only for finite groups. While it was immediately noticed that
very solitary subgroup must be characteristic (and so normal), dealing only with finite
roups, the following simple remark was not in use: every solitary subgroup is co-Hopfian
as a group — see Theorem below).

Here, a group G is said to be co-Hopfian (S-group in [2]) if it is not isomorphic to any
of its proper subgroups (or equivalently, if every injective endomorphism G −→ G is an

∗ Corresponding author.
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automorphism). Since every finite group is co-Hopfian, this notion is clearly irrelevant
for finite groups.

For a subgroup N of a group G the inclusion f (N ) ≤ N makes sense for f
n various sets of group homomorphisms. Some of them (are well-known and other)
urn out to be useful for a global characterization of solitary subgroups. These are:
nj(N , G) ⊆ Hom(N , G), that is, the injective group homomorphisms N −→ G and all
he group homomorphisms N −→ G, respectively, and, Aut(G) ⊆ Inj(G, G) ⊆ End(G),

with a similar notation for the injective endomorphisms of G. The corresponding classes
f subgroups are called: strictly invariant, strongly invariant, and, characteristic, injective
nvariant (S-characteristic in [2], left invariant in [11]) and fully invariant, respectively.

ore precisely

efinition. A subgroup N is strongly invariant (see [6]) in a group G if f (N ) ≤ N
or every group homomorphism f : N −→ G. Equivalently, for any subgroup H of G,

H ≤ N whenever a subgroup epimorphism N −→ H exists; a subgroup N is called
trictly invariant in a group G if f (N ) ≤ N for every injective group homomorphism
f : N −→ G. Equivalently, for any subgroup H of G, H ≤ N whenever a subgroup
somorphism N −→ H exists.

With the above definitions we have the following chart

strongly-invariant ⇒ fully-invariant
⇓ ⇓

solitary ⇒ strictly-invariant ⇒ injective-invariant ⇒ characteristic

From definitions follows the characterization

heorem 0. A subgroup K is solitary in a group G if and only if it is strictly invariant
nd co-Hopfian (as a group).

Since every group is strictly invariant in itself we obtain at once something different
rom the finite groups case (where G is always solitary in G).

orollary 1. G is solitary in G iff G is co-Hopfian.

However, since finite groups are co-Hopfian

orollary 2. A finite subgroup is solitary in a group iff it is strictly invariant.

Note that according to Theorem 14, (a), we can replace strictly invariant in the
revious corollary, by strongly invariant.

In this paper we determine the solitary subgroups of mostly all classes of (infinite)
belian groups. While the astute reader will easily observe that some of our results hold

lso for not necessarily commutative groups, in order to simplify the writing, we state
nd prove everything in the commutative setting. Some of the results hold not only for Z
modules (i.e., Abelian groups) but also for general modules over rings (with identity).

The characterization above explains why results on co-Hopfian (Abelian) groups and
trictly (strongly) invariant subgroups are needed in order to determine the solitary sub-
roups of (Abelian) groups. Such results are surveyed in Sections 2 and 3, respectively.
2
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After mentioning some general properties of solitary subgroups, in Section 4, we present
the proofs of our main results on solitary subgroups of Abelian groups, which we
summarize below. For a subgroup H of a group G, remind that the G-socle of H is
SG(H ) =

∑
f :G→H Im f .

The discussion of solitary subgroups of (Abelian) groups can be made into two
irections: a special class of groups is considered (e.g., divisible or torsion-free or torsion
r mixed) and we determine all solitary subgroups, or else, for a (more or less) arbitrary
roup we determine solitary subgroups which belong to a special class.

In the first direction, our results are gathered in the next

heorem 3. (A) Let G be a torsion-free group.
(1) If G is reduced then 0 is the only solitary subgroup of G.
(2) If G is divisible then G is solitary simple iff G has finite rank.
(3) If G is not reduced then the only solitary subgroup of G is D(G), the divisible

art, if it is of finite rank.
(B) (1) Let H be a torsion subgroup of a group G. Then H is solitary in G iff each

p-component Hp is solitary in G p.
(2) Let H be a subgroup of a reduced p-group G. Then H is solitary in G iff

H = G[pn] for some positive integer n and H is finite or else H = G and cardH = 2ℵ0 .
(C) The solitary subgroups of a splitting reduced mixed group G are the solitary

ubgroups of the torsion part if the 2-component of G, G2 = {a ∈ G : ∃n ≥ 0, a2n
=

} = 0.

These can be found (with proofs) as Theorem 17, Proposition 18 , Theorems 20 and
1.

In the second direction, our results are gathered in

heorem 4. (D) (i) The only solitary divisible p-subgroup of a group G is the (whole)
ivisible p-part, i.e., D(G p), if it is of finite rank.

(ii) The only solitary divisible torsion-free subgroup of a group is the (whole) divisible
orsion-free part, if it is of finite rank.

(E) The divisible part D(G) of a group G is solitary, iff Dp(G) is of finite rank for
ll primes p and r0(D(G)) (the torsion-free rank of D(G)) is finite.

(F) Let H be a subgroup of G = D(G) ⊕ R with divisible part D(G) and reduced
irect complement R. If H = D(H ) ⊕ L with L chosen as a subgroup of R then H is
olitary in G iff D(H ) is solitary in D(G), L is solitary in R and SL (D(G)) ≤ D(H ).

(G) The p-components of a torsion group G are solitary subgroups iff G is co-Hopfian.
(H) (i) If G = T (G) ⊕ F with reduced torsion part T (G) and torsion-free direct

omplement F, T is solitary in T (G), SK (T (G)) ≤ T and K is solitary in F then T ⊕ K
s solitary in G.

(ii) If G = T (G) ⊕ F with reduced torsion part T (G) and torsion-free direct
omplement F, T is solitary in T (G) and K is solitary in F then T ⊕ K is solitary
n G.

These can be found (with proofs) as Proposition 22, Corollary 23, Propositions 24,

6, 27 and Corollary 28.

3
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The section ends with an example of a solitary genuine mixed subgroup of a
o-Hopfian group.

Finally, in the last Section, we determine the solitary simple Abelian groups, that is,
he Abelian groups with no proper solitary subgroups, and the Abelian groups all whose
ubgroups are solitary.

All the groups we consider are Abelian (unless otherwise stated). For notions and
esults on Abelian groups we refer to the comprehensive treatise of L. Fuchs, [9,10]. As
n [9], a group is called countable if it is finite or of cardinality ℵ0. A group G is genuine

ixed if 0 ̸= T (G) ̸= G with torsion part T (G).
We will use the widely accepted shorthand “iff” for “if and only if” in the text.

. Co-Hopfian Abelian groups

First recall (mostly Varadarajan [7,17,18]) some well-known results.

roposition 5. (i) A direct decomposition G =
⨁

i∈I Hi with all Hi fully invariant
ummands is co-Hopfian iff every Hi is co-Hopfian.

(ii) Let G be a torsion group. Then G is co-Hopfian iff all primary components G p
re co-Hopfian.

(iii) Given any group 0 ̸= G, any infinite direct sum (or product) of copies of G is
ot co-Hopfian.

(iv) A divisible group D is co-Hopfian iff it is of finite torsion-free rank, and of finite
p-rank, for every prime number p, that is, D ∼= Qn

⊕ (
⨁

p∈P Z(p∞)n(p)) with positive
ntegers n, n(p).

(v) Any direct summand of a co-Hopfian group is co-Hopfian.
(vi) Let G = H ⊕ K with fully invariant H. If both H and K are co-Hopfian then so

s G.
(vii) nG is co-Hopfian whenever G is co-Hopfian.
(viii) Generally, quotients of co-Hopfian groups may not be co-Hopfian.

xamples. Both Q and Z(p∞) are co-Hopfian, and
⨁

p∈P Z(p) is co-Hopfian. Since
very Artinian module is co-Hopfian (the converse fails: Q), finitely cogenerated groups
re co-Hopfian. Z is not co-Hopfian. Hence, every finitely generated infinite Abelian
roup is not co-Hopfian (more, a finitely generated group is co-Hopfian iff it is finite).
or any group G, if a group T is not co-Hopfian, the direct product (or sum) G × T is
ot co-Hopfian.

Next we mention the following early result of R. Baer [2] (and some important
onsequences)

heorem 6. The group G is co-Hopfian if there exists a well ordered ascending chain
N (v) of injective invariant subgroups of G with the following properties.

(i) N (0) = 1 and N (t) = G for some ordinal t .
(ii) N (v + 1)/N (v) is co-Hopfian.
(iii) If v is a limit ordinal, then every element in N (v) is contained in some N (u) for

< v.
4
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Corollary 7. (a) Let H ↣ G ↠ K be an exact sequence of groups with K and H
co-Hopfian. If H is injective invariant then G is co-Hopfian.

(b) Let G = D(G) ⊕ R the direct decomposition of G with divisible part D(G) and a
educed direct complement R. Then G is co-Hopfian iff both D(G) and R are co-Hopfian.

(c) A splitting mixed group G = T (G) ⊕ F is co-Hopfian iff both T (G) and F are
o-Hopfian.

(d) Let G be a mixed group. If both T (G) and G/T (G) are co-Hopfian, so is G.

Therefore, the usual reductions for the determination of the co-Hopfian Abelian groups
ork: it suffices to find the reduced p-groups and the reduced nonsplitting groups.
Further, since an (Abelian) group is torsion-free (or divisible) exactly when all

ultiplications with positive integers are injective (respectively surjective), we can easily
ispose of co-Hopfian torsion-free groups

roposition 8. Every torsion-free co-Hopfian group is divisible.

orollary 9. (i) The only co-Hopfian torsion-free groups are the finite direct sums
⊕ Q⊕···⊕Q.
(ii) The only (genuine) splitting mixed co-Hopfian groups are of the form G =

T (G) ⊕ (Q ⊕ Q ⊕ ··· ⊕ Q) with only finitely many Q.

Concerning infinite co-Hopfian p-groups we mention (for a proof see [12]):

heorem 10. There are no infinite reduced co-Hopfian p-groups G such that cardG =

0 or cardG > 2ℵ0 .

orollary 11. (a) Any reduced countable co-Hopfian p-group is finite.
(b) Reduced co-Hopfian p-groups have finite Ulm invariants and so have cardinality

t most 2ℵ0 .

Therefore, since finite groups are co-Hopfian, the determination of the infinite reduced
o-Hopfian p-groups, reduces (assuming the continuum hypothesis) to p-groups of
ower of continuum. Such co-Hopfian p-groups do exist: in the of the torsion part
f

∏
∞

k=1 Z(pk) (an example of p-group of the power of continuum, without elements
f infinite height, which is not a direct sum of cyclic groups, which comes back to
urosh [14], see also 17.3, [9]), Crawley (see [5]) constructed a pure subgroup of the
ower of continuum, without elements of infinite height which has no proper isomorphic
ubgroups.

Finally notice that

roposition 12. For a (reduced) co-Hopfian group G, T (G) and G/T (G) may not be
o-Hopfian.

Indeed, in [11], some mixed groups are constructed which have the property that these
re extensions of a not co-Hopfian fully invariant subgroup by a not co-Hopfian group,
nd yet are co-Hopfian.
5
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Remarks. (1) Subgroups of co-Hopfian groups may not be co-Hopfian (e.g. Z as
subgroup of Q). As a special case, if G is a co-Hopfian unbounded p-group (for existence
see Pierce [15]), then any basic subgroup B of G is an unbounded direct sum of cyclic
p-groups, and so is not co-Hopfian.

(2) Any unbounded direct sum of cyclics is not co-Hopfian.

3. Strictly (strongly) invariant subgroups

Recall that a subgroup N was called strictly invariant in a group G if f (N ) ≤ N for
every injective group homomorphism f : N −→ G. Equivalently, for any subgroup H
of G, H ≤ N whenever a subgroup isomorphism N −→ H exists.

The strictly invariant subgroups form a complete lattice and so arbitrary sums of
strictly invariant subgroups are strictly invariant. Moreover, the strictly invariant property
for subgroups is not transitive.

Strictly invariant submodules were recently studied in [3] with special emphasis to
Abelian case. While an example of strictly invariant submodule which is not strongly
invariant was given, the authors were not able to construct such an example for the case
of Abelian groups. Therefore the paper was focussed on finding fairly general conditions
on the group and/or on the subgroup, which imply that the strictly invariant subgroups
are strongly invariant, in order to argue the enunciation of the following

Conjecture 13. Any strictly invariant subgroup of an Abelian group is strongly invariant.

Very large classes of Abelian groups are shown to support this conjecture.
We just list these (from [3]) in what follows.

Theorem 14. Let H be a strictly invariant subgroup of a group G. Then H is strongly
invariant in any of the situations listed below.

(a) H is torsion.
(b) G = D(G) ⊕ R with reduced R and rp(D(G)) ≥ max{rp(R), ℵ0} for every

p ∈ P ∪ {0}.
(c) G is torsion-free and H has finite rank.
(d) G is torsion-free and all rank 2 pure subgroups of G are indecomposable.
(e) G is torsion-free separable.

It is also proved that a subgroup of a completely decomposable group is strictly
invariant iff it is a fully invariant direct summand (so more than strongly invariant).

Therefore, for all groups in the list above, a subgroup is solitary iff it is strongly
nvariant and co-Hopfian, which means that we have to use the results on strongly
nvariant subgroups obtained in [6] and [4]. We abbreviate “strongly invariant” by “s-i”
n the next

Summary. 1. (a) Torsion-free divisible groups are strongly invariant simple.
(b) The only (proper) s-i subgroups of a divisible p-group G are the subgroups G[pn p ]

for positive integers n p.
(c) The s-i subgroups of a divisible group G are G itself and the s-i subgroups of its

torsion part T (G), i.e., direct sums of
⨁

p Ap, where Ap = G p or Ap = G[pn p ] for

positive integers n p.

6
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2. (i) Let G = D(G) ⊕ R be a decomposition of a group G with D(G) its divisible
art and R a reduced group. Every s-i subgroup N of G has the form N = D1 ⊕ R1 with

D1 s-i subgroup in D(G), R1 s-i subgroup in R. Conversely, a direct sum D1 ⊕ R1 with
D1 s-i subgroup in D(G), R1 s-i subgroup in R is a s-i subgroup in G iff SD1 (R) ≤ R1

nd SR1 (D(G)) ≤ D1.
(ii) A direct sum D′

⊕ R′
̸= G with D′ s-i subgroup in D(G), R′ s-i subgroup

n R is a s-i subgroup in G iff for every prime number p, if D′
=

⨁
Z(pn), then

SR′ (Z(p∞)) ≤ Z(pn) and SD′ (R) ≤ R′.
3. (i) Let A be a subgroup in a torsion group G. Then A is s-i in G iff for every prime

p, Ap is s-i in G p.
(ii) The only (proper) s-i subgroups of a reduced p-group are the subgroups G[pn]

or all positive integers n.
4. Let N be a subgroup of a mixed group G. Then T (N ) is s-i subgroup of T (G) iff

T (N ) is s-i subgroup of G.
Hence, the torsion s-i subgroups in a mixed group are only the subgroups G[n] for

ll positive integers n.
5. If in a (genuine) mixed group a subgroup contains a free direct summand (e.g. it

s infinite cyclic), it is not s-i.

. Standard properties and proofs

We first mention some standard properties for solitary subgroups

roposition 15. (a) Solitary subgroup is not a transitive property.
(b) Solitary subgroups have the intermediate subgroup property, i.e., if H ≤ K ≤ G

nd H is a solitary subgroup in G then H is also solitary in K .
(c) The solitary subgroups of a group G form a sublattice of the subgroup lattice

L(G), which is generally not complete.
(d) Solitary subgroups are quotient transitive, i.e., if K ≤ H ≤ G, K is solitary in

G and H/K is solitary in G/K , then H is solitary in G. In particular, if K is maximal
olitary in G, then G/K is solitary simple.

roof. (a) Consider G = H ⊕L = Z(2∞)⊕Z(2) with K = Z(2) < H . Then K = S(H ),
he socle, is strongly and so strictly invariant in H . It is not strictly invariant in G, since
he composition of the isomorphism K ∼= L with the injection iL : L −→ G does not

ap K into K . Finally, H is a fully invariant direct summand – as divisible part of G –
nd so strongly and strictly invariant in G.

Generalization. Let D be divisible and K a reduced strictly invariant subgroup of D.
ake G = D ⊕ K .

(b) Obvious.
(c) One uses ”for Si , i ∈ I = {1, . . . , n} and T subgroups in G, let T ∼=

∑n
i=1 Si .

hen T contains subgroups Ti (i ∈ I ) which are copies of Si (i.e., Ti ∼= Si ), respectively,
nd T =

∑n
i=1 Ti ”, in order to adapt the proof given in [13] (Th. 25). Note that inf{Si }i∈I

s not necessarily the intersection
⋂

S .
i

7



G. Călugăreanu and A.R. Chekhlov Expositiones Mathematicae xxx (xxxx) xxx

g

Q

P
e

P
i

f
a
T
π

E

o

I

t

s

T

p

P
o
c
i

Since infinite sums of co-Hopfian groups need not be co-Hopfian, this sublattice is
enerally not complete.

(d) Similar to Th. 27 [13]. □

We could ask the following

uestion. Is H n solitary in the direct product Gn whenever H is solitary in G?

The answer is negative and the next proposition clarifies this.

roposition 16. Let H be a solitary subgroup of G. Then the following conditions are
quivalent: (1) H 2 is a solitary subgroup of G2.

(2) H n is a solitary subgroup of Gn for every number n ∈ N.
(3) H is a strongly invariant subgroup of G.

roof. (1) ⇒ (3) Since solitary subgroups are strictly invariant, from Proposition 15
n [3], H is a strongly invariant subgroup of G.

(3) ⇒ (2) Since H is strongly invariant in G then H n is strongly invariant in Gn

or any finite n [6], SI6. Let Gn
= G1 ⊕ · · · ⊕ Gn , where G i ∼= G, πi : G → G i

re the projections, i = 1, . . . , n, and ϕ : H n
→ K is an isomorphism, K ≤ Gn .

hen K ≤ π1 K + · · · + πn K and since H n is a strongly invariant in Gn , we have
iϕ(H n) = πi K ≤ H n for all i = 1, . . . , n, i.e., K ≤ π1 K + · · · + πn K ≤ H n . Hence

H n is a solitary in Gn .
(2) ⇒ (1) Obvious. □

xample. Intersections of solitary subgroups need not be solitary.

Let G = Z(p∞)⊕Z(p). Then the socle Z(p)⊕Z(p) and Z(p∞) are solitary subgroups
f G but their intersection is not a solitary subgroup (not even fully invariant).

In what follows we present the proofs of our results, already summarized in the
ntroduction.

In the first direction, a special class of groups is considered (e.g., divisible or
orsion-free or torsion or mixed) and we determine all solitary subgroups.

Using results recalled in the previous sections we can easily determine the solitary
ubgroups of the torsion-free groups.

heorem 17. Let G be a torsion-free group.
(1) If G is reduced then 0 is the only solitary subgroup of G.
(2) If G is divisible then G is solitary simple iff G has finite rank.
(3) If G is not reduced then the only solitary subgroup of G is D(G), the divisible

art, if it is of finite rank.

roof. Since solitary subgroups must be co-Hopfian, these are divisible, so direct sums
f Q. These cannot consist of infinitely many copies (otherwise not co-Hopfian) and
annot have less than the whole divisible part. It remains to notice that Qn is strongly

n
nvariant in Q ⊕ R for any reduced torsion-free group R ̸= 0. □

8



G. Călugăreanu and A.R. Chekhlov Expositiones Mathematicae xxx (xxxx) xxx

t

P
e

P

i
c

g
q

H
a
i

T
s

fi
s

T

P

i

g

c
n

Further, the determination of solitary subgroups of torsion groups is harder, despite
he fact that the standard reduction to primary components works.

roposition 18. Let H be a torsion subgroup of a group G. Then H is solitary in G iff
ach p-component Hp is solitary in G p.

roof. Direct. For an arbitrary fixed prime number p, let K p be a subgroup of G p

with Hp ∼= K p. Then H =
⨁

q∈P Hq ∼=

(⨁
q ̸=p Hq

)
⊕ K p and since H is solitary

n G,
⨁

q∈P Hq =

(⨁
q ̸=p Hq

)
⊕ K p. Hence Hp = K p (by uniqueness of primary

omponents as subgroups). Conversely, let K be a subgroup of G with H ∼= K . Then⨁
q∈P Hq ∼=

⨁
q∈P Kq and so Hq ∼= Kq for every prime number q (isomorphic torsion

roups have isomorphic primary components). Hence, by hypothesis, Hq = Kq for every
and H = K , as desired.
Alternatively, since a torsion group is co-Hopfian iff its primary components are co-

opfian, and, every torsion strictly invariant subgroup of any group is strongly invariant,
nd, a subgroup H is strongly invariant in a torsion group G iff for every prime p, Hp

s strongly invariant in G p, the claim follows. □

We recall from [3], the following

heorem 19. Let H be a subgroup of a p-group G. Then H is strictly invariant iff it
atisfies one of the following conditions.

1. H = G.
2. there exists a non-negative integer n such that H = G[pn].
3. there exists a non-negative integer n such that H = G[pn] + D(G).

Therefore we may proceed with p-groups, and, due to Corollary 7, (b), we have to
find the solitary subgroups of direct sums Z(p∞)n

⊕R with co-Hopfian reduced R, i.e., to
nd the solitary subgroups of a reduced p-group. More precisely, if H ranges over all the
olitary subgroups of R then Z(p∞)n

⊕ H are the only solitary subgroups of Z(p∞)n
⊕ R.

heorem 20. Let H be a subgroup of a reduced p-group G. Then H is solitary in G iff
H = G[pn] for some positive integer n and H is finite or else H = G and cardH = 2ℵ0 .

roof. To prove this characterization we just use the following ingredients:
the torsion strictly invariant subgroups are strongly invariant,
for an arbitrary p-group, the subgroups G[pn] are strongly – and so also strictly –

nvariant,
the only (reduced) strongly invariant subgroups of a reduced p-group are the sub-

roups G[pn] for all positive integers n.
The cardinality part follows from Corollary 11 and the theorem before: any reduced

ountable co-Hopfian p-group is finite (and finite groups are co-Hopfian) and there are
o infinite reduced co-Hopfian p-groups G such that cardG = ℵ0 or cardG > 2ℵ0 . □

The determination of the solitary subgroups for mixed groups.
9
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Theorem 21. The solitary subgroups of a splitting reduced mixed group G are the
olitary subgroups of the torsion part if the 2-component of G, G2 = {a ∈ G : ∃n ≥

0, a2n
= 0} = 0.

Proof. Consider a splitting mixed group G = T (G) ⊕ F . The condition G2 = 0 is
necessary in order to have only splitting subgroups for G. Indeed, if G2 = 0 then all
strictly invariant subgroups are projective invariant (see [3]). Therefore if H = T (H )⊕K
is a solitary subgroup, it is co-Hopfian and so K is co-Hopfian torsion-free. Since G is
educed, K is reduced and we have K = 0. □

If the torsion part T (G) is bounded (and the 2-component is zero), according to Baer,
omin theorem (100.1 in [10]), the group is splitting and the above theorem applies.

Next we follow the second direction: for a (more or less) arbitrary group we determine
olitary subgroups which belong to a special class (i.e., divisible subgroups, p-subgroups
nd mixed subgroups because this is already clear for torsion-free subgroups).

The solitary divisible subgroups are determined in the following

roposition 22. (i) The only solitary divisible p-subgroup of a group G is the (whole)
ivisible p-part, i.e., D(G p), if it is of finite rank.

(ii) The only solitary divisible torsion-free subgroup of a group is the (whole) divisible
orsion-free part, if it is of finite rank.

roof. If such divisible subgroups have infinite rank, these are not co-Hopfian (nor
olitary). If less than the whole divisible part, these are not strictly invariant (nor solitary).
onversely, having finite rank, these divisible parts are co-Hopfian. These are also

trictly invariant, because as fully invariant direct summands, such subgroups are strongly
nvariant (see [6]). □

Moreover

orollary 23. The divisible part D(G) of a group G is solitary, iff Dp(G) is of finite
ank for all primes p and r0(D(G)) (the torsion-free rank of D(G)) is finite.

roof. Just use Propositions 18, 15 (c) and 22. □

Useful for the standard reductions is the following

roposition 24. Let H be a subgroup of G = D(G) ⊕ R with divisible part D(G) and
educed direct complement R. If H = D(H )⊕ L with L chosen as a subgroup of R then

H is solitary in G iff D(H ) is solitary in D(G), L is solitary in R and SL (D(G)) ≤ D(H ).

Proof. Proposition 15 from [3] shows that the conditions are necessary. These are also
sufficient. Indeed, since Hom(D(H ), R) = 0, every monomorphism ϕ : H → G may be

presented as a matrix ϕ =

(
α β

0 γ

)
, where α : D(H ) → D(G) is a monomorphism

and β : L → D(G), γ : L → R. Note that γ is a monomorphism. Indeed, if
0 ̸= x ∈ ker γ then β(x) ̸= 0 (since ϕ is a monomorphism). Since β(x) ∈ D(H ) = im α,
10
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we deduce β(x) = α(y) for some y ∈ D(H ) and 0 ̸= x − y ∈ ker ϕ, a contradiction.
herefore γ (L) = L , whence ϕ(H ) = H . □

Note that L cannot always be chosen for L ≤ R, but it can be chosen if the
2-component vanishes (as in Theorem 21).

As a special case, the socle of a p-group G is solitary iff G is of finite rank. Moreover,
the socle of a torsion group is solitary exactly if all primary components are of finite rank.

Since the torsion part T (G) of an Abelian group is obviously (strongly and so) strictly
invariant in G, from Theorem 0 (introduction) we obtain

Proposition 25. T (G) is a solitary subgroup of a group G if and only if T (G) is
o-Hopfian (as a group).

Therefore, fully invariant (pure) subgroups need not be solitary. A simple example is
pG for G =

⨁
∞

i=1 Z(pi ). Since pG ∼= G, this is a fully invariant subgroup which is not
trictly invariant.

Neither are fully invariant direct summands. The question reduces (modulo co-
opfian) to strictly invariant subgroups, and was discussed in the previous Section.
Further

roposition 26. The p-components of a torsion group G are solitary subgroups iff G
s co-Hopfian.

roof. The p-components are uniquely determined by G with respect to the property of
eing p-groups with direct sum = G. Therefore, for a prime number p, H ∼= G p does
generally imply H ≤ G p, i.e., G p are strictly invariant, but does) not generally imply

H = G p unless G p is co-Hopfian. □

Finally, a similar proof to the one of Proposition 24 shows that

roposition 27. If G = T (G) ⊕ F with reduced torsion part T (G) and torsion-free
irect complement F, T is solitary in T (G), SK (T (G)) ≤ T and K is solitary in F then

T ⊕ K is solitary in G.

orollary 28. If G = T (G) ⊕ F with reduced torsion part T (G) and torsion-free direct
omplement F, T is solitary in T (G) and K is solitary in F then T ⊕ K is solitary in G.

roof. Follows from the previous proposition since Hom(K , T (G)) = 0 if we note that
K is divisible (Theorem 17) and T (G) is reduced. □

By Corollary 7, any split (genuine) mixed co-Hopfian group is not solitary simple,
ince its torsion part is a solitary subgroup. From [3], Theorem 20 it follows that if
he p-component of a solitary subgroup F of a reduced group G is unbounded then

Tp(G) ≤ F .
We end this section with an
Example of a solitary genuine mixed subgroup of a co-Hopfian group.
Let H be a maximal pure subgroup of the group of p-adic integers Jp containing Zp.

hen H has cardinality 2ℵ0 and J /H ∼ Q. Let G be the mixed group from [11],
p =

11
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Theorem 3.1, with T (G) = T , a semi-standard reduced p-group, G/T ∼= H and
F = pG + T . Since F/T = (pG + T )/T = p(G/T ) ∼= H and F/pZp ∼= A, where
A = Ext(Q/Z; T ) (see [11], § 3), it follows that, as G is, F is also co-Hopfian.

We shall show that F is a solitary in G. Assume that f : F → G is a monomorphism
with f (F) ≰ F . Since f (T ) ≤ T we have f (F/T ) ≰ F/T and so f (pZp) ≰ F .

ereinafter p f (F) ≤ F and T [p] = ker p f . Consider p f as endomorphism of F/T . In
he same way, as in [11], the action of p f reduces to multiplication with some rational
umber

n
m

, where n, m are coprime and p ∤ m. Thus, mp f − n1F induces the zero
map on F/T and so (mp f − n1F )F ≤ T , in particular (mp f − n1F )(pZp) ≤ T .
However, every homomorphic image of pZp in T is cyclic, and so bounded, so there
exists an integer r ≥ 0 such that pr (mp f − n1F )(pZp) = 0. Thus, the endomorphism
pr (mp f − n1F ) of F annihilates pZp and so passes to the quotient inducing a map:
F/pZp ∼= A → T . This image is both cotorsion and torsion, and hence is bounded.
So replacing r by a larger integer if necessary, we may suppose that this image is zero
i.e. pr (mp f − n1F ) = 0. Since T is unbounded there is a cyclic summand ⟨x⟩ of T
of order greater than pr , say ord(x) = r + s. Thus, 0 ̸= pr m(ps−1x) ∈ T [p] and so
pr n(ps−1x) = p f (pr m(ps−1x)) = 0 since ker p f = T [p]. Hence, p divides n, say
n = pn′ and so pr+1 f = pr n

m
. Finally pr+1 f (F/T ) = pr+1(n′/m)(F/T ), whence

f (F/T ) = (n′/m)(F/T ) = F/T , since F/T is torsion-free and n′/m induces an
automorphism of F/T , which is a contradiction.

. Two extreme classes

Obviously, 0 is solitary in every group G. A subgroup H will be termed proper in G
if 0 ̸= H ̸= G. A group G is called solitary simple (or solitary-free in [13]) if 0 and
G are its only solitary subgroups (equivalently, if it has no proper solitary subgroups).
According to Corollary 1, only co-Hopfian groups may be solitary simple.

Again it is easier to dispose of the torsion-free case.
Using Propositions 8 and 22, (ii) we deduce

Theorem 29. The only solitary simple torsion-free groups are the finite rank divisible
groups.

Proof. Since any solitary subgroup H of a group G is co-Hopfian as a group, if it is
torsion-free it must be divisible, so is a direct summand of G. So H = G since otherwise
H is not strictly invariant in G. □

Corollary 30. A divisible group D ̸= 0 is solitary simple iff it is of finite rank,
torsion-free or p-group.

This can be rephrased as

Proposition 31. A divisible group D ̸= 0 has proper solitary subgroups iff the rank of
Dp is nonzero finite and Dp ̸= D at least for one prime p.
12
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Proof. If a solitary subgroup H is not torsion then by Corollary 19 in [3] , H = D. So
f 0 ̸= H ̸= G then H is torsion and H is solitary in T (D). Hence the rank of Dp is

finite at least for one prime p. The sufficiency is obvious. □

Further, we determine the torsion solitary simple groups.
From Proposition 26 it follows that co-Hopfian torsion groups are not solitary simple

unless these are p-groups (otherwise the p-components are proper solitary subgroups).
Therefore, we just have to find the co-Hopfian p-groups which are solitary simple.

Since we already dealt with divisible solitary simple groups, we go into two cases.
(a) G = D(G) ⊕ R with D(G) ̸= 0 ̸= R reduced, is a co-Hopfian p-group. Such

groups are not solitary simple since D(G) is a proper solitary subgroup of G.
(b) G is a reduced co-Hopfian p-group. By Corollary 11(a), such a p-group is either

nite or else of the power of continuum.
Finite solitary simple (not necessarily commutative) p-groups were determined in [13].
We mention here that in the Kaplan, Levy’s paper (submitted December 2007), the

authors claim their intention to deal with solitary subgroups of Abelian groups (“work
in preparation” in References), but this did not happen the next 13 years (though both
authors published meanwhile together or separately at least 16 papers each).

For the sake of completeness, we quote from [13] the following (in the paragraph
below, groups may not be commutative and so the group operation is multiplication).

Definition. A nontrivial group is called (normal) solitary-free if it has no proper (normal)
olitary subgroups.

Note that all groups which are direct products of copies of a simple group T are
normal) solitary-free. This is an immediate consequence of the fact that such groups are
haracteristically simple. We shall call (normal) solitary-free groups which are not of the
orm T n , where T is simple, special (normal) solitary-free groups. In [13] Section 2 we
an find

roposition 32. A special solitary-free p-group must be non-Abelian.

roof. Let G be an abelian p-group. Then Ω1(G) = {x ∈ G : x p
= 1} is a nontrivial

olitary subgroup of G which is isomorphic to Zn
p for some positive integer n. If G is

olitary-free, then G = Ω1(G) which is not special. □

Therefore, for our paper, we immediately derive

orollary 33. A finite (Abelian) p-group is solitary simple iff it is finite rank elementary.

roof. By the previous proposition, such a p-group is special, so a finite direct sum
f simple p-groups. Hence it is isomorphic to Z(p)n for some positive integer n, i.e. a
nite rank elementary p-group. The converse is obvious, but more can be shown (using
roposition 25 in [6]): a torsion group is strictly invariant simple iff it is an elementary

p-group (i.e., iff it is fully invariant simple). □
13
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Remark. Again in the not necessary commutative case, for completeness, we mention
hat a finite solvable group is characteristically simple iff it is an elementary Abelian

group.

Finally some easy remarks about (genuine) mixed solitary simple groups.
According to Proposition 25, a genuine mixed group with co-Hopfian torsion part is

ot solitary simple.
By corollary 3 any split (genuine) mixed co-Hopfian group is not solitary simple. So

f there exist (genuine) mixed groups G which are solitary simple, these are not splitting,
very p-component has finite Ulm invariants.

In the light of the example which closes the previous section, we ask the following

uestion. Do co-Hopfian mixed solitary simple groups exist?

emark. Another, more general definition for “solitary simple” would be: a group G
hose only solitary subgroup is 0. According to Corollary 1, these are not co-Hopfian.
e do not address the determination of such groups in this paper.

In closing, here are the groups all whose subgroups are solitary.

heorem 34. All the subgroups of an Abelian group are solitary iff the group is a direct
um of cocyclic p-groups, at most one for each prime number p.

roof. From Theorem 0 (introduction), such a group must be co-Hopfian, and so are
ll its subgroups. Since Z is not co-Hopfian, such a group must be torsion. According
o Proposition 18, a torsion group has this property iff all its p-components have this

property. For any fixed prime number p, let G be a co-Hopfian p-group all whose
subgroups are (co-Hopfian and) solitary. If G contains a subgroup H which is the direct
sum of two of its proper subgroups, the socle of H contains at least two nonisomorphic
order p subgroups, none of which is solitary. Therefore the rank of G must be 1.
However, this happens exactly when G is isomorphic to a subgroup of Q or Z(p∞).
Since the first case cannot happen, finally G is cocyclic, finite or infinite. Finally, cocyclic
p-groups have a subgroup lattice which is a chain, and so clearly all subgroups are
solitary. □

This result is just a special case of

Theorem 35 ([19]). Over a commutative Noetherian ring R, all submodules of a module
are solitary exactly if it is isomorphic to a submodule of the injective hull E of the module
L(R/Mα), where Mα runs over the set of maximal ideals of R.

As a special case, we obtain the commutative case of the following result (from [13])

Theorem 36. Let G be a finite group. Then, every cyclic subgroup of G is solitary in
G if and only if G is cyclic.
14
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