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Abstract

Only some indirect proofs are known (using modules or lattices) for
a simple ring theoretic statement: in a (von Neumann) regular ring the
intersection of two right principal ideals is again a right principal ideal.

In this short note, a direct proof is given and a new property of this
lattice is proved.

1 Introduction

In his seminal paper ”On regular rings” (1936) [5], von Neumann introduced the
(well-known now) new class of rings called (von Neumann) regular rings, and
(among others) proved that for such rings the set of all the right principal ideals
forms a (modular complemented) lattice (with respect to sum and intersection).

The existence of the sup’s was already proved in von Neumann’s paper -
and is contained in most of the nowadays textbooks (e.g., see [1] and [2]) - in
an elementary way: it suffices to prove that for every two idempotents e and f ,
the right ideal I = eR+ fR is (also) generated by an idempotent. The plan is
the following:

1) we choose a (suitable) element a = ef and show that eR+fR = eR+aR;
2) since a is regular, there is an x ∈ R such that a = axa. Then g = ax is

an idempotent and the selection of a assures eg = 0;
3) we check aR = gR;
4) we consider f ′ = ge; this is an idempotent, gR = f ′R and e, f ′ are

orthogonal;
5) finally, e+ f ′ is an idempotent and I = eR+ fR = eR+aR = eR+ gR =

eR+ f ′R = (e+ f ′)R which concludes the proof.

Of course, roughly speaking, eR + fR = (e + efxe)R, where ef = efxef ,
using regularity for ef .
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There are currently no direct proofs for the similar inf claim (i.e., in a regular
ring, the intersection of two right principal ideals is a right principal ideal). The
purpose of this short note is to fill this (74 years old) gap. Before doing this we
mention what the reader can find in the existing literature.

In the sequel, all rings R have identity and, for an idempotent e, e = 1 − e
denotes the complementary idempotent.

2 Von Neumann’s proof

In the above mentioned (1936) paper, von Neumann’s proof for the existence of
the inf’s uses the following prerequisites:

1) For any ring R, the set R of right annihilator ideals in R forms a complete
lattice with respect to the partial ordering given by the inclusion, (order) anti-
isomorphic to the lattice L of left annihilator ideals in R (e.g., see [4]).

Actually, the map φ : R −→ L which gives this anti-isomorphism is sim-
ply φ(A) = l(A), the left annihilator of A. For right annihilator ideals A,B,
inf(A,B) = A∩B and sup(A,B) = r(l(A+B)), the right annihilator of the left
annihilator of the sum.

2) The following are equivalent for an element a ∈ R:
(i) there is an element x ∈ R such that a = axa;
(ii) there is an idempotent e = e2 such that aR = eR, principal right ideals;
(iii) aR has a direct complement (i.e., there is a right ideal B such that

(aR) + B = R and (aR) ∩ B = {0}).
3) In a (von Neumann) regular ring, every right principal ideal is the right

annihilator of a suitable left principal ideal.
Therefore,
4) In a (von Neumann) regular ring, the above anti-isomorphism φ from the

principal right ideals of R gives an (order) anti-isomorphism onto the principal
left ideals of R.

Clearly, since the definition of a regular ring is right-left symmetric, every-
thing can be stated (and proved) also for left (principal) ideals.

Having recalled all this, the proof given by von Neumann was: let A,B
be principal right ideals of R. The images φ(A) = l(A), φ(B) = l(B) are left
principal ideals, and so, have a sup which is the sum l(A) + l(B). Coming back
through φ−1, the inf(A,B) exists and must be r(l(A)+ l(B)). But this is exactly
r(l(A) ∩ r(l(B)) = A ∩ B.

3 Lam’s proof

A simple and elegant proof was given as Ex.21.6 [3]: let A,B be two right
principal ideals and C := A + B. Since R is regular, A, B and C (using the
proof for the sup’s!) are direct summands in RR. Thus R/B is a projective
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R-module and so is its direct summand C/B. Therefore, the exact sequence

0 −→ A ∩B −→ A −→ C/B −→ 0

splits, so A ∩ B is a direct summand of A. It follows that A ∩ B is a direct
summand of RR, so A ∩B = eR for some idempotent e ∈ R.

Just some comments:
1) first of all, it is kind of frustrating that the proof for the inf’s uses the

proof of the sup’s;
2) in order to understand this proof the reader needs the following (say,

graduate) ingredients:

• for a right ideal I the following conditions are equivalent: (a) I = eR; (b)
I is isomorphic to a direct summand of R; (c) R/I is a projective right
R-module;

• direct summands of projective R-modules are projective;

• PR is projective iff any epimorphism BR −→ PR splits;

• splitting exact sequences are also co-splitting (because above from splitting
A −→ C/B we deduce A ∩B −→ A is (co-)splitting).

That is, a genuine module machinery for a 100% ring theoretic result!

4 The suitable idempotent

What means a direct (ring theoretic) proof?
Similarly to the sup existence, what is missing (from already 74 years) is,

for every two idempotents e and f , an idempotent d such that eR ∩ fR = dR.
Surprisingly enough, the selection of d starts with the same element already
mentioned in the Introduction.

In a similar vein with the plan mentioned for the sup in the Introduction:
1) we start with the element a = ef , which is generally not an idempotent;
2) using the regularity of R, let x ∈ R be such that a = axa; we consider

(slightly different) g = xa, which is an idempotent;
3) we consider the complementary idempotent g and we check eR ∩ fR =

fR ∩ gR;
4) it can be generally proved that for idempotents h, k ∈ R, hkR = hR∩kR

if and only if hk = khk;
5) using (4), fR ∩ gR = fgR and so d = fg is the required idempotent.

Here is the result together with a simpler proof

Theorem 1 Let e, f be arbitrary idempotents in a regular ring R and x ∈ R
such that efxef = ef . Then d = f −fxef is an idempotent and eR∩fR = dR.

3



Proof. If w ∈ eR ∩ fR, there are elements u, v ∈ R such that w = eu = fv.
Hence ew = e(eu) = eu = w and so ew = 0. We compute dv = (f − fxef)v =
w − fxew = w and so w ∈ dR. Conversely, we show that ed = fd = d and so
d ∈ eR ∩ fR.

First, fd = f is obvious. Secondly, ed = e(f − fxef) = ef − efxef =
ef − (1 − e)fxef = ef − fxef + ef = (e+ e)f − fxef = f − fxef = d.

5 Referee is right!

When trying to publish this note the referee claims that the suitable idempotent
can be obtained using von Neumann’s anti-isomorphism.

Indeed, this can be done (not exactly obvious, using the existing bibliogra-
phy!) as follows (we continue to use the notations from section two).

Lemma 2 Let a, b ∈ R Then a = ab implies a ∈ Rb which is equivalent to
Ra ⊆ Rb. If b is an idempotent, the first implication is also an equivalence.

Proof. Everything straightforward (since 1 ∈ R), but: for the converse, if xb
then ab = (xb)b = xb = a.

Further

Proposition 3 In a regular ring, if e is an idempotent then l(eR) = Re.

Proof. Since annihilators of principal ideals are principal ideals (and these
may be considered as generated by idempotents), suppose l(eR) = Rf . We
check Rf = Re. Since RfeR = 0 we deduce fe = 0. Therefore Rf ⊆ Re
Lemma
⇐⇒ f = fe = f(1 − e) ⇐⇒ fe = 0. Conversely, obviously Re ⊆ l(eR) since
ReeR = 0.

Now, let us come back to the final paragraph of Section 2.
By the above Proposition, φ(eR) = Re and φ(fR) = Rf . For their sum,

by the well-known formula, Rf + Re = R(f + fxef) where ef = efxef , using
regularity for ef . Then φ−1(R(f + fxef)) = [1 − (f + fxef)]R using the left-
right symmetric of the previous Proposition. But this is exactly, R(f − fxef)
as in our Theorem 1.

6 Application

Our previous result reveals another property of the regular rings.
First recall the following elementary result

Lemma 4 Let RR = I ⊕ J be a right ideal direct decomposition of R. There
exists an idempotent e such that I = eR and J = eR.

Much is known about idempotents e and f for which eR = fR. For example,
here is a selection from Lam [3]:
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Proposition 5 Let e and f be idempotents in a ring R. The following are
equivalent:

1. eR = fR

2. ef = f and fe = e

3. there exists r ∈ R such that f = e+ ere

4. there exists u ∈ U such that f = eu

5. Re = Rf̄ .

Next, the direct complements of a right ideal direct summand may be char-
acterized as follows

Lemma 6 Let R = eR ⊕ gR. Then gR = (e − ere)R for a suitable r ∈ R.
Conversely, for every r ∈ R, (e− ere)R is a direct complement for eR.

Proof. Since there is an idempotent f such that eR = fR and gR = fR,
according to 3 above, f = e + ere and g = f + fsf for suitable r, s ∈ R. Thus
g = f(1 + fsf) with u = 1+ fsf invertible in R (with inverse 1− fsf). Hence
g = (e− ere)u and so gR = (e − ere)R.

As for the converse, eR ⊕ (e − ere)R = R if there is an idempotent f ∈ R
such that eR = fR and (e − ere)R = fR. Clearly f = e + ere suits well for
this.

Remark 7 Actually R(e− ere) = Re.

Further, notice another easy exercise

Lemma 8 Let A, B be direct summands of a module MR and A ∩ B = {0}.
The following statements are equivalent

(a) A has a direct complement which includes B;
(b) A⊕B is a direct summand in M .

If any of these conditions holds, we say M has enough direct complements
(see [6]).

Finally,

Proposition 9 If R is a regular ring then RR has enough direct complements.

Proof. Suppose eR∩fR = {0}. According to our Theorem, since (f−fxef)R =
eR ∩ fR, f − fxef = 0 follows (here efxef = ef by regularity). Hence (e +
efxe)f = (e + e)f = f and so, choosing r = −fx (in Lemma 6) and g =
(e− ere)f , we obtain f ∈ gR that is, fR ⊆ gR and eR⊕ gR = R.
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7 Comments

While von Neumann’s proof obviously can be also used in order to show that
the existence of the inf’s implies the existence of the sup’s, dualization for Lam’s
proof is not straightforward.

Indeed, automatic use of 9’s Lemma (everything needed is on the following
diagram with exact rows and columns) does not work (in either direction):

0 0 0
↓ ↓ ↓

0 −→ A ∩B −→ A −→ A+B

B
−→ 0

↓ ↓ ↓
0 −→ B −→ R −→ R/B −→ 0

↓ ↓ ↓
0 −→ A+B

A
−→ R/A −→ R

A+B
−→ 0

↓ ↓ ↓
0 0 0

,

that is, splitting 2-nd and 3-rd exact rows do not generally imply splitting 1-st
row (nor dually, splitting 1-st and 2-nd exact rows do not imply splitting 3-rd
row). One has to involve projective modules.

For intersection: since B is direct summand in R, R/B is projective. Since
A + B is direct summand in R, so is A+B

B
in R/B. Hence A+B

B
is projective,

A −→ A+B

B
(co)splits and so A∩B −→ A splits. Thus A∩B is direct summand

in A and so, in R.

For sum: the pushout

R −→ R/B
↓ ↓

R/A −→ R

A+B

with projective R/A, R/B should be used. But a pushout of projective modules
is not generally projective (this way A ∩B would not be involved).

Therefore something different is needed. Not homological but revealing
something related to regular rings, here is

Another solution.

Theorem 10 Let A,B and A∩B be direct summands in RR. If R is a regular
ring then A+B is a direct summand of RR, too.

Proof. By modularity, A∩B is direct summand in A, say A = (A∩B)⊕C, and
in B, say, B = (A ∩B)⊕D. Simple computation shows that A+B = B ⊕ C.

Further, since B is a direct summand in RR and B ∩ C = {0}, R = B ⊕ E
where E can be chosen (see Application above) with C ≤ Ė. Since C is a
direct summand of RR, it also direct summand of E, say E = C ⊕ F . Finally,
R = B ⊕ E = B ⊕ C ⊕ U = (A+B)⊕ U , as desired.
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