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For a ring R, denote by reg(R) the (von Neumann) regular elements, that
is, the elements a ∈ R for which an x ∈ R exists such that a = axa. Sometimes,
x is called an inner inverse for a.

In this short note we present an undergraduate approach to regular matrices
of size 2 and (partly) 3.

Simple remarks. 1) If a ∈ reg(R) in any (unital) ring R and u ∈ U(R)
then both au, ua ∈ reg(R) [incl. −a].

[Proof for au = axau = (au)u−1x(au)]. Hence, (unit-)regularity is invariant
to association.

2) Obviously 0 and the units [x = a−1] are (unit-)regular in any ring.
3) Suppose R is an integral (commutative) domain and let S := Mn(R). If

A = AXA, taking determinants, det(A)(det(AX)−1) = 0 so det(A) = 0 or else
det(AX) = 1 (and also det(XA) = 1). Hence AX and XA are units, and since
the matrix ring is Dedekind finite, both A, X are units.

4) Suppose d is the gcd (if any) of the entries of a regular matrix A. Then
d is an idempotent.

Therefore only the det(A) = 0 case remains to be settled.

1 2× 2 matrices

Lemma 1 If char(R) 6= 2, for a 2 × 2 matrix over any commutative ring,
det(A) = 0 iff Tr(A2) = Tr2(A).

Proof. If det(A) = 0 by Cayley-Hamilton’ theorem, A2 = Tr(A)A. Taking

traces gives Tr(A2) = Tr2(A). Conversely, if A =

[

a b
c d

]

, the condition

yields a2 + 2bc+ d2 = (a+ d)2 which gives ad = bc, i.e. det(A) = 0.

In the sequel, we say elements a, b, c, d are coprime (or, equivalently, the
row

[

a b c d
]

is unimodular) if there exist elements x, y, z, t such that
ax+ cy + bz + dt = 1.

In the n = 2 case it is easy to prove the following characterization
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Theorem 2 Let R be a commutative domain. A nonzero 2×2 matrix with zero
determinant is (von Neumann) regular iff its nonzero entries are coprime.

Proof. Set A =

[

a b
c d

]

6= 02 with ad = bc and X =

[

x y
z t

]

. Then

AXA = A amounts to a (nonhomogeneous) system, namely

a2x+ acy + abz + bct = a
abx+ ady + b2z + bdt = b
acx+ c2y + adz + cdt = c
bcx+ cdy + bdz + d2 = d

.

Since ad = bc, the system reduces to

a(ax+ cy + bz + dt) = a
b(ax+ cy + bz + dt) = b
c(ax+ cy + bz + dt) = c
d(ax + cy + bz + dt) = d

.

If any of a, b, c, d is zero, the corresponding equality holds for any x, y, z, t.
Since we have assumedA 6= 02, at least one entry (say a) is nonzero. Dividing

by a the first equation, we get ax + cy + bz + dt = 1, which holds iff a, b, c, d
are coprime.

Remarks. 1) Notice that the domain hypothesis is used just for the neces-
sity.

2) In the above statement, if three entries are zero, the fourth must be a
unit, i.e. the matrix is of form uE11, uE12, uE21, uE22 with u ∈ U(R). If
R = Z, the fourth must be = ±1, i.e., we get the matrices ±E11, ±E12, ±E21,
±E22.

Summarizing, regular 2× 2 integral matrices are (zero and the) units, which
are unit-regular and so regular, and, rank 1 matrices with coprime nonzero
entries. These are ±E11, ±E12, ±E21, ±E22, the matrices with two nonzero co-
prime entries, and the matrices with four nonzero (collectively) coprime entries
[only one zero, not possible].

3) The system obtained in the previous proof also gives an inner inverse for
any regular 2×2 matrix. We just have to chose x, y, z, t in ax+cy+bz+dt = 1,
corresponding to the nonzero coprime entries, and zero for the zero ones. See
examples below.

4) Using the above characterization, it is easy to give an example which
shows that reg(R) is not multiplicatively closed :

take A =

[

1 1
0 0

]

, B =

[

1 0
1 0

]

which have nonzero coprime entries (both

idempotents); then AB =

[

2 0
0 0

]

is not regular in any ring R with 2 /∈ U(R).

Moreover, BA =

[

1 1
1 1

]

is regular by the theorem. Indeed, X = E11 is an

inner inverse [using the ax+ cy + bz + dt = 1: a = x = 1, all the others, zero].
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Question. If gcd(a; b; c; d) = 1 and ad = bc, does it follow that at least two
are coprime ?

Examples. 1) A =

[

1 3
0 0

]

; take x = 4, z = −1, y = t = 0. One can

check

[

1 3
0 0

] [

4 0
−1 0

] [

1 3
0 0

]

=

[

1 3
0 0

]

.

2) Notice that three nonzero entries, and only one zero, contradicts ad = bc.
So the possible regular matrices with zero determinant are uE11, uE12, uE21,
uE22 with u ∈ U(R), with three zeros, two zeros and two coprime entries or else
all four nonzero (collectively) coprime entries with ad = bc.

A =

[

1 2
2 4

]

; take x = 5, t = −1, y = z = 0.

One can check

[

1 2
2 4

] [

5 0
0 −1

] [

1 2
2 4

]

=

[

1 2
2 4

]

.

Observe that this happens for all zero determinant matrices which have at
least one entry = 1, or, at least two coprime entries.

3) A =

[

2 3
6 9

]

; take x = 2, z = −1, y = t = 0. One can check
[

2 3
6 9

] [

2 0
−1 0

] [

2 3
6 9

]

=

[

2 3
6 9

]

.

1 = ax+ cy + bz + dt =
[

a b
]

[

x
z

]

+
[

c d
]

[

y
t

]

.

2 3× 3 matrices

Is this true for 3× 3 matrices ? NO.
Partial check for 3× 3. We write just the first equality (out of 9).
Denote A = [aij ], X = [xij ], 1 ≤ i, j ≤ 3.
row1(AX) = [a11x11 + a12x21 + a13x31, a11x12 + a12x22 + a13x32, a11x13 +

a12x23 + a13x33] and

col1(A) =





a11
a21
a31



 yield the first equation:

S11 = a11(a11x11 + a12x21 + a13x31) + a21(a11x12 + a12x22 + a13x32) +
a31(a11x13 + a12x23 + a13x33) = a11.

If det(A) = 0 can we factor out a11 ? Moreover, do we get

a11(
[

a11 a12 a13
]





x11

x21

x31



+
[

a21 a22 a23
]





x12

x22

x32



+

+
[

a31 a32 a33
]





x13

x23

x33



) = a11 ?

If so, we have again the coprime condition.
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From the above sum S11 we already have terms which have the factor a11,
i.e.

a11x11 + a12x21 + a13x31 + a21x12 + a31x13,
and another four terms, i.e. a21(a12x22 + a13x32) + a31(a12x23 + a13x33).
Can we express these with the factor a11 because of det(A) = 0 ?
The remaining terms should be

a11

(

[

a22 a23
]

[

x22

x32

]

+
[

a32 a33
]

[

x23

x33

])

which amounts to

a11a22 = a12a21, a11a23 = a13a21, a11a32 = a12a31, a11a33 = a13a31.
That this, the vanishing of the cofactors in A which include a11:
∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

=

∣

∣

∣

∣

a11 a13
a21 a23

∣

∣

∣

∣

=

∣

∣

∣

∣

a11 a12
a31 a32

∣

∣

∣

∣

=

∣

∣

∣

∣

a11 a13
a31 a33

∣

∣

∣

∣

= 0.

For a12 this reduces to the vanishing of the cofactors which include a12, and
so on.

Finally, for an analogous characterization, we need all 2× 2 cofactors to be
zero, i.e. rank(A) = 1.

Which is clearly stronger than det(A) = 0.

We have (partly) obtained the following

Proposition 3 Let R be a commutative domain. A nonzero 3 × 3 matrix of
rank 1 is (von Neumann) regular iff its nonzero entries are coprime.

Finally, here is an example of rank 2 regular 3× 3 matrix with not coprime
entries. As noticed in the simple remark (4), the gcd of the entries should be
an idempotent.

Example. Consider A =





3 0 0
0 3 0
0 0 0



 = 3(E11 + E22) ∈ M3(Z6). Clearly,

A = AXA for X = E11 + E22 since 32 = 3 over Z6 (which is a commutative
ring, but not a domain).

3 Lam, Swan

In [1], the following development of the elementary results in the previous section
is given.

For any matrix A ∈ Mn(R) (where R is a commutative ring), let Di(A)
(1 ≤ i ≤ n) denote the i-th determinantal ideal of A, that is, the ideal in R
generated by the i × i minors of A. We have a descending sequence D0(A) ⊇
D1(A) ⊇···⊇ Dn(A) = det(A)·R ⊇ (0), where, by convention, D0(A) = R.

Theorem 4 A matrix A = (aij) ∈ Mn(R) is von Neumann regular iff each
determinantal ideal Di(A) (0 ≤ i ≤ n) is idempotent (or equivalently, each
Di(A) is generated by an idempotent in R).
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For the last equivalence, we use the well-known fact that a f.g. ideal is
idempotent iff it is generated by an idempotent.

Remark. In the case where R is a connected ring [i.e. has only trivial
idempotents], the theorem shows that A is von Neumann regular iff each Di(A)
is either (0) or R.

The small size special cases which appear are the following

Proposition 5 Let A =

[

a b
c d

]

with ad = bc and D1(A) = eR, where e = e2.

Fix an equation aw+bx+cy+dz = e. Then the matrix M =

[

w y
x z

]

satisfies

A = AMA (so A is von Neumann regular, with quasi-inverse M).

Proposition 6 The (alternating) matrix A =





0 −c b
c 0 −a
−b a 0



 is von Neu-

mann regular iff aR+ bR+ cR = eR for some idempotent e ∈ R. (In this case,
A is in fact unit-regular.) In particular, A is von Neumann regular if the row
(a, b, c) is unimodular; in case R is connected and A 6= 0, the converse holds.
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p. 213-227.

5


