Von Neumann Regular 2×2 matrices over integral domains

Grigore Călugăreanu

August 7, 2020

For a ring R, denote by $\operatorname{reg}(R)$ the (von Neumann) regular elements, that is, the elements $a \in R$ for which an $x \in R$ exists such that $a=a x a$. Sometimes, x is called an inner inverse for a.

In this short note we present an undergraduate approach to regular matrices of size 2 and (partly) 3 .

Simple remarks. 1) If $a \in \operatorname{reg}(R)$ in any (unital) ring R and $u \in U(R)$ then both $a u, u a \in \operatorname{reg}(R)[\mathrm{incl} .-a]$.
[Proof for $\left.a u=a x a u=(a u) u^{-1} x(a u)\right]$. Hence, (unit-)regularity is invariant to association.
2) Obviously 0 and the units $\left[x=a^{-1}\right]$ are (unit-)regular in any ring.
3) Suppose R is an integral (commutative) domain and let $S:=\mathbb{M}_{n}(R)$. If $A=A X A$, taking determinants, $\operatorname{det}(A)(\operatorname{det}(A X)-1)=0$ so $\operatorname{det}(A)=0$ or else $\operatorname{det}(A X)=1$ (and also $\operatorname{det}(X A)=1$). Hence $A X$ and $X A$ are units, and since the matrix ring is Dedekind finite, both A, X are units.
4) Suppose d is the gcd (if any) of the entries of a regular matrix A. Then d is an idempotent.

Therefore only the $\operatorname{det}(A)=0$ case remains to be settled.

12×2 matrices

Lemma 1 If $\operatorname{char}(R) \neq 2$, for a 2×2 matrix over any commutative ring, $\operatorname{det}(A)=0$ iff $\operatorname{Tr}\left(A^{2}\right)=\operatorname{Tr}^{2}(A)$.

Proof. If $\operatorname{det}(A)=0$ by Cayley-Hamilton' theorem, $A^{2}=\operatorname{Tr}(A) A$. Taking traces gives $\operatorname{Tr}\left(A^{2}\right)=\operatorname{Tr}^{2}(A)$. Conversely, if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the condition yields $a^{2}+2 b c+d^{2}=(a+d)^{2}$ which gives $a d=b c$, i.e. $\operatorname{det}(A)=0$.

In the sequel, we say elements a, b, c, d are coprime (or, equivalently, the row [$\left.\begin{array}{llll}a & b & c & d\end{array}\right]$ is unimodular) if there exist elements x, y, z, t such that $a x+c y+b z+d t=1$.

In the $n=2$ case it is easy to prove the following characterization

Theorem 2 Let R be a commutative domain. A nonzero 2×2 matrix with zero determinant is (von Neumann) regular iff its nonzero entries are coprime.

Proof. Set $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \neq 0_{2}$ with $a d=b c$ and $X=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]$. Then $A X A=A$ amounts to a (nonhomogeneous) system, namely

$$
\begin{gathered}
a^{2} x+a c y+a b z+b c t=a \\
a b x+a d y+b^{2} z+b d t=b \\
a c x+c^{2} y+a d z+c d t=c \\
b c x+c d y+b d z+d^{2}=d
\end{gathered} .
$$

Since $a d=b c$, the system reduces to

$$
\begin{aligned}
a(a x+c y+b z+d t) & =a \\
b(a x+c y+b z+d t) & =b \\
c(a x+c y+b z+d t) & =c \\
d(a x+c y+b z+d t) & =d
\end{aligned}
$$

If any of a, b, c, d is zero, the corresponding equality holds for any x, y, z, t.
Since we have assumed $A \neq 0_{2}$, at least one entry (say a) is nonzero. Dividing by a the first equation, we get $a x+c y+b z+d t=1$, which holds iff a, b, c, d are coprime.

Remarks. 1) Notice that the domain hypothesis is used just for the necessity.
2) In the above statement, if three entries are zero, the fourth must be a unit, i.e. the matrix is of form $u E_{11}, u E_{12}, u E_{21}, u E_{22}$ with $u \in U(R)$. If $R=\mathbb{Z}$, the fourth must be $= \pm 1$, i.e., we get the matrices $\pm E_{11}, \pm E_{12}, \pm E_{21}$, $\pm E_{22}$.

Summarizing, regular 2×2 integral matrices are (zero and the) units, which are unit-regular and so regular, and, rank 1 matrices with coprime nonzero entries. These are $\pm E_{11}, \pm E_{12}, \pm E_{21}, \pm E_{22}$, the matrices with two nonzero coprime entries, and the matrices with four nonzero (collectively) coprime entries [only one zero, not possible].
3) The system obtained in the previous proof also gives an inner inverse for any regular 2×2 matrix. We just have to chose x, y, z, t in $a x+c y+b z+d t=1$, corresponding to the nonzero coprime entries, and zero for the zero ones. See examples below.
4) Using the above characterization, it is easy to give an example which shows that $\operatorname{reg}(R)$ is not multiplicatively closed:
take $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ which have nonzero coprime entries (both idempotents); then $A B=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ is not regular in any ring R with $2 \notin U(R)$. Moreover, $B A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is regular by the theorem. Indeed, $X=E_{11}$ is an inner inverse [using the $a x+c y+b z+d t=1: a=x=1$, all the others, zero].

Question. If $\operatorname{gcd}(a ; b ; c ; d)=1$ and $a d=b c$, does it follow that at least two are coprime?

Examples. 1) $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]$; take $x=4, z=-1, y=t=0$. One can check $\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}4 & 0 \\ -1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]$.
2) Notice that three nonzero entries, and only one zero, contradicts $a d=b c$. So the possible regular matrices with zero determinant are $u E_{11}, u E_{12}, u E_{21}$, $u E_{22}$ with $u \in U(R)$, with three zeros, two zeros and two coprime entries or else all four nonzero (collectively) coprime entries with $a d=b c$.

$$
A=\left[\begin{array}{rr}
1 & 2 \\
2 & 4
\end{array}\right] ; \text { take } x=5, t=-1, y=z=0
$$

One can check $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{cc}5 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
Observe that this happens for all zero determinant matrices which have at least one entry $=1$, or, at least two coprime entries.
3) $A=\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]$; take $x=2, z=-1, y=t=0$. One can check

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right] .} \\
& 1=a x+c y+b z+d t=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]+\left[\begin{array}{ll}
c & d
\end{array}\right]\left[\begin{array}{l}
y \\
t
\end{array}\right] .
\end{aligned}
$$

23×3 matrices

Is this true for 3×3 matrices? NO.
Partial check for 3×3. We write just the first equality (out of 9).
Denote $A=\left[a_{i j}\right], X=\left[x_{i j}\right], 1 \leq i, j \leq 3$.
$\operatorname{row}_{1}(A X)=\left[a_{11} x_{11}+a_{12} x_{21}+a_{13} x_{31}, a_{11} x_{12}+a_{12} x_{22}+a_{13} x_{32}, a_{11} x_{13}+\right.$ $\left.a_{12} x_{23}+a_{13} x_{33}\right]$ and
$\operatorname{col}_{1}(A)=\left[\begin{array}{l}a_{11} \\ a_{21} \\ a_{31}\end{array}\right]$ yield the first equation:
$S_{11}=a_{11}\left(a_{11} x_{11}+a_{12} x_{21}+a_{13} x_{31}\right)+a_{21}\left(a_{11} x_{12}+a_{12} x_{22}+a_{13} x_{32}\right)+$ $a_{31}\left(a_{11} x_{13}+a_{12} x_{23}+a_{13} x_{33}\right)=a_{11}$.

If $\operatorname{det}(A)=0$ can we factor out a_{11} ? Moreover, do we get
$a_{11}\left(\left[\begin{array}{lll}a_{11} & a_{12} & a_{13}\end{array}\right]\left[\begin{array}{l}x_{11} \\ x_{21} \\ x_{31}\end{array}\right]+\left[\begin{array}{lll}a_{21} & a_{22} & a_{23}\end{array}\right]\left[\begin{array}{l}x_{12} \\ x_{22} \\ x_{32}\end{array}\right]+\right.$
$\left.+\left[\begin{array}{lll}a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{l}x_{13} \\ x_{23} \\ x_{33}\end{array}\right]\right)=a_{11} ?$
If so, we have again the coprime condition.

From the above sum S_{11} we already have terms which have the factor a_{11}, i.e.
$a_{11} x_{11}+a_{12} x_{21}+a_{13} x_{31}+a_{21} x_{12}+a_{31} x_{13}$,
and another four terms, i.e. $a_{21}\left(a_{12} x_{22}+a_{13} x_{32}\right)+a_{31}\left(a_{12} x_{23}+a_{13} x_{33}\right)$.
Can we express these with the factor a_{11} because of $\operatorname{det}(A)=0$?
The remaining terms should be
$a_{11}\left(\left[\begin{array}{ll}a_{22} & a_{23}\end{array}\right]\left[\begin{array}{l}x_{22} \\ x_{32}\end{array}\right]+\left[\begin{array}{ll}a_{32} & a_{33}\end{array}\right]\left[\begin{array}{l}x_{23} \\ x_{33}\end{array}\right]\right)$ which amounts to
$a_{11} a_{22}=a_{12} a_{21}, a_{11} a_{23}=a_{13} a_{21}, a_{11} a_{32}=a_{12} a_{31}, a_{11} a_{33}=a_{13} a_{31}$.
That this, the vanishing of the cofactors in A which include a_{11} :
$\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{21} & a_{23}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|=0$.
For a_{12} this reduces to the vanishing of the cofactors which include a_{12}, and so on.

Finally, for an analogous characterization, we need all 2×2 cofactors to be zero, i.e. $\operatorname{rank}(A)=1$.

Which is clearly stronger than $\operatorname{det}(A)=0$.
We have (partly) obtained the following
Proposition 3 Let R be a commutative domain. A nonzero 3×3 matrix of rank 1 is (von Neumann) regular iff its nonzero entries are coprime.

Finally, here is an example of rank 2 regular 3×3 matrix with not coprime entries. As noticed in the simple remark (4), the gcd of the entries should be an idempotent.

Example. Consider $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]=3\left(E_{11}+E_{22}\right) \in \mathbb{M}_{3}\left(\mathbb{Z}_{6}\right)$. Clearly, $A=A X A$ for $X=E_{11}+E_{22}$ since $3^{2}=3$ over \mathbb{Z}_{6} (which is a commutative ring, but not a domain).

3 Lam, Swan

In [1], the following development of the elementary results in the previous section is given.

For any matrix $A \in \mathbb{M}_{n}(R)$ (where R is a commutative ring), let $\mathcal{D}_{i}(A)$ $(1 \leq i \leq n)$ denote the i-th determinantal ideal of A, that is, the ideal in R generated by the $i \times i$ minors of A. We have a descending sequence $\mathcal{D}_{0}(A) \supseteq$ $\mathcal{D}_{1}(A) \supseteq \cdots \supseteq \mathcal{D}_{n}(A)=\operatorname{det}(A) \cdot R \supseteq(0)$, where, by convention, $\mathcal{D}_{0}(A)=R$.

Theorem $4 A$ matrix $A=\left(a_{i j}\right) \in \mathbb{M}_{n}(R)$ is von Neumann regular iff each determinantal ideal $\mathcal{D}_{i}(A)(0 \leq i \leq n)$ is idempotent (or equivalently, each $\mathcal{D}_{i}(A)$ is generated by an idempotent in R).

For the last equivalence, we use the well-known fact that a f.g. ideal is idempotent iff it is generated by an idempotent.

Remark. In the case where R is a connected ring [i.e. has only trivial idempotents], the theorem shows that A is von Neumann regular iff each $\mathcal{D}_{i}(A)$ is either (0) or R.

The small size special cases which appear are the following
Proposition 5 Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d=b c$ and $\mathcal{D}_{1}(A)=e R$, where $e=e^{2}$. Fix an equation $a w+b x+c y+d z=e$. Then the matrix $M=\left[\begin{array}{ll}w & y \\ x & z\end{array}\right]$ satisfies $A=A M A$ (so A is von Neumann regular, with quasi-inverse M).

Proposition 6 The (alternating) matrix $A=\left[\begin{array}{ccc}0 & -c & b \\ c & 0 & -a \\ -b & a & 0\end{array}\right]$ is von Neumann regular iff $a R+b R+c R=e R$ for some idempotent $e \in R$. (In this case, A is in fact unit-regular.) In particular, A is von Neumann regular if the row (a, b, c) is unimodular; in case R is connected and $A \neq 0$, the converse holds.

References

[1] T. Y. Lam, Swan Symplectic modules and von Neumann regular matrices over commutative rings. (2010) In: Van Huynh D., López-Permouth S.R. (eds) Advances in Ring Theory. Trends in Mathematics. Birkhäuser Basel, p. 213-227.

