
1 23

Beiträge zur Algebra und Geometrie /
Contributions to Algebra and
Geometry
 
ISSN 0138-4821
 
Beitr Algebra Geom
DOI 10.1007/s13366-019-00438-x

A new class of nil-clean elements which are
exchange

Grigore Călugăreanu



1 23

Your article is protected by copyright and all

rights are held exclusively by The Managing

Editors. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Beitr Algebra Geom
https://doi.org/10.1007/s13366-019-00438-x

ORIG INAL PAPER

A new class of nil-clean elements which are exchange

Grigore Călugăreanu1
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Abstract
An element a in a ring R is called left medium nil-clean if a = e + t with idempotent
e and nilpotent t , such that et and t commute. This proper class of nil-clean elements
properly includes the strongly nil-clean elements. We show that in any unital ring, left
medium nil-clean elements are exchange. Over projective-free domains we show that
2 × 2 and 3 × 3 left (or right) medium nil-clean matrices are strongly nil-clean.

Keywords Nil-clean element · Clean element · Exchange (suitable) element ·
Medium nil-clean element · Matrix rings
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1 Introduction

An element a of a ring R is nil-clean if a = e + t with idempotent e and nilpotent t
and strongly nil-clean if e and t commute. The element a is clean if a = e + u with
idempotent e and unit u and strongly clean if e and u commute. If all elements in a
ring are nil-clean (or strongly nil-clean, or clean or strongly clean) the ring is called
accordingly.

An element a in a ring R is called left exchange (or suitable, in the terminology
of Nicholson (1977)) if there is an idempotent e ∈ Ra such that 1 − e ∈ R(1 −
a). Equivalently, there is an idempotent e ∈ Ra such that R = Re + R(1 − a).
Right exchange elements are defined symmetrically, but these turn out to be also left
exchange. This result was observed by A.L.S. Corner in an unpublished work (see
Corner 1973).

In Andrica and Călugăreanu (2014) a 2×2 integral matrix was given as an example
of nil-clean matrix which is not clean. Since nil-clean rings are clean (Diesl 2013) and
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clean rings are exchange (Nicholson 1977), we can ask whether there are nil-clean
elements which are not exchange.

If the nilpotent is square-zero, there are no such elements, that is

Theorem 1 Let R be any ring, a ∈ R, and suppose that a = e + t where e2 = e and
t2 = 0. Then a is exchange in R.

The proof of this theorem does not extend to nil-clean elements whose nilpotent is
of index 3 (i.e. t3 = 0 but t2 �= 0) or more.

However notice that, among the nil-clean elements in any ring, the strongly nil-clean
elements are strongly clean and as such, are exchange.

In this paper, we define a new class of nil-clean elements which strictly includes
the class of strongly nil-clean elements, for which the above proof can be adapted, not
only for nilpotents of index 3, but for any nilpotents.

Definition An element a in a ring R is called left medium nil-clean if there exist
an idempotent e and a nilpotent t such that a = e + t and et commutes with t , i.e.
et2 = tet .

Obviously

a strongly nil-clean ⇒ a left medium nil-clean ⇒ a nil-clean.

As examples will show, none of these implications is reversible.
By symmetry, a is right medium nil-clean if there exists an idempotent e and a

nilpotent t such that a = e + t and te commutes with t , i.e. t2e = tet . At least for
square matrices over commutative rings it is clear that E + T is left medium nil-clean
iff the transpose (E + T )t is right medium nil-clean.

A great deal of research on strongly nil-clean rings (in the last 10 years or more)
clarifiedmost of the standard Ring Theory properties this class shares. However, many
of these properties remain open problemswhen dealing with nil-clean rings. Therefore
classes in between may be of interest.

The plan of this note is the following: in Sect. 2, we give the proof of Theorem 1
and we show that left (or right) medium nil-clean elements are exchange. In Sect. 3,
under pretty general conditions, we prove that for 2 × 2 and 3 × 3 matrices, left (or
right) medium nil-clean elements coincide with strongly nil-clean ones. In Sect. 4
we provide examples which show that both above inclusions are proper and, as a
final remark, in contrast with the strongly nil-clean decompositions, that left (or right)
medium nil-clean decompositions may not be unique. In the last section we state two
open questions.

Our study is focussed on elements. A study on rings with the corresponding ele-
ments should first answer two questions: “Are nil-clean rings necessarily left (or right)
medium nil-clean ?” and “Are left (or right) medium nil-clean rings strongly nil-clean
?”. Since, so far, we don’t know the answers, we postpone this to a future paper.

We just mention that a similar definition can be given for clean elements. How-
ever, an immediate computation shows that left (or right) medium clean elements are
precisely the strongly clean ones.
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For an idempotent e, e = 1− e is the complementary idempotent, and for a square
matrix A, pA(X) is the characteristic polynomial of A. A unit u in a ring is called
unipotent if u = 1 + t for some nilpotent element t .

2 Themain theorem

Recall that if e is an idempotent and r ∈ R is an arbitrary element, then f = e + ere
is also an idempotent.

First, for Theorem 1 (see Sect. 1) we give the

Proof Given a = e + t with e2 = e and t2 = 0, let f = e + ete. Then f 2 = f =
e + et − ete = e(e + t) − et(a − t) = ea − eta ∈ Ra. Therefore, in order to prove
that a is exchange, by condition (3), Proposition 1.1 in Nicholson (1977), it suffices
to verify R f + R(1 − a) = R. From e − f = e − ea + eta = e − e(e + t) + eta =
−et(1 − a) ∈ R(1 − a) we get 1 − t − f = (1 − a) + (e − f ) ∈ R(1 − a). Hence
1− t ∈ R f + R(1− a), so that R f + R(1− a) contains a unit, which completes the
proof. ��

Next we prove our main result

Theorem 2 Every left medium nil-clean element is exchange.

Proof Suppose a = e + t with e2 = e and tn = 0. It is well-known that 1 + t is
unipotent and (1 + t)−1 = 1 − t + t2 − · · · + (−1)n−1tn−1.

We start with the idempotent

f = e + e[1 − (1 + t)−1]e = e + e(t − t2 + t3 − · · · + (−1)ntn−1)e.

In order to ease the pursuance of the computations below we denote

x = e(t2 − t3 + · · · + (−1)n−1tn−1) = e[−1 + t + (1 + t)−1]

and
y = et − x = e(t − t2 + t3 − · · · + (−1)ntn−1) = e[1 − (1 + t)−1].

Then f = e+ ye = e+ y− ye = e+ et − x − y(a− t) = (e− y)a ∈ Ra because
yt = x .

Further, −y(1− a) = −y(1− e − t) = −y(1− e) + x = e − f + x ∈ R(1− a).
Therefore 1− t + x − f = (1− a) + (e − f + x) ∈ R(1− a) and so 1− t + x ∈

R f + R(1 − a).
Notice that the computations above hold for any nil-clean element.
Finally 1 − t + x is a unit because, if et2 = tet , then −t + x is nilpotent. Indeed,

−t+x = [−1+e(t− t2+ t3+· · ·+(−1)n−1tn−2)]t =: r t and r , t commute (if et and
t commute, then so do etk and t , for any k ≥ 2). Hence (−t+x)n = (r t)n = rntn = 0.

��
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Remark With the notations in the above proof, from f = (e − y)a we get f =
e(1 + t)−1a or 1 − f = [1 + (1 + t)−1]e and the unipotent v = 1 − t + x =
1 − t + e[−1 + t + (1 + t)−1] = e(1 − t) + e(1 + t)−1.

Remarks (1) The symmetric result for right medium nil-clean elements also holds.
(2) The above proof also works if et2 = 0. Indeed, then etk = 0 for every k ≥ 2 and,

with above notations, x = 0 and 1 − t is a unit.

3 2× 2 and 3× 3matrices

Proofs and computation are significantly simplified if for nil-clean elements we use
conjugations (i.e. similarities in the special case of matrices). As for similarity, the
best result for our purpose is in Chen (2011), Proposition 11.4.9: every idempotent
matrix over a projective-free ring admits a diagonal reduction. More precisely

Proposition 3 Let R be a commutative ring. Then the following are equivalent:

(1) Every nonzero finitely generated projective R-module is free.
(2) For any idempotent E ∈ Mn(R), there exists W ∈ GLn(R) such thatW EW−1 =[

Ir 0
0 0

]
for some r.

Here a commutative ring R is projective-free provided that every finitely generated
projective R-module is free. For instance, every commutative local ring and every
principal ideal domain are projective-free.

Therefore, for matrix rings, in order to determine the medium nil-clean elements,
by similarity, we may assume that the (nontrivial) idempotent is E11 in M2(R), and
E11 or E11 + E22 inM3(R), if R is projective-free.

As already mentioned in the Introduction, in this section, under pretty general
conditions (e. g. PID), we prove that for 2 × 2 and 3 × 3 matrices, left (or right)
medium nil-clean elements coincide with the strongly nil-clean ones.

Proposition 4 Let R be a projective-free domain and A ∈ M2(R) . The following are
equivalent:

(i) A is strongly nil-clean.
(ii) A is left (or right) medium nil-clean.
(iii) A is idempotent or nilpotent or unipotent.

Proof (iii) ⇒ (i) and (i) ⇒ (ii) being clear, for (ii) ⇒ (iii), using the similarity men-

tioned above, suppose A = E11 + T =
[
1 0
0 0

]
+

[
x y
z −x

]
=

[
x + 1 y
z −x

]
with

x2 + yz = 0, is nontrivial left (or right) medium nil-clean.
Since T 2 = 02, by medium nil-clean hypothesis, we also have T E11T = 02, i.e.[
x2 xy
xz yz

]
= 02. Hence, since R is a domain, x = 0 and at least one of y , z is

zero. So nontrivial medium nil-clean matrices are of form

[
1 y
0 0

]
or

[
1 0
z 0

]
, that is,
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are idempotent matrices. The remaining trivial nil-clean matrices are of course, the
nilpotents and the unipotents. ��

Next, the analogue for 3 × 3 matrices. In the next proof we need the following
special case of Proposition 3.8 from (Chen 2013) (for a reduced ring, N (R) = 0).

Proposition 5 Amatrix A ∈ M3(R) over any reduced projective-free ring R is strongly
nil-clean iff
(1) det A = 1, det(I3 − A) = 0 and TrA = 3, or
(2) pA(X) has a zero root, det(I3 − A) = 0 and TrA = 2, or
(3) pA(X) has a root = 1, det A = 0 and TrA = 1, or
(4) det A = 0, det(I3 − A) = 1 and TrA = 0.

Theorem 6 Let A = E + T be a left medium nil-clean 3× 3 matrix over any reduced
projective-free ring R. Then A is strongly nil-clean.

Proof According to Proposition 3, we may suppose that the (nontrivial) idempotent is

E11 or E11 + E22. As in Călugăreanu (2016), we denote the nilpotent T =
[
U α

β −t

]

with a 2 × 2 matrix U = (ui j )i, j=1,2, t = Tr(U ) = u11 + u22 and α =
[
a
b

]
,

β = [
x y

]
. Then we know

Tr(αβ) = Tr(βα) = βα, Tr(U 2) = Tr2(U ) − 2 det(U ) and
(a) βα = ax + by = det(U ) − Tr2(U )

(b) bxu12 + ayu21 − axu22 − byu11 = Tr(U ) det(U ).
Here (a) + (b) are equivalent to det(T ) = Tr(T 2) = 0 (Tr(T ) = 0 holds as

t = Tr(U )). That is, for a given U , such a nilpotent T exists iff there are a, b, x, y
satisfying (a) + (b).

(i)With E11 as idempotent.

E11

[
U α

β −t

]2
= E11

[
U 2 + αβ (U − t I2)α

β(U − t I2) βα + t2

]
=

[
U α

β −t

]
E11

[
U α

β −t

]
.

By computation we get u11u21 = u12u21 = u21a = u11x = u12x = xa = 0,
u12u22 + ay = 0 = −(u11 + u22)a + u12b.

Then (a) is by = det(U ) − Tr2(U ) = u11u22 − (u11 + u22)2 and (b) is −byu11 =
Tr(U ) det(U ) = (u11 + u22)u11u22.

Notice that u11 �= 0 is not possible: otherwise, we cancel it from (b) and (using
also (a)) obtain by = −u11u22 − (u211 + u222) = −u11u22 − u222, i.e. −u211 = 0, a
contradiction.

We go into two cases:

Case 1. x = u21 = 0; since u11 = 0 we have det(U ) = 0, Tr(U ) = u22 and

by = −u222 (i.e. det

[
u22 b
y −u22

]
= 0), u12u22 + ay = 0 = −u22a + u12b. Hence

matrices of the type T =
⎡
⎣0 u12 a
0 u22 b
0 y −u22

⎤
⎦ and so A =

⎡
⎣ 1 u12 a
0 u22 b
0 y −u22

⎤
⎦, for which
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det(A) = 0, Tr(A) = 1 and pA(X) has 1 as a root. So these are strongly nil-clean by
(3), Proposition 5.

Case 2. At least one of x , u21 is not zero; then u11 = u12 = a = 0, det(U ) = 0,
t = Tr(U ) = u22 and so (by (a)), by = −u222.

In this case, the SE 2× 2 minor is zero, and the first row is zero, so we get matrices

of type A =
⎡
⎣ 1 0 0
u21 u22 b
x y −u22

⎤
⎦. Once again, det(A) = 0, Tr(A) = 1 and pA(X)

has 1 as a root. So these are strongly nil-clean by (3), Proposition 5.
(ii)With E11 + E22 as idempotent.

(E11+E22)

[
U α

β −t

]2
= (E11+E22)

[
U 2 + αβ (U − t I2)α

β(U − t I2) βα + t2

]
=

[
U α

β −t

]

(E11 + E22)

[
U α

β −t

]
.

Now the computation gives: ax = ay = at = bx = by = bt = 0 (here t =
u11 + u22) and u11x + u22y = u12x + u22y = xa + yb = 0. We have to add (a)
βα = ax + by = det(U ) − Tr2(U ) and (b) bxu12 + ayu21 − axu22 − byu11 =
Tr(U ) det(U ), which giveTr(U ) = det(U ) = 0, soU is nilpotent and t = 0.Therefore

A =
[
U + I2 α

β 0

]
has Tr(A) = Tr(I2) = 2 (or= 0 if char(R) = 2), so nowwe are in

case (2) or (4) Proposition 5. However, in both possible cases below, det(A− I3) = 0
so we actually are only in case (2) of the proposition. If α or β is zero, then pA(X)

has a zero root.

Case 1. a = b = 0; since t = Tr(U ) = 0, this gives nilpotents with 3-rd column
zero and NW minor zero. Then A has the 3-rd column zero and so Tr(A) = 2,

det(A) = 0 and pA(X) has a zero root (here A =
[
U + I2 0

β 0

]
). As noticed above,

det(I3 − A) = 0, holds because I3 − A =
[
I2 −U − I2 0

−β 1

]
and so det(I3 − A) =

det(I2 −U − I2) = det(−U ) = 0. So these matrices are strongly nil-clean.

Case 2. At least one of a, b is not zero; then x = y = 0 so β = 0 and pA(X) has a
zero root.

As above, it remains to check det(I3 − A) = 0. Indeed: A =
[
U + I2 α

0 0

]
and

I3−A =
[
I2 −U − I2 α

0 1

]
, which has zero determinant. So all matrices are strongly

nil-clean and the proof is complete. ��

4 Examples

First we give examples which show that the inclusions mentioned in the Introduction
are proper.
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In what follows, a nil-clean element is called non-trivial if the idempotent in the
decomposition is not trivial (i.e. e �= 0, 1). Equivalently, such an element is neither
nilpotent nor unipotent.

Example For any projective-free ring R �= 0 consider the nil-clean matrix A =
e + t =

[
1 1
0 0

]
+

[
0 0

−1 0

]
=

[
1 1

−1 0

]
. Since A is not idempotent, not nilpotent

nor unipotent is not left (nor right) medium nil-clean by Proposition 4.
For R = Z, that is for 2× 2 integral matrices, using Theorem 6 from (Călugăreanu

2019) (a characterization of nontrivial nil-clean matrices by Diophantine equations)
and computer aid we can find all the nil-clean decompositions of A.

For completeness we state here this characterization

Theorem 7 A 2 × 2 integral matrix A is nontrivial nil-clean iff A has the form[
a + 1 b
c −a

]
for some integers a, b, c such that det(A) �= 0 and the system

x2 + x + yz = 0 (1)

(2a + 1)x + cy + bz = a2 + bc (2)

with unknowns x, y, z, has at least one solution over Z . We can suppose b �= 0 and
if (2) holds, (1) is equivalent to

bx2 − (2a + 1)xy − cy2 + bx + (a2 + bc)y = 0. (3)

Here the nontrivial idempotent was denoted E =
[
x + 1 y
z −x

]
.

For a = 0, b = 1, c = −1 Eq. (3) is: x2 − xy + y2 + x − y = 0 with (according
to computer) only three solutions (0, 0), (−1, 0) and (0, 1).

Equation (2) is: x − y + z = −1 which gives z = −1 − x + y, that is, this matrix
has precisely three different nil-clean decompositions, namely[

1 1
−1 0

]
=

[
1 0

−1 0

]
+

[
0 1
0 0

]
=

[
0 0
0 1

]
+

[
1 1

−1 −1

]
=

[
1 1
0 0

]
+

[
0 0

−1 0

]
.

For each decomposition we have tet = −t �= 0 = et2 = t2e, so this is indeed not
left nor right medium nil-clean.

This also shows that e + t is also not strongly nil-clean, but this also follows from

Corollary 3.10 (Diesl 2013): A = e + t =
[

1 1
−1 0

]
is a unit which is not unipotent.

As for the second example, of left medium nil-clean element which is not strongly
nil-clean, the results proved in the previous section show that we cannot expect to find
such examples as 2 × 2 or 3 × 3 matrices over projective-free domains.

The example of nil-clean element which is not clean given in Andrica and
Călugăreanu (2014) was found in a hard way (because no computer aid for solving
Diophantine equations was used).
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In the last two years or so, another idea for finding such examples was brought out:
to consider special subrings of matrix rings (e.g Wu et al. 2018). One should indeed
expect to find simpler examples because in such subrings we have less clean elements.

Let a be an element in a ring R. It is easy to check that Ca =
[

R aR
aR R

]
is a

subring (with identity) of M2(R).

In the sequel we take R = Zn2 and a = n, i.e. Cn =
[
Zn2 nZn2

nZn2 Zn2

]
and we

consider E = E11, T =
[
n ny
nz −n

]
= n

[
1 y
z −1

]
for any y, z ∈ Zn2 . Then clearly

E is idempotent and T is zerosquare, so that A = E +T =
[
1 + n ny
nz −n

]
is nil-clean

(for any y, z).

Further, T ET = n2
[
1 y
z yz

]
= 02 while all these matrices are left (and right)

medium nil-clean.
This nil-clean decomposition is not strongly nil-clean (if at least one of y, z is not

zero, ET = n

[
1 y
0 0

]
�= n

[
1 0
z 0

]
= T E) but this does not guarantee that A is not

strongly nil-clean.
To give the missing example, we consider the subring with minimum number of

elements C2 =
[
Z4 2Z4
2Z4 Z4

]
and A = E11 + T =

[
1 0
0 0

]
+

[
2 2
2 2

]
=

[
3 2
2 2

]

over Z4 (which from above we know as left - or right - medium nil-clean).
Since strongly nil-clean elements are strongly clean (in any ring) it suffices to show

that A is not strongly clean.

First notice that for any matrix M =
[
a 2b
2c d

]
∈ C2, det(M) = ad ∈ U (Z4) =

{1, 3} iff a, d ∈ {1, 3}.
Next, since M2 =

[
a2 2b(a + d)

2c(a + d) d2

]
, M is idempotent only if a, d are

idempotent, that is, a, d ∈ {0, 1} in Z4.
Finally we find all the clean decompositions for A and check that none is strongly

clean. For any unit V we should have idempotent A − V . Since for idempotent M =[
a 2b
2c d

]
we must have a, d ∈ {0, 1} (and a, d ∈ {1, 3} for units V ) it is readily seen

that V =
[
3 ∗
∗ 1

]
, that is four possibilities.

All 4 give clean decompositions:[
0 0
0 1

]
+

[
3 2
2 1

]
=

[
0 0
2 1

]
+

[
3 2
0 1

]
=

[
0 2
0 1

]
+

[
3 0
2 1

]
=

[
3 0
0 1

]
+

[
0 2
2 1

]
.

None has commuting idempotent-unit.
Finally, recall a well-known property of strongly nil-clean elements: these have

precisely one strongly nil-clean decomposition.

123

Author's personal copy



Beitr Algebra Geom

This does not happen for medium nil-clean elements as our above example shows.

Indeed, A =
[
1 2
2 0

]
+

[
2 0
0 2

]
is another left and right medium nil-clean decom-

position.

5 Open questions

Since strongly nil-clean elements are strongly clean, left (or right) medium nil-clean
elements are exchange and nil-clean rings are clean, a natural question is whether left
(or right) medium nil-clean elements are clean.

Notice that the second example in the previous section suggests an afirmative
answer: the matrix A is left (and right) medium nil-clean, not strongly nil-clean but
clean.

As usual there is another natural question: are left medium nil-clean elements also
right medium nil-clean?

Clearly, we can answer this question at ring or at element levels.
At element level, a negative answer needs an example of left medium nil-clean

element which is not right medium nil-clean.
The results proved in Sect. 3 show that we cannot expect such examples in 2 × 2

or 3 × 3 matrix rings over projective-free rings (where left or right medium nil-clean
are also strongly nil-clean).

Added in proof. As T.Y. Lam observed, the left medium nil-clean property can be
further generalized, still preserving the exchange property (with a similar proof):
requiring et2 ∈ Ret instead of et2 = tet .
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