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Abstract

Nil-clean integral 2 × 2 matrices are investigated starting with a characterization
which involves a Diophantine second degree equation. Mainly similarity classes of
matrices A with 1 − 4 det(A) < 0 are determined (that is, the elliptic case). The
strongly nil-clean matrices are completely determined and a large class of uniquely
nil-clean matrices is found. In particular, a class of uniquely nil-clean matrices which
are not strongly nil-clean is found.
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1 Introduction

The important rôle of idempotents, nilpotent elements and units in Ring Theory was rec-
ognized already a century ago. Considering elements which are sums of two such elements
is more recent. Sums of an idempotent and a unit (called clean elements) were defined by
Nicholson (1977) in [9]. Sums of an idempotent and a nilpotent element (called nil-clean
elements) were considered by Diesl (2006) in his Ph. D. thesis, and finally sums of a unit
and a nilpotent element (called fine elements) were considered by the author and T. Y. Lam
(2015) in [5]. Further, a ring (with identity) was called clean if all its elements are clean,
nil-clean if all its elements are nil-clean and fine if all its nonzero elements are fine. An
element was called uniquely clean (or nil-clean or fine) if it has only one clean (or nil-clean,
or fine) decomposition, and strongly clean (or nil-clean or fine), if the components of the
decomposition commute. If a = e + t with e2 = e and nilpotent t, we say that e is the
idempotent in this nil-clean decomposition.

Analogously, uniquely or strongly clean (or nil-clean or fine) rings were defined and
between all these classes, several inclusions were (easily) established.

Nil-clean rings are clean, uniquely clean rings are Abelian (i.e., the idempotents are
central; see [10]) and so strongly clean, uniquely nil-clean rings are Abelian (see [7]) and so
strongly nil-clean, fine rings are simple.

Despite all these inclusions, when it comes to compare the corresponding types of ele-
ments, everything fails. The ring of all the 2× 2 integral matrices seems to contain all the
counterexamples one could think of!

In [2], the matrix

[
3 9
−7 −2

]
was shown to be nil-clean but not clean (surprisingly,

it turns out that our example is also an example of uniquely nil-clean element in M2(Z)
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which is not strongly nil-clean.). Recently, in [8], the matrix

[
8 3
0 0

]
was shown to be

uniquely clean but not strongly clean. Since nonzero elements are strongly fine iff these
are units, it is easy to give examples of uniquely fine elements which are not strongly fine:
nontrivial idempotents in M2(F2), the ring of the 2× 2 matrices over the 2-element field.

Since in the bibliography known to the author, examples of uniquely nil-clean elements
are scarce, the initial goal of this paper was to give such examples and especially, to give
an example of uniquely nil-clean element which is not strongly nil-clean. Along the way,
we succeeded far more: to determine, up to similarity, all nil-clean integral 2 × 2 matrices
A such that 1− 4 det(A) < 0, and in particular, the strongly nil-clean matrices and also a
large class of uniquely nil-clean matrices.

As in [2], the problem can be reduced to a Diophantine second degree equation which,
when searching for nil-clean matrices, is in the elliptic or the hyperbolic case (parabolic
case is not possible). The condition above, 1− 4 det(A) < 0, characterizes the elliptic case.

As the title already shows, in this paper we investigate only the elliptic case (the hyper-
bolic case, which is far more difficult will be the subject of a future study).

In Section 2 we recall some important results obtained by Behn and Van der Merwe in
[4], useful for our approach, and a characterization for nontrivial nil-clean matrices is given.

In Section 3 we first describe all the trivial nil-clean matrices (i.e. matrices whose
decomposition uses a trivial idempotent - that is, 0 or 1 - or the zero nilpotent). Then, using
as idempotent for nil-clean matrix decompositions the matrix unit E11, we determine, up
to similarity, all strongly nil-clean matrices. In Section 4, classes of not nil-clean matrices
with not fundamental discriminant are emphasized, and we prove that matrices of type[

0 −δ
1 1

]
have nil-clean index (precisely) 3. In section 5 we show that matrices of type[

3k + 2 −3(3k + 2)
9k + 5 −3k − 1

]
are uniquely nil-clean (and not strongly nil-clean).

For a square matrix A, AT denotes the transpose; Eij denotes the matrix (i, j)-unit,
that is the n× n matrix whose entries are all zero excepting the (i, j)-entry, which is 1.

2 Nil-clean 2× 2 matrices and similarity

Definition. Two 2 × 2 matrices A, B over any unital ring R, are similar (or conjugate)
if there is an invertible matrix U such that B = U−1AU . Since similarity is obviously an
equivalence relation, a partition of M2(R) corresponds to it. The subsets in this partition
are called similarity classes.

Such classes may consist only in one matrix: a matrix A forms a singleton class iff
AU = UA for every invertible matrix U (e.g. 02, I2 or every scalar matrix.

If A is nilpotent (or idempotent) and B is similar to A then B is also nilpotent (resp.
idempotent). This similarity invariance clearly extends to nil-clean matrices and it also
restricts to uniquely or strongly nil-clean matrices, respectively. Rephrasing, the notions
of nil-clean, uniquely nil-clean and strongly nil-clean are similarity invariants. So is the
nil-clean index, where an element a in a ring R has nil-clean index n (possibly infinite) if
there exist exactly n idempotents e such that a− e is nilpotent (see [3]).
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Remark. If both A,B are nil-clean, these may not be similar (e.g., different determi-
nant); more, having also the same determinant (or even the same characteristic polynomial),
is still not sufficient for A and B to be similar. That is, even nil-clean matrices with the
same trace and determinant may belong to different similarity classes.

In the sequel R = Z, that is, we deal only with 2×2 integral matrices. Our main goal is
to determine, in reasonable conditions, all the nil-clean, all the strongly nil-clean matrices
and large classes of uniquely nil-clean matrices.

By the above paragraph, to each nil-clean matrix A we can associate infinitely many
nil-clean matrices, namely all its conjugates: U−1AU , with any unit U ∈ M2(Z), that is,
U ∈ GL2(Z).

Thus, to determine all nil-clean matrices actually means to find all the similarity classes
of nil-clean matrices. In doing so, it is natural to choose in each similarity class a special
representative. In this paper, this will be done into two different ways.

The first has already been done by Behn and Van der Merwe in [4]. In [4], an algorithm
is presented, which, given a 2 × 2 matrix, finds a canonical representative (called reduced
or primitive) in its similarity class.

The second consist in choosing in the similarity classes, a representative which uses a
special idempotent (namely the matrix unit E11).

As for the first, recall (from [4]) the following

Definition. A 2× 2 integral matrix A =

[
a b
c d

]
with D = Tr(A)2 − 4 det(A) < 0 is

reduced if |d− a| ≤ c ≤ −b and, d ≥ a if at least one is equality, i.e. |d− a| = c or c = −b.

Notice that if |d− a| < c < −b then

[
a b
c d

]
and

[
d b
c a

]
are different reduced matrices.

If D is a square (e.g. det(A) = 0), that is, the characteristic polynomial of the matrix
factors over the integers, say, f(x) = (x−a)(x−d), where a ≥ d, then, for a 6= d the matrix[
a b
0 d

]
is reduced if 0 ≤ b < a− d, and, for a = d, if b ≥ 0.

Examples. 1) The matrix unit E11 =

[
1 0
0 0

]
is reduced, I2 is also (idempotent and)

reduced, but E22 is not reduced. Actually E11 and E22 are similar: for U =

[
0 1
1 0

]
we

have U2 = I2 and UE11U = E22.

2) The matrix unit E12 =

[
0 1
0 0

]
is reduced, E21 is (also nilpotent but) not reduced.

Actually E21 = UE12U , so these are similar.

3) The unipotent matrix V = I2 +E12 =

[
1 1
0 1

]
is reduced but W = I2 +E21 = V T

is (also unipotent but) not reduced. Again UV U = V T .
Next, also from [4] (Theorems 3.3 and 5.2), recall the following results

Theorem 1. Consider matrices A in M2(Z) with a fixed Tr(A) and det(A) and with
D = Tr(A)2 − 4 det(A) < 0. Then there is precisely one reduced matrix in each matrix
similarity class.

Theorem 2. Let M ∈M2(Z) and assume that the characteristic polynomial of M factors
over Z. Then M is similar to a reduced matrix. Moreover, this class representative is
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unique thus no two different reduced matrices are similar.

More precisely, if f(x) = (x − a)(x − d) (and a ≥ d) then M is similar to a matrix[
a b
0 d

]
with 0 ≤ b ≤ |a− d|, and for a = d, with b ≥ 0.

The second way of representing the similarity classes relies on the following important
consequence of the latter theorem.

Corollary 1. Any non-trivial 2× 2 idempotent integral matrix is similar to E11.

That is, all nontrivial idempotent matrices belong to the same similarity class and E11

is the only reduced representative in this class.
As the reviewer noticed, this result can also be obtained directly, by looking at matrices

as endomorphisms of a free rank 2 Abelian group.

Examples. 1) If E =

[
1 0
s 0

]
then with P =

[
1 0
s 1

]
we get E11 = P−1EP .

2) If E =

[
s+ 1 −s− 1
s −s

]
then with P =

[
s+ 1 1
s 1

]
we get E11 = P−1EP .

Analogously

Corollary 2. Any 2×2 nilpotent integral matrix is similar to kE12 for some integer k ≥ 0.

and

Corollary 3. Any 2 × 2 unipotent integral matrix is similar to Vk =

[
1 k
0 1

]
for some

k ≥ 0.

As already stated in the Introduction, we restrict our investigation to matrices A such
that D = Tr(A)2 − 4 det(A) < 0. According to Theorem 1, for such matrices, to determine
all nil-clean matrices amounts to find all reduced nil-clean matrices. Moreover, to find all
uniquely (or strongly) nil-clean matrices, means to determine all the reduced uniquely (or
strongly) nil-clean matrices.

Next, recall that an integer d is a fundamental discriminant if d 6= 1, d is not divisible
by any square of odd number and d ≡ 1(mod4) or d ≡ 8, 12(mod16). Actually d is a
fundamental discriminant iff d is the discriminant of a quadratic number field. It turns
out that up to isomorphism, there is exactly one quadratic field for every fundamental
discriminant.

The following characterization was partly hidden in [2].

Theorem 3. A 2×2 integral matrix A is nontrivial nil-clean iff A has the form

[
a+ 1 b
c −a

]
for some integers a, b, c such that det(A) 6= 0 and the system{

x2 + x+ yz = 0 (1)
(2a+ 1)x+ cy + bz = a2 + bc (2)

with unknowns x, y, z, has at least one solution over Z. We can suppose b 6= 0 and if (2)
holds, (1) is equivalent to

bx2 − (2a+ 1)xy − cy2 + bx+ (a2 + bc)y = 0 (3).
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Proof. Recall that any nontrivial idempotent is characterized by zero determinant and
trace = 1 and any nilpotent by zero determinant and zero trace. Therefore, the nil-clean

matrices we have to investigate have trace = 1 and so are of form A =

[
a+ 1 b
c −a

]
.

Here det(A) 6= 0 (otherwise, by Cayley-Hamilton theorem, A is idempotent and so trivial
nil-clean). Such matrices should have a nil-clean decomposition A = E+N with nontrivial

idempotent E =

[
x+ 1 y
z −x

]
i.e., Tr(E) = 1 and −det(E) = x2 + x + yz = 0, that

is (1), and nilpotent N . Since the condition Tr(N) = 0 is already fulfilled, using (1), the
condition det(N) = 0 amounts to (2a+ 1)x+ cy + bz = a2 + bc, that is (2).

We discard right away the case when both b = c = 0. Indeed, if so, (2) becomes
(2a+ 1)x = a2 and for integers, it is readily seen that 2a+ 1 divides a2 only for a = 0 and
a = −1. However in these cases A is an idempotent and so trivial nil-clean.

Thus b 6= 0 (the case c 6= 0 is symmetric). Multiplying (1) by b and eliminating z, we
get the Diophantine equation bx2 − (2a+ 1)xy − cy2 + bx+ (a2 + bc)y = 0, that is (3).

Remarks. 1) The Theorem remains true for matrices over any integral domain.

2) For further use, observe that equations (1) or (3) have always the solutions (x, y) =
(0, 0) and (x, y) = (−1, 0) with an arbitrary z. Moreover, (3) has also the solution (x, y) =
(a, b).

For easy reference we state here the following useful result:

Lemma 1. The equation (2) has the solution

(i) (0, 0) iff b divides a2;

(ii) (−1, 0) iff b divides (a+ 1)2;

(iii) (a, b) iff b divides a2 + a.

3 Nil-clean matrices with idempotent E11

A nil-clean element (in any ring) will be called trivial if its decomposition uses a trivial
idempotent or the zero nilpotent. That is, the trivial nil-clean elements are the nilpotent
elements, the unipotent elements and the idempotents. All the other nil-clean elements will
be called nontrivial.

Using the procedure described in the previous section it is easy to determine all the
trivial nil-clean matrices (that is, their similarity classes).

The nilpotent matrices: the singleton class {02} or the classes represented by kE12,
k ≥ 0.

The unipotents (i.e. matrices I2 +N with nonzero nilpotent N): the classes are repre-
sented by Vk = I2 + kE12, k ≥ 0.

The idempotents: the singleton classes {02}, {I2} or the class represented by E11.

Proposition 1. In any ring, all trivial nil-clean elements are strongly nil-clean. InM2(Z),
all trivial nil-clean matrices are uniquely nil-clean, excepting the nontrivial idempotents.
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Proof. Since 02 and I2 are obviously uniquely nil-clean, only the last statements needs
justification. To prove that nonzero nilpotents and unipotents 6= 1, are uniquely nil-clean
and that nontrivial idempotents are not uniquely nil-clean, we just have to check this for
the reduced representatives in the corresponding similarity classes.

It is easily checked that kE12 and Vk are uniquely nil-clean, for any k ≥ 0. Finally,

E11 =

[
1 a
0 0

]
+

[
0 −a
0 0

]
, for any a ∈ Z, are (infinitely many) different nil-clean

decompositions.

Therefore, in the sequel, we consider only nontrivial nil-clean matrices.

As mentioned in the Introduction, by Corollary 1, every nontrivial nil-clean matrix is
similar to one whose idempotent, in the nil-clean decomposition, is E11. More precisely

Lemma 2. A matrix

[
a+ 1 b
c −a

]
(is nil-clean and) admits E11 as idempotent in a

(nontrivial) nil-clean decomposition iff a2 + bc = 0. In this case, neither b nor c are zero.

Proof.

[
a+ 1 b
c −a

]
decomposes as E11 + N iff N =

[
a b
c −a

]
is nilpotent. Hence

det(N) = −a2 − bc = 0, det(A) = −a and neither b nor c is zero (otherwise a = 0 and A is
idempotent, that is trivial nil-clean).

Obviously, matrices of this type are easier to handle. In equation (3) the y coefficient
vanishes and (2) is equivalent to b divides (2a+ 1)x+ cy.

The next result nicely completes Proposition 1.

Theorem 4. The only strongly nil-clean matrices in M2(Z) are the trivial ones.

Proof. Suppose A is nontrivial strongly nil-clean inM2(Z). Then A is similar to a strongly
nil-clean matrix B whose idempotent is E11, that is, B = E11 + N with a nilpotent N =[
s t
c −s

]
such that E11 and N commute. However

[
1 0
0 0

] [
s t
u −s

]
=

[
s t
0 0

]
=[

s t
u −s

] [
1 0
0 0

]
=

[
s 0
u 0

]
hold iff t = u = 0 and so s = 0 (because s2 + tu = 0).

Hence N = 02, a contradiction.

Actually, only two nil-clean matrices satisfy a2 + bc = 0:

[
0 ±1
∓1 1

]
=

[
0 0
∓1 1

]
+[

0 ±1
0 0

]
= E11 +

[
−1 ±1
∓1 1

]
(so these are not uniquely nil-clean). These two matrices

are indeed similar:[
1 0
0 −1

] [
0 1
−1 1

] [
1 0
0 −1

]
=

[
0 −1
1 1

]
.

Observe that

[
0 −1
1 1

]
is reduced but the transpose is not. This matrix is not strongly

nil-clean as already seen in the general case above (clearly it is also not unipotent).
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In general, for any given a ≤ −1, and prime decomposition |a| = pk11 · · · pkss we get
2d(a2) nil-clean matrices, if d(n) denotes the number of positive divisors of n, including
1 and n itself. Recall that if n = pk11 · · · pkss is the prime factorization of n, then d(n) =
(k1+1) · · ·(ks+1). If i is any (integer) divisor of a2 and a2 = ij, the corresponding nil-clean

matrices are

[
a+ 1 ±i
∓j −a

]
and transposes (if i = j = a, these coincide with transposes).

Analogously with results in Section 2, we have the following

Proposition 2. If a2 + bc = 0 and |a| is a prime then

[
a+ 1 b
c −a

]
has index at least 3

and is not strongly nil-clean.

Proof. Since |a| is a prime, the equation a2 + bc = 0 has six different integer solutions.

Therefore we have six nil-clean matrices, namely:

[
a+ 1 ±1
∓a2 −a

]
, two transposes and[

a+ 1 ±a
∓a −a

]
. All clearly decompose with E11 and all must be similar. We can choose a

not reduced representative

[
a+ 1 a
−a −a

]
, which is not uniquely nil-clean:[

a+ 1 a
−a −a

]
= E11+

[
a a
−a −a

]
=

[
a+ 1 a+ 1
−a −a

]
+

[
0 −1
0 0

]
=

[
a+ 1 a
−a− 1 −a

]
+[

0 0
1 0

]
, nor strongly nil-clean (by Theorem 4).

4 More results

By taking 2a + 1 = b = −c, because of (2), we can generate many (reduced) not nil-clean
matrices (with trace = 1).

Proposition 3. For any k ≥ 1, the matrices Mk =

[
1− k 1− 2k
2k − 1 k

]
are not nil-clean

and have not fundamental discriminant.

Proof. By definition these matrices are reduced and equation (2) is

−(2k − 1)x+ (2k − 1)y − (2k − 1)z = (k − 1)2 − (2k − 1)2 = −3k2 + 2k.

Now gcd(3k− 2; 2k− 1) = 1 since 3(2k− 1)− 2(3k− 2) = 1, and so are gcd(k; 2k− 1) = 1.
Therefore (2) has no (integer) solutions.

Here D = 1−4(3k2−3k+1) = −3(2k−1)2 so indeed it is not a fundamental discriminant.

Remark. Less suffices for the discriminant to be not fundamental.
If gcd(2a + 1; b; c) = d 6= 1 then D = 1 − 4 det(A) = (2a + 1)2 + 4bc is divisible by the

odd square d2.
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This class of examples could suggest that a matrix with trace =1 and fundamental
discriminant is nil-clean. This fails, as the following example shows.

Example. G =

[
−3 −7
17 4

]
, so a = −4, b = −7, c = 17; det(G) = 119− 12 = 107 and

D = 1 − 4 det(G) = −427 = 7 × 61 is fundamental, class 2. Equation (3) −7x2 + 7xy −
17y2 − 7x− 103y = 0 has exactly the 3 solutions in Lemma 1. Now 7 - 16, 7 - 12 and 7 - 9,
all (0, 0), (−1, 0) and (a, b) are eliminated, so G is not nil-clean (alternatively, (2) is not
verified: −7x+ 17y − 7z = −103).

Computer verifications may suggest a nil-clean index for matrices of a given form (i.e.
given determinant and entry a), but it is not easy to prove that this number is indeed the
nil-clean index. Here is a sample.

Theorem 5. Matrices of type

[
0 −δ
1 1

]
with δ ≥ 1 have exactly three nil-clean decompo-

sitions.

Proof. It is easy to see that the index is at least 3:

[
0 −δ
1 1

]
=

[
0 0
1 1

]
+

[
0 −δ
0 0

]
=[

0 −δ
0 1

]
+

[
0 0
1 0

]
=

[
1 1− δ
0 0

]
+

[
−1 −1
1 1

]
. In the remaining of the proof we

show that it is precisely 3.
Since the Diophantine equation (3) is simpler if the idempotent is E11 (the y coefficient

is zero) we first pass (conjugation with

[
1 δ − 1
0 1

]
; see example 1 in Section 2) to the

corresponding (similarity) representative, which is B =

[
1− δ −δ2

1 δ

]
. The Diophantine

equation (3) (multiplied by −1) is δ2x2 − (2δ − 1)xy + y2 + δ2x = 0, which can be written

y(x+ y) = δx[2y − δ(x+ 1)] (3’).

Equation (2) is (1− 2δ)x+ y − δ2z = 0, which can be written

x+ y = δ(2x+ δz) (2’).

Since (3) represents an ellipse, using partial derivatives, it is readily checked that −δ ≤
x ≤ 0, −δ2 ≤ y < δ2

4δ−1 and that (−δ,−δ2) is the minimum point on the ellipse (for concrete
graphs use e.g. [6]).

To simplify the proof, the case δ = 1 will be excepted. In this case, for V =

[
0 −1
1 1

]
we already have a2 + bc = 0, and V = E11 +

[
−1 −1
1 1

]
. Moreover detV = 1, so this is a

unit (which is not unipotent). Equation (3) is x2−xy+y2+x = 0, which has precisely three
solutions: (0, 0), (−1, 0) and (a, b) = (−1,−1). All satisfy (2) (e.g. see Lemma 1), so we have

exactly three nil-clean decompositions, the one above and V =

[
0 0
1 1

]
+

[
0 −1
0 0

]
=[

0 −1
0 1

]
+

[
0 0
1 0

]
.
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From (2’), x + y = −kδ, a parallel line to the 2-nd bisector, so in order to intersect
the ellipse we need 0 ≤ k ≤ δ + 1. It is readily checked that k ∈ {0, 2, δ} give the three
nil-clean decompositions of B, we already know (that is, corresponding to the solutions
(0, 0), (−1, 1−2δ) and (−δ, δ− δ2)). One can also check that (−1, 0) and (a, b) = (−δ,−δ2)
do not satisfy (2): −1 = δ(−2 + δz) for the first (δ 6= 1) and 2δ − 1 = δ(z − 1) impossible
since gcd(δ; 2δ − 1) = 1.

In the sequel we show that the system (2’) + (3’) has no (integer) solutions for k ∈
{1, 3, 4, ...δ − 1, δ + 1} and so B has exactly three nil-clean decompositions. We can easily
discard also the case k = δ+ 1. In this case the intersection of the line x+ y = −δ(δ+ 1) is
(only) the minimum point of the ellipse, i.e. (−δ,−δ2), which we already saw not satisfying
(2).

Next, x+ y = −kδ = δ(2x+ δz) implies −k = 2x+ δz and so δ divides −k − 2x. Now
−δ ≤ x ≤ 0 implies −k ≤ −k − 2x ≤ 2δ − k and since 1 ≤ k ≤ δ, we obtain −k − 2x = 0
or −k − 2x = δ, with one exception: if k = δ then −δ ≤ −k − 2x ≤ 2δ − δ = δ, i.e.
−δ = −k − 2x is also possible.

In the first case, z = 0 and so x(x + 1) = 0 from (1). Here x = 0 implies k = 0 and
x = −1 implies k = 2, not in our range.

In the second, we replace x+ y = −kδ (and y = −x− kδ) in (3’), obtaining (δ+ 2)x2 +
[k + δ(2k + 1)]x + k2δ = 0. Further, if we multiply by 4 and replace 2x = −k − δ, we get
δ(δ−k)2 = 0, which has solutions only for k = δ (δ 6= 0) and this is x = −δ , with (δ, δ−δ2)
the (third) solution for (2)+(3).

Finally, if k = δ and −δ = −k − 2x, then x = 0 is the only solution, but (0,−δ2) does
not verify (3’) and the proof is complete.

Inspection of the example det(A) = 57, a = 2 suggests that for a given det(A) and entry
a, the nil-clean index increases with the difference ||b| − |c||. Indeed, for (b, c) = (9,−7)
we had index 1, for (b, c) = (3,−21) index 2, and for (b, c) = (1,−63) index 3. Moreover,
for det(A) = 57, a = 3, (b, c) = (23,−3) has index 2 and (b, c) = (69,−1) has index 3.
Unfortunately this is false as shown by the following

Example. All four matrices

[
−5 −36
1 6

]
,

[
−5 −18
2 6

]
,

[
−5 −12
3 6

]
and

[
−5 −6
6 6

]
have index 3. We just mention that for det(A) = 6, the discriminant is D = −23, which is
class 3.

Would this be true, we should have, combining with the previous Proposition) a proof
for the following

Conjecture 1. Nontrivial nil-clean matrices (in M2(Z)) have nil-clean index at most 3.

In trying to find a nil-clean matrix of index (at least) 4, one should try with (nil-clean)
matrices of higher class.

Here is a sample: D = −479 is class 25, and so det(A) = 120. By the previous

Proposition we already know that

[
0 −120
1 1

]
has index exactly 3. Further

[
0 −60
2 1

]
has index 2,

[
0 −30
4 1

]
has index 2,

[
0 −15
8 1

]
has index 3 and

[
0 −12
10 1

]
has index

3 (all are reduced representatives in different similarity classes).
We were not able to prove (or disprove) this Conjecture.
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5 Uniquely nil-clean matrices

In this section we describe a (large) class of uniquely nil-clean matrices.

Theorem 6. For a nonnegative integer n consider the (reduced) matrix Mn =

[
n+ 1 −3(n+ 1)
3n+ 2 −n

]
.

For n = 3k and n = 3k + 2, Mn is nil-clean of index 2 and for n = 3k + 1, Mn is uniquely
nil-clean (and not strongly nil-clean).

Proof. Since Mn =

[
2(n+ 1) −2(n+ 1)
2n+ 1 −2n− 1

]
+

[
−n− 1 −n− 1
n+ 1 n+ 1

]
, all these matrices are

nil-clean.
For the matrix Mn, the equation (3) is

−3(n+ 1)x2 − (2n+ 1)xy − (3n+ 2)y2 − 3(n+ 1)x− (8n2 + 15n+ 6)y = 0.

Multiplying the equation (3) by −12(n+ 1) we obtain
[6(n + 1)x + (2n + 1)y + 3(n + 1)]2 + (32n2 + 56n + 23)y2 + (96n3 + 264n2 + 234n +

66)y − 9(n+ 1)2 = 0.
Next we perform the substitution m = −6(n+ 1)x− (2n+ 1)y − 3(n+ 1) which gives:
m2 + (32n2 + 56n+ 23)y2 + (96n3 + 264n2 + 234n+ 66)y − 9(n+ 1)2 = 0.
Since m2 is always greater than, or equal to zero,

f(n, y) = (32n2 + 56n+ 23)y2 + (96n3 + 264n2 + 234n+ 66)y − 9(n+ 1)2

must be less than, or equal to zero. This is verified in the segment limited by the roots.

The roots are:
−6(n+ 1)(16n2 + 28n+ 11)± 6(n+ 1)(16n2 + 28n+ 12)

2(32n2 + 56n+ 23)
,

that is, −3(n+ 1) and
3(n+ 1)

32n2 + 56n+ 23
.

All values of y from −3(n + 1) to 0 should be replaced in f(n, y). The result should
be the negative (or zero) of a perfect square. Notice that 96n3 + 264n2 + 234n + 66 =
6(n+ 1)(16n2 + 28n+ 11).

Next we show that f(n, y) is the negative (or zero) of a perfect square only if n + 1
divides y.

Write y = −(n + 1)t with real t ∈ [0, 3] and replace into f(n, y). If this is a square of
an integer we have to show that t ∈ Z. Equivalently, 9 + 6(16n2 + 28n + 11)t − (32n2 +
56n + 23)t2 is a square only if t ∈ Z (here t ∈ [0, 3]). If l = (4n + 3)(n + 1), this amounts
to (t − 3)2 − 8lt(3 − t) is a square. However, for 0 ≤ t ≤ 3 (and l ≥ 3) the only possible
integer squares are indeed, 0, 1, 4 or 9 and so t ∈ Z.

Hence f(n, y) is the negative (or zero) of a perfect square iff t ∈ {0, 2, 3} because it
equals 32 for t = 0, (8n+ 7)2 for t = 2 and 0 for t = 3.

Therefore, the values of y we have to check are:
1. −3(n+ 1), which replaced in f(n, y) gives −9(n+ 1)2[−32n2 − 56n− 23 + 2(16n2 +

28n+ 11) + 1] = 0. Then m = −6(n+ 1)x− (2n+ 1)y − 3(n+ 1) = 0 with y = −3(n+ 1)
gives x = n, that is, the solution (a, b) = (n,−3(n+ 1)).

2. −2(n + 1), which replaced in f(n, y) gives −[(n + 1)(8n + 7)]2. Then m = ±(n +

1)(8n + 7) with y = −2(n + 1) give x = 2n − 1 and x = −2(n+ 2)

3
. Here we obtain the

solution (2n+ 1,−2(n+ 1)) and, (only) if n = 3k + 1, also (−2(k + 1),−2(n+ 1)).
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3. −(n + 1), which replaced in f(n, y) gives −[(8n + 7)2 + 3] and it is not hard to see
that (8n+ 7)2 + 3 cannot be a perfect square (the difference of two squares is 3 only for 12

and 22).
4. 0, which replaced in f(n, y) gives −[3(n + 1)]2. Here m = ±3(n + 1) gives x = 0 or

x = −1, i.e. the solutions (0, 0) or (−1, 0).
Summarizing,
For n = 3k, the equation (3) has four solutions: (0, 0) , (−1, 0), (a, b) = (n,−3(n+1)) and

(2n+1,−2(n+1)). The first two are eliminated by Lemma 1, the fourth gives the decomposi-

tion already mentioned and the third gives the decompositionMn =

[
n+ 1 −3(n+ 1)
k −n

]
+[

0 0
8k + 2 0

]
, so index 2.

For n = 3k + 2, the equation (3) has the same four solutions as in the previous case,
but now (0, 0) and (a, b) are eliminated by Lemma 1. The remaining solutions give the

decomposition above and Mn =

[
0 0

8k + 7 1

]
+

[
n+ 1 −3(n+ 1)
k + 1 −n− 1

]
, so again index 2.

For n = 3k + 1, the equation (3) has five solutions: the four mentioned above and
(−2(k+1),−2(n+1)). The first three are eliminated by Lemma 1, and the fourth gives the
(unique) nil-clean decomposition mentioned above, since the last solution does not verify
(2). Indeed, here (2) is

(2n+ 1)x+ (3n+ 2)y − 3(n+ 1)z = −(8n2 + 15n+ 6)

and so 3(n+ 1)z = −2(k+ 1)(2n+ 1)− 2(n+ 1)(3n+ 2) + 8n2 + 15n+ 6 = 3(2k+ 1)(k+ 1)
and so (3k + 1)z = (2k + 1)(k + 1). Since gcd(3k + 1, 2k + 1) = 1 this amounts to 3k + 1
divides k + 1, impossible for k ≥ 1.

These decompositions are not strongly nil-clean (by computation or by Theorem 4).

By relating the similarity classes of nil-clean matrices to class numbers of quadratic
integer rings, a different type of results may be proved. However, in order not to further
lengthen this paper, this is done elsewhere.

Acknowledgement. Thanks are due to the reviewer for his/her very useful and improving
corrections and comments.
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[2] D. Andrica, G. Călugăreanu, A nil-clean 2 x 2 matrix over integers which is not
clean, J. of Algebra and its Appl., 13, 1450009, 1-9 (2014).

[3] D. K. Basnet, J. Bhattacharyya, Nil clean index of rings, Internat. Electronic
J. Algebra, 15, 145-156 (2014).

[4] A. Behn, A. B. Van der Merwe, An algorithmic version of the theorem by Latimer
and MacDuffee for 2 times 2 integral matrices. Linear Algebra Appl. 346, 1-14 (2002).

[5] G. Călugăreanu, T. Y. Lam, Fine rings: A new class of simple rings. J. of Algebra
and its Appl., 15 (9) 1650173 1-18 (2016).

[6] www.desmos.com/calculator.

[7] A. J. Diesl, Classes of strongly clean rings. Ph. D. thesis, University of California,
Berkeley (2006)

[8] D. Khurana, T. Y. Lam, P. Nielsen,Y. Zhou, Uniquely Clean Elements in rings.
Communications in Algebra, 43 (5), 1742-1751 (2015).

[9] W. K. Nicholson, Lifting idempotents and exchange rings . Trans. Amer. Math.
Soc., 229, 269-278 (1977).

[10] W. K. Nicholson, Y. Zhou, Rings in which elements are uniquely the sum of an
idempotent and a unit. Glasg. Math. J., 46 (2), 227-236 (2004).

Received: 31.03.2017
Revised: 08.12.2017
Accepted: 08.01.2018
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