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While any nil-clean ring is clean, the last eight years, it was not known whether nil-clean
elements in a ring are clean. We give an example of nil-clean element in the matrix ring
M2(Z) which is not clean.
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1. Introduction

Let R be a ring with identity. An element a ∈ R is called unit-regular if a = bub

with b ∈ R and a unit u in R, clean if a = e+u with an idempotent e and a unit u,
and nil-clean if a = e + n with an idempotent e and a nilpotent n. A ring is unit-
regular (or clean, or nil-clean) if all its elements are so. In [2], it was proved that
every unit-regular ring is clean. However, in [5], it was noticed that this implication,
for elements, fails. In the paper, plenty of unit-regular elements which are not clean
are found among 2 × 2 matrices of the type [ a b

0 0 ] with integer entries.
While it is easy to prove that any nil-clean ring is also a clean ring, the question

Whether nil-clean elements are clean? was left open (see [3] and restated in [4]) for
some seven years. In this note, we answer in the negative this question.

2. Preliminaries

As this was done (in a special case) in [5], we investigate elements in the 2 × 2
matrix ring M2(Z). Since Z and direct sums of Z are not clean (not even exchange
rings), it makes sense to look for elements which are not clean in this matrix ring.
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We first recall some elementary facts.
Let R be an integral domain and A ∈ Mn(R). Then A is a zero divisor if

and only if detA = 0. Therefore idempotents (excepting the identity matrix) and
nilpotents have zero determinant.

For A ∈ Mn(R), rk(A) < n if and only if detA is a zero divisor in R. A matrix
A is a unit in Mn(R) if and only if det A ∈ U(R). Thus, the units in M2(Z) are
the 2 × 2 matrices of det = ±1.

Lemma 1. Nontrivial idempotents in M2(Z) are matrices [ α + 1 u
v −α ] with α2 +

α + uv = 0.

Proof. One way follows by calculation. Conversely, notice that excepting I2, such
matrices are singular. Any nontrivial idempotent matrix in M2(Z) has rank 1. By
Cayley–Hamilton Theorem, E2 − tr(E)E + det(E)I2 = 0. Since det(E) = 0 and
E2 = E we obtain (1 − tr(E)) · E = 02 and so, since there are no zero divisors in
Z, tr(E) = 1.

Lemma 2. Nilpotents in M2(Z) are matrices [ β x
y −β ] with β2 + xy = 0.

Proof. One way follows by calculation. Conversely, just notice that nilpotent
matrices in M2(Z) have the characteristic polynomial t2 and so have trace and
determinant equal to zero.

Therefore, the set of all the nil-clean matrices in M2(Z), which use a nontrivial
idempotent in their nil-clean decomposition, is{[

α + β + 1 u + x

v + y −α − β

] ∣∣∣∣ α, β, u, v, x, y ∈ Z, α2 + α + uv = 0 = β2 + xy

}
.

Remark. (1) Nil-clean matrices in M2(Z) which use a nontrivial idempotent, have
the trace equal to 1. Otherwise, this is 2 or 0.

(2) Since only the absence of nonzero zero divisors is (essentially) used, the
above characterizations hold in any integral domain.

It is easy to discard the triangular case.

Proposition 3. Upper triangular nil-clean matrices, which are neither unipotent
nor nilpotent, are idempotent, and so (strongly) clean.

Proof. Such upper triangular idempotents are [α +1 u
0 −α ] with −det = α2 +α = 0,

so have α ∈ {−1, 0}, that is, [ 1 u
0 0 ] or [ 0 u

0 1 ]. Upper triangular nilpotents have the

form [ 0 x
0 0 ], and so upper triangular nil-clean matrices have the form [ 1 u

0 0 ] or

[ 0 u
0 1 ]. As noticed before, these are idempotent.
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Equations with more than one independent variable and with integer coefficients
for which integer solutions are desired are called Diophantine equations. The ones
we use in the sequel have the form

ax2 + bxy + cy2 + dx + ey + f = 0,

where a, b, c, d, e, f and are integers, i.e. general inhomogeneous equations of the
second degree with two unknowns.

Denote (see [1] or [6]) D =: b2 − 4ac, g =: gcd(b2 − 4ac; 2ae − bd) and ∆ =:
4acf + bde − ae2 − cd2 − fb2. Then the equation reduces to

−D

g
Y 2 + gX2 + 4a

∆
g

= 0

which (if D > 0) is a general Pell equation. Here Y = 2ax + by + d and X =
D
g y + 2ae−bd

g . Notice that this equation may be also written −DY 2 +X2 +4a∆ = 0
replacing X by gX (and so X = Dy + 2ae − bd).

3. The General Case

In order to find a nil-clean matrix in M2(Z) which is not clean, we need integers
α, β, u, v, x, y with α2 + α + uv = 0 = β2 + xy, such that for every γ, s, t ∈ Z, with
γ2 + γ + st = 0, the determinant

det
[[

α + β − γ u + x − s

v + y − t −α − β + γ

]]
= −(α + β − γ)2 − (u + x − s)(v + y − t) /∈ {±1}.

That is, subtracting any idempotent [ γ + 1 s
t −γ ] from [ α + 1 u

v −α ] + [ β x
y −β ], the

result should not be a unit in M2(Z).

Remark. Notice that above we have excepted the trivial idempotents. However,
this will not harm since, in finding a counterexample, we ask for the nil-clean
example not to be idempotent, nilpotent nor unit (and so not unipotent).

In the sequel, to simplify the writing, the following notations will be used: first,
m := 2α + 2β + 1 (m is odd and so nonzero) and n := (u +x)(v + y)+ (α + β)2 + 1
and second, r := α + β and δ := r2 + r + (v + y)(u + x). Then m = 2r + 1,
n = (u+x)(v+y)+r2 +1 = δ−r+1. This way an arbitrary nil-clean matrix which
uses no trivial idempotents is now written C = [ r + 1 u + x

v + y −r ] and δ = −detC. To
simplify the wording such nil-clean matrices will be called nontrivial nil-clean.

Theorem 4. Let C = [ r + 1 u + x
v + y −r ] be a nontrivial nil-clean matrix and let

E = [ γ + 1 s
t −γ ] be a nontrivial idempotent matrix. With above notations, C − E

is invertible in M2(Z) with det(C − E) = 1 if and only if

X2 − (1 + 4δ)Y 2 = 4(v + y)2(2r + 1)2(δ2 + 2δ + 2)
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with X = (2r+1)[−(1+4δ)t+(2δ+3)(v+ y)] and Y = 2(v + y)2s+(2r2 +2r+1+
2δ)t− (2δ+3)(v+ y). Further, C −E is invertible in M2(Z) with det(C −E) = −1
if and only if

X2 − (1 + 4δ)Y 2 = 4(v + y)2(2r + 1)2δ(δ − 2)

with X = (2r + 1)[−(1 + 4δ)t + (2δ − 1)(v + y)] and Y = 2(v + y)2s + (2r2 + 2r +
1 + 2δ)t − (2δ − 1)(v + y).

Proof. For given α, β, u, v, x, y, det(C − E) = ±1 amounts to a general inhomo-
geneous equation of the second degree with two unknowns, which we reduce to a
canonical form, as mentioned in the previous section. Here are the details.

−γ2 − st − (α + β)2 + 2(α + β)γ + (v + y)s + (u + x)t − (u + x)(v + y)

= (2α + 2β + 1)γ + (v + y)s + (u + x)t − (u + x)(v + y) − (α + β)2 = ±1.

The case det = 1. Since −mγ = (v + y)s+(u+x)t− (u+x)(v+ y)− (α+β)2−1 =
(v+y)s+(u+x)t−n, we obtain from (−mγ)2−m(−mγ)+m2st = 0, the equation

[(v + y)s + (u + x)t − n]2 − m[(v + y)s + (u + x)t − n] + m2st = 0, or

(v + y)2s2 + [2(v + y)(u + x) + m2]st + (u + x)2t2

− (m + 2n)(v + y)s− (m + 2n)(u + x)t + (m + n)n = 0.

Thus, with the notations of the previous section

a = (v + y)2, b = [2(v + y)(u + x) + m2], c = (u + x)2 and

d = −(m + 2n)(v + y), e = −(m + 2n)(u + x), f = (m + n)n.

Further

D = [2(v + y)(u + x) + m2]2 − 4(v + y)2(u + x)2 = m4 + 4m2(v + y)(u + x)

= m2[m2 + 4(v + y)(u + x)],

2ae − bd = m2(m + 2n)(v + y) for g = gcd(D, 2ae − bd) (notice that m2|g) and

∆ = 4acf + bde − ae2 − cd2 − fb2

= 4(v + y)2(u + x)2(m + n)n + [2(v + y)(u + x) + m2](m + 2n)2(v + y)(u + x)

− (v + y)2(m + 2n)2(u + x)2 − (u + x)2(m + 2n)2(v + y)2

− (m + n)n[2(v + y)(u + x) + m2]2

= m4[(v + y)(u + x) − (m + n)n].

The case det = −1. Formally exactly the same calculation, but n is slightly modi-
fied: here n′ = (u + x)(v + y) + (α + β)2 − 1, i.e. n′ := n − 2.
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These equations reduce to the canonical form

gX2 − D

g
Y 2 = −4a

∆
g

with D = m2[m2 + 4(v + y)(u + x)], g = gcd(D, m2(m + 2n)(v + y)), a = (v + y)2

and ∆ = m4[(v + y)(u + x) − (m + n)n].
Since clearly g = m2g′, in the above equation we can replace D and ∆ by

D
m2 and ∆

m2 (and g = gcd(m2 + 4(v + y)(u + x); (m + 2n)(v + y))), that is D =
m2 + 4(v + y)(u + x) and ∆ = m2[(v + y)(u + x) − (m + n)n].

Further, this amounts to g2X2 − DY 2 = −4a∆ and so we can eliminate g (by
taking a new unknown: X ′ = gX). Hence we reduce to the equation

X2 − [m2 + 4(v + y)(u + x)]Y 2 = −4(v + y)2m2[(v + y)(u + x) − (m + n)n],

which we can rewrite as

X2 − (1 + 4δ)Y 2 = 4(v + y)2(2r + 1)2(δ2 + 2δ + 2).

Further, for det = −1, we obtain a similar equation replacing n by n − 2, i.e.
n = δ − r − 1:

X2 − (1 + 4δ)Y 2 = 4(v + y)2(2r + 1)2δ(δ − 2).

The linear systems in s and t corresponding to det = 1 and det = −1, are
respectively:{

2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ + 3)(v + y) = Y,

(2r + 1)[−(1 + 4δ)t + (2δ + 3)(v + y)] = X

for det = 1 (here −(2r+1)γ = (v+y)s+(u+x)t−n = (v+y)s+(u+x)t−δ+r−1),
and {

2(v + y)2s + (2r2 + 2r + 1 + 2δ)t − (2δ − 1)(v + y) = Y,

(2r + 1)[−(1 + 4δ)t + (2δ − 1)(v + y)] = X

for det = −1 (here −(2r + 1)γ = (v + y)s + (u + x)t − n′ = (v + y)s + (u + x)t −
δ + r + 1).

4. The Example

Since 1+4δ ≥ 1 if δ ≥ 0, in this case, from the general theory of Pell equations, it is
known that the equations emphasized in Theorem 4 have infinitely many solutions,
and so we cannot decide whether all the linear systems corresponding to these
equations, have (or not) integer solutions. However, if δ ≤ −1 then 1 + 4δ < 0 and
we have elliptic type of Pell equations, which clearly have only finitely many integer
solutions.

Take r = 2, δ = −57 and v + y = −7, u + x = 9, that is, the matrix we consider
is [ 3 9

−7 −2 ]; 1 + 4δ = −227.
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More precisely α = −1, β = 3, u = 0, v = −6, x = 9 and y = −1, i.e. the
nil-clean decomposition[

3 9
−7 −2

]
=

[
0 0

−6 1

]
+

[
3 9

−1 −3

]
.

The (elliptic) Pell equation which corresponds to a unit with det = 1 is X2 +
227Y 2 = 15.371.300 with X = 3(227t + 777) (we shall not need Y ).

Since X = 227(3t + 10) + 61 we deduce X2 = 227k + 89 for a suitable integer
k. However, since 15.371.300 = 67.715 × 227 − 5 from the Pell equation we obtain
X2 = 227l − 5 (for a suitable integer l) and so there are no integer solutions.

As for the equation which corresponds to det = −1, X2 + 227Y 2 = 16.478.700
with X = 3(227t+805). Analogously, X = 227(3t+10)+145 and X2 = 227p+141
(for some integer p). Since from the Pell equation (16.478.700 = 72.593× 227+ 89)
we obtain X2 = 227q + 89 (for an integer q), again we have no integer solutions.

5. How the Example was Found

A deceptive good news is that both equations (in Theorem 4) are solvable (over Z):
the first equation admits the solutions X = ±(v + y)(2r + 1)(2δ + 3) and Y =
±(v + y)(2r + 1), and the second equation admits the solutions: X = ±(v + y)
(2r + 1)(2δ − 1) and Y = ±(v + y)(2r + 1).

Therefore, the main problem which remains with respect to the solvability of
the initial equations in s and t (γ is determined by s and t), is whether the linear
systems above (in s and t), also have solutions (over Z). Here is an analysis of this
problem, just for the solutions given above.

For a unit with det = 1 we have four solutions: for +X = +(v + y)(2r + 1)
(2δ + 3) we obtain t = 0. Then for +Y = +(v + y)(2r + 1) we obtain s = u + x +
r2+2r+2

v+y and γ = −1 and for −Y = −(v + y)(2r + 1) we obtain s = u + x + r2+1
v+y

and γ = 0. The corresponding clean decompositions are
[
r + 1 u + x

v + y −r

]
=

[
0 u + x + r2+2r+2

v+y

0 1

]
+

[
r + 1 − r2+2r+2

v+y

v + y −r − 1

]

=

[
1 u + x + r2+1

v+y

0 0

]
+

[
r − r2+1

v+y

v + y −r

]
.

Notice that r2 + 1 and r2 + 2r + 2 = (r + 1)2 + 1 are nonzero.
For −X = −(v + y)(2r + 1)(2δ + 3) we obtain t = (v + y)(1 + 5

1+4δ ) which is
an integer if and only if 1 + 4δ divides 5(v + y). However, this has to be continued
with conditions on s.

For a unit with det = −1 we also have four solutions: for +X = (v + y)(2r + 1)
(2δ−1) we obtain t = 0. Then for +Y = (v+y)(2r+1) we obtain s = u+x+ r2+2r

v+y

and γ = −1 and for −Y = −(v + y)(2r + 1) we obtain s = u + x + r2−1
v+y and γ = 0.
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The corresponding clean decompositions are[
r + 1 u + x

v + y −r

]
=

[
0 u + x + r2+2r

v+y

0 1

]
+

[
r + 1 − r2+2r

v+y

v + y −r − 1

]

=

[
1 u + x + r2−1

v+y

0 0

]
+

[
r − r2−1

v+y

v + y −r

]
.

Notice that r2 − 1 = 0 if and only if r ∈ {±1} and r2 + 2r = 0 if and only if
r ∈ {0, 2}.

For −X = −(v + y)(2r + 1)(2δ − 1) we obtain t = (v + y)(1 + 1
1+4δ ) which is

an integer if and only if 1 + 4δ divides v + y. Again, this has to be continued with
conditions on s.

Generally the relations α2 + α + uv = 0 and β2 + xy = 0, do not imply that
v+y divides any of r2 +1, r2−1, r2 +2r = (r+1)2−1 or r2 +2r+2 = (r+1)2 +1
(recall that r = α + β), nor that 1 + 4δ divides 5(v + y) (and so does not divide
v + y).

Searching for a counterexample, we need integers α, β, u, v, x, y such that α2 +
α +uv = 0 = β2 +xy, and v + y does not divide any of the numbers: r2 +1, r2 − 1,
(r + 1)2 − 1 or (r + 1)2 + 1.

Further, 1 + 4δ should not divide 5(v + y) and, moreover, to cover the trivial
idempotents, we add two other conditions.

Since idempotents and units are clean in any ring, we must add:
det [ r + 1 u + x

v + y −r ] �= 0 (this way the nil-clean matrix is not idempotent, nor nilpo-

tent) and det [ r + 1 u + x
v + y −r ] �= ±1, (it is not a unit, and so nor unipotent), that is

δ /∈ {0,±1}.
Notice that if r ∈ {−2,−1, 0, 1} then 0 appears among our two numbers (r2−1,

(r + 1)2 − 1) and the fraction is zero (i.e. an integer).
Since a matrix is nil-clean if and only if its transpose is nil-clean, we should

have symmetric conditions on the corners v + y and u + x, respectively. That is
why, u + x should not divide any of the numbers: r2 + 1, r2 − 1, (r + 1)2 − 1 or
(r + 1)2 + 1, and further, 1 + 4δ should not divide 5(u + x).

Further, we exclude clean decompositions which use an idempotent of type
[ 0 0
k 1 ]. In this case the unit (supposed with det = −1) should be [ r + 1 u + x

(v + y) − k −r − 1 ]
and if its determinant equals −1 then u+x divides r2 + r. Since idempotent, nilpo-
tent, unit and so nil-clean matrices have the same property when transposed, to
the conditions above we add u + x and v + y do not divide r2 + r.

By inspection, one can see that there are no selections of u + x and v + y

less than ±7 and ±9, at least for r ∈ {2, 3, . . . , 10}, which satisfy all the above
nondivisibilities.

Therefore v + y = −7, u + x = 9 is some kind of minimal selection. In order
to keep numbers in the Pell equation as low as possible we choose r = 2 and so
δ = −57.
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Indeed, our matrix verifies all these exclusion conditions: −7 and 9 do not divide
any of r2 ± 1 = 3, 5, (r + 1)2 ± 1 = 8, 10 nor r2 + r = 6; 1 + 4δ = −227 (prime
number) does not divide 5 × (−7) = −35 nor 5 × 9 = 45 and δ /∈ {0,±1}.
Remark. We found this example in terms of r, δ, u + x and v + y. It was not
obvious how to come back to the nil-clean decomposition, that is, to α, β, u, v, x and
y (indeed, this reduces to another elliptic Pell equation!). However, the following
elementary argument showed more: there is only one solution, given by (u, v) =
(0,−6).

The system α + β = 2, u + x = 9, v + y = −7, α2 + α + uv = 0 = β2 + xy is
equivalent to (7u − 9v − 59)(7u − 9v − 54) + 25uv = 0. Denote t = 7u − 9v − 59,
hence u = 1

7 (9v + t + 59). We obtain the equation

t(t + 5) + 25uv = 0. (1)

Looking mod 5, it follows t = 5k, for some integer k. The equation simplifies to
k(k + 1) + uv = 0. That is

k(k + 1) +
1
7
(9v + 5k + 59)v = 0.

Considering the last equation as a quadratic equation in k, we have

7k2 + (5v + 7)k + 9v2 + 59v = 0.

The discriminant of the last equation is

∆ = (5v + 7)2 − 28(9v2 + 59v) = −227v2 − 1582v + 49.

In order to have integer solutions for our last equation it is necessary ∆ ≥ 0 and
∆ to be a perfect square. The quadratic function f(v) = −227v2 − 1582v + 49 has
the symmetry axis of the equation vmax = − 1582

2·227 < 0, and f(1) < 0, hence there
are no integers v ≥ 1 such that f(v) ≥ 0.

On the other hand, we have f(−7) = 0, giving k = 2, hence t = 10. Replacing
in Eq. (1) we obtain 6 − 7u = 0, equation with no integer solution. Moreover, we
have f(v) < 0 for all v < −7.

From the above remark, it follows that all possible integer solutions for v are
−6,−5,−4,−3,−2,−1, 0. Checking all these possibilities we obtain f(−6) = 372

and then k = −1. We get t = −5, and Eq. (1) becomes −6u = 0, hence u = 0.

6. A Related Question

Since both unit-regular and nil-clean rings are clean, a natural question is whether
these two classes are somehow related. First Z3 (more generally, any domain with
at least 3 elements) is a unit-regular ring which is not nil-clean, and, Z4 (more
generally, any nil-clean ring with nontrivial Jacobson radical) is nil-clean but not
unit-regular.

Finally, we give examples of nil-clean matrices in M2(Z) which are not unit-
regular, and unit-regular matrices which are not nil-clean.
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Recall that the set of all the nontrivial nil-clean matrices in M2(Z) is{[
α + β + 1 u + x

v + y −α − β

] ∣∣∣∣α, β, u, v, x, y ∈ Z, α2 + α + uv = 0 = β2 + xy

}

and that the only nonzero unit-regular matrices with a zero second row are [ a b
0 0 ],

with (a, b) unimodular (i.e. a row whose entries generate the unit ideal, see [5]).
Hence [ 2 1

0 0 ] is unit-regular but not nil-clean (nil-clean matrices have trace equal

to 2,1 or 0; in the first case [ 2 1
0 0 ] − I2 is not nilpotent). Conversely, first notice

that the nil-clean matrices with a zero second row are exactly the matrices [ 1 b
0 0 ],

b ∈ Z. Being idempotent, these are also unit-regular (so not suitable).
However, consider the nil-clean matrix (with our notations α = β = v = x = 0,

u = 1, y = 2) A = [ 1 1
2 0 ]. Suppose A is unit-regular. Then, using an equivalent

definition, A = EU with E = E2 and U ∈ GL2(Z). Since detA = −2 �= ±1, A

is not a unit and so E �= I2. Hence detE = 0 and from detA = detE · det U , we
obtain a contradiction.
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