Journal of Algebra and Its Applications Vol. 13, No. 6 (2014) 1450009 (9 pages) © World Scientific Publishing Company DOI: 10.1142/S0219498814500091

A nil-clean 2×2 matrix over the integers which is not clean

Dorin Andrica* and Grigore Călugăreanu†

Department of Mathematics and Computer Science Babes-Bolyai University 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania *dandrica@math.ubbcluj.ro †calu@math.ubbcluj.ro

> Received 13 July 2013 Accepted 14 November 2013 Published 21 March 2014

Communicated by P. Ara

While any nil-clean ring is clean, the last eight years, it was not known whether nil-clean elements in a ring are clean. We give an example of nil-clean element in the matrix ring $\mathcal{M}_2(\mathbf{Z})$ which is not clean.

Keywords: Nil-clean; Diophantine equation; Pell equation; unit regular.

1. Introduction

Let R be a ring with identity. An element $a \in R$ is called *unit-regular* if a = bub with $b \in R$ and a unit u in R, *clean* if a = e + u with an idempotent e and a unit u, and *nil-clean* if a = e + n with an idempotent e and a nilpotent n. A ring is *unit-regular* (or *clean*, or *nil-clean*) if all its elements are so. In [2], it was proved that every unit-regular ring is clean. However, in [5], it was noticed that this implication, for elements, fails. In the paper, plenty of unit-regular elements which are not clean are found among 2×2 matrices of the type $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ with integer entries.

While it is easy to prove that any nil-clean ring is also a clean ring, the question Whether nil-clean elements are clean? was left open (see [3] and restated in [4]) for some seven years. In this note, we answer in the negative this question.

2. Preliminaries

As this was done (in a special case) in [5], we investigate elements in the 2×2 matrix ring $\mathcal{M}_2(\mathbf{Z})$. Since \mathbf{Z} and direct sums of \mathbf{Z} are not clean (not even exchange rings), it makes sense to look for elements which are not clean in this matrix ring.

We first recall some elementary facts.

Let R be an integral domain and $A \in \mathcal{M}_n(R)$. Then A is a zero divisor if and only if det A = 0. Therefore idempotents (excepting the identity matrix) and nilpotents have zero determinant.

For $A \in \mathcal{M}_n(R)$, rk(A) < n if and only if det A is a zero divisor in R. A matrix A is a unit in $\mathcal{M}_n(R)$ if and only if det $A \in U(R)$. Thus, the units in $\mathcal{M}_2(\mathbf{Z})$ are the 2×2 matrices of det $= \pm 1$.

Lemma 1. Nontrivial idempotents in $\mathcal{M}_2(\mathbf{Z})$ are matrices $\begin{bmatrix} \alpha + 1 & u \\ v & -\alpha \end{bmatrix}$ with $\alpha^2 + \alpha + uv = 0$.

Proof. One way follows by calculation. Conversely, notice that excepting I_2 , such matrices are singular. Any nontrivial idempotent matrix in $\mathcal{M}_2(\mathbf{Z})$ has rank 1. By Cayley–Hamilton Theorem, $E^2 - \operatorname{tr}(E)E + \det(E)I_2 = 0$. Since $\det(E) = 0$ and $E^2 = E$ we obtain $(1 - \operatorname{tr}(E)) \cdot E = 0_2$ and so, since there are no zero divisors in \mathbf{Z} , $\operatorname{tr}(E) = 1$.

Lemma 2. Nilpotents in $\mathcal{M}_2(\mathbf{Z})$ are matrices $\begin{bmatrix} \beta & x \\ y & -\beta \end{bmatrix}$ with $\beta^2 + xy = 0$.

Proof. One way follows by calculation. Conversely, just notice that nilpotent matrices in $\mathcal{M}_2(\mathbf{Z})$ have the characteristic polynomial t^2 and so have trace and determinant equal to zero.

Therefore, the set of all the nil-clean matrices in $\mathcal{M}_2(\mathbf{Z})$, which use a nontrivial idempotent in their nil-clean decomposition, is

$$\left\{ \begin{bmatrix} \alpha + \beta + 1 & u + x \\ v + y & -\alpha - \beta \end{bmatrix} \middle| \alpha, \beta, u, v, x, y \in \mathbf{Z}, \alpha^2 + \alpha + uv = 0 = \beta^2 + xy \right\}.$$

Remark. (1) Nil-clean matrices in $\mathcal{M}_2(\mathbf{Z})$ which use a nontrivial idempotent, have the trace equal to 1. Otherwise, this is 2 or 0.

(2) Since only the absence of nonzero zero divisors is (essentially) used, the above characterizations hold in any integral domain.

It is easy to discard the triangular case.

Proposition 3. Upper triangular nil-clean matrices, which are neither unipotent nor nilpotent, are idempotent, and so (strongly) clean.

Proof. Such upper triangular idempotents are $\begin{bmatrix} \alpha + 1 & u \\ 0 & -\alpha \end{bmatrix}$ with $-\det = \alpha^2 + \alpha = 0$, so have $\alpha \in \{-1, 0\}$, that is, $\begin{bmatrix} 1 & u \\ 0 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & u \\ 0 & 1 \end{bmatrix}$. Upper triangular nilpotents have the form $\begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix}$, and so upper triangular nil-clean matrices have the form $\begin{bmatrix} 1 & u \\ 0 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & u \\ 0 & 1 \end{bmatrix}$. As noticed before, these are idempotent.

Equations with more than one independent variable and with integer coefficients for which integer solutions are desired are called *Diophantine equations*. The ones we use in the sequel have the form

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0,$$

where a, b, c, d, e, f and are integers, i.e. general inhomogeneous equations of the second degree with two unknowns.

Denote (see [1] or [6]) $D =: b^2 - 4ac$, $g =: \gcd(b^2 - 4ac; 2ae - bd)$ and $\Delta =: 4acf + bde - ae^2 - cd^2 - fb^2$. Then the equation reduces to

$$-\frac{D}{g}Y^2 + gX^2 + 4a\frac{\Delta}{g} = 0$$

which (if D > 0) is a general Pell equation. Here Y = 2ax + by + d and $X = \frac{D}{g}y + \frac{2ae-bd}{g}$. Notice that this equation may be also written $-DY^2 + X^2 + 4a\Delta = 0$ replacing X by gX (and so X = Dy + 2ae - bd).

3. The General Case

In order to find a nil-clean matrix in $\mathcal{M}_2(\mathbf{Z})$ which is not clean, we need integers $\alpha, \beta, u, v, x, y$ with $\alpha^2 + \alpha + uv = 0 = \beta^2 + xy$, such that for every $\gamma, s, t \in \mathbf{Z}$, with $\gamma^2 + \gamma + st = 0$, the determinant

$$\det \begin{bmatrix} \alpha + \beta - \gamma & u + x - s \\ v + y - t & -\alpha - \beta + \gamma \end{bmatrix} \\ = -(\alpha + \beta - \gamma)^2 - (u + x - s)(v + y - t) \notin \{\pm 1\}.$$

That is, subtracting any idempotent $\begin{bmatrix} \gamma+1 & s \\ t & -\gamma \end{bmatrix}$ from $\begin{bmatrix} \alpha+1 & u \\ v & -\alpha \end{bmatrix} + \begin{bmatrix} \beta & x \\ y & -\beta \end{bmatrix}$, the result should not be a unit in $\mathcal{M}_2(\mathbf{Z})$.

Remark. Notice that above we have excepted the trivial idempotents. However, this will not harm since, in finding a counterexample, we ask for the nil-clean example not to be idempotent, nilpotent nor unit (and so not unipotent).

In the sequel, to simplify the writing, the following notations will be used: first, $m := 2\alpha + 2\beta + 1$ (*m* is odd and so nonzero) and $n := (u+x)(v+y) + (\alpha + \beta)^2 + 1$ and second, $r := \alpha + \beta$ and $\delta := r^2 + r + (v+y)(u+x)$. Then m = 2r + 1, $n = (u+x)(v+y) + r^2 + 1 = \delta - r + 1$. This way an arbitrary nil-clean matrix which uses no trivial idempotents is now written $C = \begin{bmatrix} r+1 & u+x \\ v+y & -r \end{bmatrix}$ and $\delta = -\det C$. To simplify the wording such nil-clean matrices will be called *nontrivial nil-clean*.

Theorem 4. Let $C = \begin{bmatrix} r+1 & u+x \\ v+y & -r \end{bmatrix}$ be a nontrivial nil-clean matrix and let $E = \begin{bmatrix} \gamma+1 & s \\ t & -\gamma \end{bmatrix}$ be a nontrivial idempotent matrix. With above notations, C - E is invertible in $\mathcal{M}_2(\mathbf{Z})$ with $\det(C - E) = 1$ if and only if

$$X^{2} - (1+4\delta)Y^{2} = 4(v+y)^{2}(2r+1)^{2}(\delta^{2}+2\delta+2)$$

with $X = (2r+1)[-(1+4\delta)t + (2\delta+3)(v+y)]$ and $Y = 2(v+y)^2s + (2r^2+2r+1+2\delta)t - (2\delta+3)(v+y)$. Further, C-E is invertible in $\mathcal{M}_2(\mathbf{Z})$ with $\det(C-E) = -1$ if and only if

$$X^{2} - (1+4\delta)Y^{2} = 4(v+y)^{2}(2r+1)^{2}\delta(\delta-2)$$

with $X = (2r+1)[-(1+4\delta)t + (2\delta-1)(v+y)]$ and $Y = 2(v+y)^2s + (2r^2+2r+1+2\delta)t - (2\delta-1)(v+y).$

Proof. For given $\alpha, \beta, u, v, x, y$, det $(C - E) = \pm 1$ amounts to a general inhomogeneous equation of the second degree with two unknowns, which we reduce to a canonical form, as mentioned in the previous section. Here are the details.

$$-\gamma^{2} - st - (\alpha + \beta)^{2} + 2(\alpha + \beta)\gamma + (v + y)s + (u + x)t - (u + x)(v + y)$$

= $(2\alpha + 2\beta + 1)\gamma + (v + y)s + (u + x)t - (u + x)(v + y) - (\alpha + \beta)^{2} = \pm 1.$

The case det = 1. Since $-m\gamma = (v+y)s + (u+x)t - (u+x)(v+y) - (\alpha+\beta)^2 - 1 = (v+y)s + (u+x)t - n$, we obtain from $(-m\gamma)^2 - m(-m\gamma) + m^2st = 0$, the equation

$$[(v+y)\mathbf{s} + (u+x)\mathbf{t} - n]^2 - m[(v+y)\mathbf{s} + (u+x)\mathbf{t} - n] + m^2st = 0, \text{ or}$$
$$(v+y)^2\mathbf{s}^2 + [2(v+y)(u+x) + m^2]\mathbf{s}\mathbf{t} + (u+x)^2\mathbf{t}^2$$
$$- (m+2n)(v+y)\mathbf{s} - (m+2n)(u+x)\mathbf{t} + (m+n)n = 0.$$

Thus, with the notations of the previous section

$$\mathbf{a} = (v+y)^2$$
, $\mathbf{b} = [2(v+y)(u+x) + m^2]$, $\mathbf{c} = (u+x)^2$ and
 $\mathbf{d} = -(m+2n)(v+y)$, $\mathbf{e} = -(m+2n)(u+x)$, $\mathbf{f} = (m+n)n$.

Further

$$\mathbf{D} = [2(v+y)(u+x) + m^2]^2 - 4(v+y)^2(u+x)^2 = m^4 + 4m^2(v+y)(u+x)$$
$$= m^2[m^2 + 4(v+y)(u+x)],$$

 $\begin{aligned} \mathbf{2ae} &-\mathbf{bd} = m^2(m+2n)(v+y) \text{ for } g = \gcd(D, 2ae-bd) \text{ (notice that } m^2|g) \text{ and} \\ \mathbf{\Delta} &= 4acf + bde - ae^2 - cd^2 - fb^2 \\ &= 4(v+y)^2(u+x)^2(m+n)n + [2(v+y)(u+x) + m^2](m+2n)^2(v+y)(u+x) \\ &- (v+y)^2(m+2n)^2(u+x)^2 - (u+x)^2(m+2n)^2(v+y)^2 \\ &- (m+n)n[2(v+y)(u+x) + m^2]^2 \\ &= m^4[(v+y)(u+x) - (m+n)n]. \end{aligned}$

The case det = -1. Formally exactly the same calculation, but n is slightly modified: here $n' = (u + x)(v + y) + (\alpha + \beta)^2 - 1$, i.e. n' := n - 2.

These equations reduce to the canonical form

$$gX^2 - \frac{D}{g}Y^2 = -4a\frac{\Delta}{g}$$

with $D = m^2[m^2 + 4(v+y)(u+x)], g = \gcd(D, m^2(m+2n)(v+y)), a = (v+y)^2$ and $\Delta = m^4[(v+y)(u+x) - (m+n)n].$

Since clearly $g = m^2 g'$, in the above equation we can replace D and Δ by $\frac{D}{m^2}$ and $\frac{\Delta}{m^2}$ (and $g = \gcd(m^2 + 4(v+y)(u+x); (m+2n)(v+y)))$, that is $D = m^2 + 4(v+y)(u+x)$ and $\Delta = m^2[(v+y)(u+x) - (m+n)n]$.

Further, this amounts to $g^2X^2 - DY^2 = -4a\Delta$ and so we can eliminate g (by taking a new unknown: X' = gX). Hence we reduce to the equation

$$X^{2} - [m^{2} + 4(v+y)(u+x)]Y^{2} = -4(v+y)^{2}m^{2}[(v+y)(u+x) - (m+n)n],$$

which we can rewrite as

$$X^{2} - (1+4\delta)Y^{2} = 4(v+y)^{2}(2r+1)^{2}(\delta^{2}+2\delta+2).$$

Further, for det = -1, we obtain a similar equation replacing n by n-2, i.e. $n = \delta - r - 1$:

$$X^{2} - (1+4\delta)Y^{2} = 4(v+y)^{2}(2r+1)^{2}\delta(\delta-2).$$

The linear systems in s and t corresponding to det = 1 and det = -1, are respectively:

$$\begin{cases} 2(v+y)^2s + (2r^2 + 2r + 1 + 2\delta)t - (2\delta + 3)(v+y) = Y, \\ (2r+1)[-(1+4\delta)t + (2\delta + 3)(v+y)] = X \end{cases}$$

for det = 1 (here $-(2r+1)\gamma = (v+y)s + (u+x)t - n = (v+y)s + (u+x)t - \delta + r - 1$), and

$$\begin{cases} 2(v+y)^2s + (2r^2 + 2r + 1 + 2\delta)t - (2\delta - 1)(v+y) = Y, \\ (2r+1)[-(1+4\delta)t + (2\delta - 1)(v+y)] = X \end{cases}$$

for det = -1 (here $-(2r+1)\gamma = (v+y)s + (u+x)t - n' = (v+y)s + (u+x)t - \delta + r + 1$).

4. The Example

Since $1+4\delta \ge 1$ if $\delta \ge 0$, in this case, from the general theory of Pell equations, it is known that the equations emphasized in Theorem 4 have infinitely many solutions, and so we cannot decide whether all the linear systems corresponding to these equations, have (or not) integer solutions. However, if $\delta \le -1$ then $1 + 4\delta < 0$ and we have elliptic type of Pell equations, which clearly have only finitely many integer solutions.

Take r = 2, $\delta = -57$ and v + y = -7, u + x = 9, that is, the matrix we consider is $\begin{bmatrix} 3 & 9\\ -7 & -2 \end{bmatrix}$; $1 + 4\delta = -227$.

D. Andrica & G. Călugăreanu

More precisely $\alpha = -1$, $\beta = 3$, u = 0, v = -6, x = 9 and y = -1, i.e. the nil-clean decomposition

$$\begin{bmatrix} 3 & 9 \\ -7 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -6 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 9 \\ -1 & -3 \end{bmatrix}.$$

The (elliptic) Pell equation which corresponds to a unit with det = 1 is $X^2 + 227Y^2 = 15.371.300$ with X = 3(227t + 777) (we shall not need Y).

Since X = 227(3t + 10) + 61 we deduce $X^2 = 227k + 89$ for a suitable integer k. However, since $15.371.300 = 67.715 \times 227 - 5$ from the Pell equation we obtain $X^2 = 227l - 5$ (for a suitable integer l) and so there are no integer solutions.

As for the equation which corresponds to det = -1, $X^2 + 227Y^2 = 16.478.700$ with X = 3(227t + 805). Analogously, X = 227(3t + 10) + 145 and $X^2 = 227p + 141$ (for some integer p). Since from the Pell equation (16.478.700 = 72.593 × 227 + 89) we obtain $X^2 = 227q + 89$ (for an integer q), again we have no integer solutions.

5. How the Example was Found

A deceptive good news is that both equations (in Theorem 4) are solvable (over **Z**): the first equation admits the solutions $X = \pm (v + y)(2r + 1)(2\delta + 3)$ and $Y = \pm (v + y)(2r + 1)$, and the second equation admits the solutions: $X = \pm (v + y)(2r + 1)(2\delta - 1)$ and $Y = \pm (v + y)(2r + 1)$.

Therefore, the main problem which remains with respect to the solvability of the initial equations in s and t (γ is determined by s and t), is whether the linear systems above (in s and t), also have solutions (over **Z**). Here is an analysis of this problem, just for the solutions given above.

For a unit with det = 1 we have four solutions: for +X = +(v + y)(2r + 1) $(2\delta + 3)$ we obtain t = 0. Then for +Y = +(v + y)(2r + 1) we obtain $s = u + x + \frac{r^2 + 2r + 2}{v + y}$ and $\gamma = -1$ and for -Y = -(v + y)(2r + 1) we obtain $s = u + x + \frac{r^2 + 1}{v + y}$ and $\gamma = 0$. The corresponding clean decompositions are

$$\begin{bmatrix} r+1 & u+x\\ v+y & -r \end{bmatrix} = \begin{bmatrix} 0 & u+x+\frac{r^2+2r+2}{v+y}\\ 0 & 1 \end{bmatrix} + \begin{bmatrix} r+1 & -\frac{r^2+2r+2}{v+y}\\ v+y & -r-1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & u+x+\frac{r^2+1}{v+y}\\ 0 & 0 \end{bmatrix} + \begin{bmatrix} r & -\frac{r^2+1}{v+y}\\ v+y & -r \end{bmatrix}.$$

Notice that $r^2 + 1$ and $r^2 + 2r + 2 = (r + 1)^2 + 1$ are nonzero.

For $-X = -(v+y)(2r+1)(2\delta+3)$ we obtain $t = (v+y)(1+\frac{5}{1+4\delta})$ which is an integer if and only if $1 + 4\delta$ divides 5(v+y). However, this has to be continued with conditions on s.

For a unit with det = -1 we also have four solutions: for +X = (v+y)(2r+1) $(2\delta-1)$ we obtain t = 0. Then for +Y = (v+y)(2r+1) we obtain $s = u+x+\frac{r^2+2r}{v+y}$ and $\gamma = -1$ and for -Y = -(v+y)(2r+1) we obtain $s = u+x+\frac{r^2-1}{v+y}$ and $\gamma = 0$. The corresponding clean decompositions are

$$\begin{bmatrix} r+1 & u+x\\ v+y & -r \end{bmatrix} = \begin{bmatrix} 0 & u+x+\frac{r^2+2r}{v+y}\\ 0 & 1 \end{bmatrix} + \begin{bmatrix} r+1 & -\frac{r^2+2r}{v+y}\\ v+y & -r-1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & u+x+\frac{r^2-1}{v+y}\\ 0 & 0 \end{bmatrix} + \begin{bmatrix} r & -\frac{r^2-1}{v+y}\\ v+y & -r \end{bmatrix}.$$

Notice that $r^2 - 1 = 0$ if and only if $r \in \{\pm 1\}$ and $r^2 + 2r = 0$ if and only if $r \in \{0, 2\}$.

For $-X = -(v+y)(2r+1)(2\delta-1)$ we obtain $t = (v+y)(1+\frac{1}{1+4\delta})$ which is an integer if and only if $1 + 4\delta$ divides v + y. Again, this has to be continued with conditions on s.

Generally the relations $\alpha^2 + \alpha + uv = 0$ and $\beta^2 + xy = 0$, do not imply that v + y divides any of $r^2 + 1$, $r^2 - 1$, $r^2 + 2r = (r+1)^2 - 1$ or $r^2 + 2r + 2 = (r+1)^2 + 1$ (recall that $r = \alpha + \beta$), nor that $1 + 4\delta$ divides 5(v + y) (and so does not divide v + y).

Searching for a counterexample, we need integers α , β , u, v, x, y such that $\alpha^2 + \alpha + uv = 0 = \beta^2 + xy$, and v + y does not divide any of the numbers: $r^2 + 1$, $r^2 - 1$, $(r + 1)^2 - 1$ or $(r + 1)^2 + 1$.

Further, $1 + 4\delta$ should not divide 5(v + y) and, moreover, to cover the trivial idempotents, we add two other conditions.

Since idempotents and units are clean in any ring, we must add: det $\begin{bmatrix} r+1 & u+x \\ v+y & -r \end{bmatrix} \neq 0$ (this way the nil-clean matrix is not idempotent, nor nilpotent) and det $\begin{bmatrix} r+1 & u+x \\ v+y & -r \end{bmatrix} \neq \pm 1$, (it is not a unit, and so nor unipotent), that is $\delta \notin \{0,\pm 1\}$.

Notice that if $r \in \{-2, -1, 0, 1\}$ then 0 appears among our two numbers $(r^2 - 1, (r+1)^2 - 1)$ and the fraction is zero (i.e. an integer).

Since a matrix is nil-clean if and only if its transpose is nil-clean, we should have symmetric conditions on the corners v + y and u + x, respectively. That is why, u + x should not divide any of the numbers: $r^2 + 1$, $r^2 - 1$, $(r + 1)^2 - 1$ or $(r + 1)^2 + 1$, and further, $1 + 4\delta$ should not divide 5(u + x).

Further, we exclude clean decompositions which use an idempotent of type $\begin{bmatrix} 0 & 0 \\ k & 1 \end{bmatrix}$. In this case the unit (supposed with det = -1) should be $\begin{bmatrix} r+1 & u+x \\ (v+y)-k & -r-1 \end{bmatrix}$ and if its determinant equals -1 then u+x divides r^2+r . Since idempotent, nilpotent, unit and so nil-clean matrices have the same property when transposed, to the conditions above we add u+x and v+y do not divide r^2+r .

By inspection, one can see that there are no selections of u + x and v + y less than ± 7 and ± 9 , at least for $r \in \{2, 3, \ldots, 10\}$, which satisfy all the above nondivisibilities.

Therefore v + y = -7, u + x = 9 is some kind of minimal selection. In order to keep numbers in the Pell equation as low as possible we choose r = 2 and so $\delta = -57$.

D. Andrica & G. Călugăreanu

Indeed, our matrix verifies all these exclusion conditions: -7 and 9 do not divide any of $r^2 \pm 1 = 3, 5$, $(r+1)^2 \pm 1 = 8, 10$ nor $r^2 + r = 6$; $1 + 4\delta = -227$ (prime number) does not divide $5 \times (-7) = -35$ nor $5 \times 9 = 45$ and $\delta \notin \{0, \pm 1\}$.

Remark. We found this example in terms of r, δ , u + x and v + y. It was not obvious how to come back to the nil-clean decomposition, that is, to α , β , u, v, x and y (indeed, this reduces to another elliptic Pell equation!). However, the following elementary argument showed more: there is only one solution, given by (u, v) = (0, -6).

The system $\alpha + \beta = 2$, u + x = 9, v + y = -7, $\alpha^2 + \alpha + uv = 0 = \beta^2 + xy$ is equivalent to (7u - 9v - 59)(7u - 9v - 54) + 25uv = 0. Denote t = 7u - 9v - 59, hence $u = \frac{1}{7}(9v + t + 59)$. We obtain the equation

$$t(t+5) + 25uv = 0. (1)$$

Looking mod 5, it follows t = 5k, for some integer k. The equation simplifies to k(k+1) + uv = 0. That is

$$k(k+1) + \frac{1}{7}(9v + 5k + 59)v = 0.$$

Considering the last equation as a quadratic equation in k, we have

$$7k^2 + (5v+7)k + 9v^2 + 59v = 0.$$

The discriminant of the last equation is

$$\Delta = (5v+7)^2 - 28(9v^2 + 59v) = -227v^2 - 1582v + 49.$$

In order to have integer solutions for our last equation it is necessary $\Delta \geq 0$ and Δ to be a perfect square. The quadratic function $f(v) = -227v^2 - 1582v + 49$ has the symmetry axis of the equation $v_{\text{max}} = -\frac{1582}{2\cdot227} < 0$, and f(1) < 0, hence there are no integers $v \geq 1$ such that $f(v) \geq 0$.

On the other hand, we have f(-7) = 0, giving k = 2, hence t = 10. Replacing in Eq. (1) we obtain 6 - 7u = 0, equation with no integer solution. Moreover, we have f(v) < 0 for all v < -7.

From the above remark, it follows that all possible integer solutions for v are -6, -5, -4, -3, -2, -1, 0. Checking all these possibilities we obtain $f(-6) = 37^2$ and then k = -1. We get t = -5, and Eq. (1) becomes -6u = 0, hence u = 0.

6. A Related Question

Since both unit-regular and nil-clean rings are clean, a natural question is whether these two classes are somehow related. First \mathbf{Z}_3 (more generally, any domain with at least 3 elements) is a unit-regular ring which is not nil-clean, and, \mathbf{Z}_4 (more generally, any nil-clean ring with nontrivial Jacobson radical) is nil-clean but not unit-regular.

Finally, we give examples of nil-clean matrices in $\mathcal{M}_2(\mathbf{Z})$ which are not unit-regular, and unit-regular matrices which are not nil-clean.

Recall that the set of all the nontrivial nil-clean matrices in $\mathcal{M}_2(\mathbf{Z})$ is

$$\left\{ \begin{bmatrix} \alpha + \beta + 1 & u + x \\ v + y & -\alpha - \beta \end{bmatrix} \middle| \alpha, \beta, u, v, x, y \in \mathbf{Z}, \alpha^2 + \alpha + uv = 0 = \beta^2 + xy \right\}$$

and that the only nonzero unit-regular matrices with a zero second row are $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$, with (a, b) unimodular (i.e. a row whose entries generate the unit ideal, see [5]).

Hence $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ is unit-regular but not nil-clean (nil-clean matrices have trace equal to 2,1 or 0; in the first case $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} - I_2$ is not nilpotent). Conversely, first notice that the nil-clean matrices with a zero second row are exactly the matrices $\begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$, $b \in \mathbf{Z}$. Being idempotent, these are also unit-regular (so not suitable).

However, consider the nil-clean matrix (with our notations $\alpha = \beta = v = x = 0$, u = 1, y = 2) $A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$. Suppose A is unit-regular. Then, using an equivalent definition, A = EU with $E = E^2$ and $U \in GL_2(\mathbb{Z})$. Since det $A = -2 \neq \pm 1$, A is not a unit and so $E \neq I_2$. Hence det E = 0 and from det $A = \det E \cdot \det U$, we obtain a contradiction.

Acknowledgment

Thanks are due to the referee for his patience in pointing out errors in early versions of this paper.

References

- [1] T. Andreescu, D. Andrica and I. Cucurezeanu, An Introduction to Diophantine Equations (Birkhauser, 2010).
- [2] V. P. Camillo and D. Khurana, A characterization of unit-regular rings, Comm. Algebra 29(5) (2001) 2293–2295.
- [3] A. J. Diesl, Classes of strongly clean rings, PhD Thesis, University of California, Berkeley (2006).
- [4] A. J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197–211.
- [5] D. Khurana and T. Y. Lam, Clean matrices and unit-regular matrices, J. Algebra 280 (2004) 683–698.
- [6] I. Nagell, Introduction to Number Theory (John Wiley, New York, Stockholm, 1951).