Units generated by idempotents

Grigore Călugăreanu

May 28, 2019

1 Introduction

In this note we consider only unital rings and for a ring $R, I d(R)$ denotes the set of all the idempotents of R.

It is well-known (and easy to check) that if e is an idempotent in a unital ring R then $2 e-1$ is a unit.

We can call a unit $u \in U(R)$ an id-unit if there exists an idempotent e such that $u=2 e-1$. We denote by $I U(R)$ the set of all id-units of a ring R.

In any unital ring $R,\{ \pm 1\}$ are id-units, corresponding to the trivial idempotents $e \in\{1,0\}$. We shall call these, trivial id-units.

Obviously, if a ring has only the trivial idempotents, it also has only the trivial id-units. Examples include the domains, or the local rings and in particular the division rings.

Therefore, a natural problem consists in characterizing the nontrivial idunits in some given rings.

Clearly this can be done in any ring for which all idempotents are known, i.e. with the above notations, $I U(R)=2 I d(R)-1$.

After some elementary remarks in section 2 , in section 3 we characterize the id-units in \mathbb{Z}_{n}, integers modulo n, for some positive integer n, and the id-units in 2×2 matrix rings over commutative rings.

2 Elementary

Lemma 1 If $2 \in U(R)$ then $u \in U(R)$ is an id-unit iff $u^{2}=1$.
Proof. If $2 \in U(R)$ the definition is equivalent to $e=\frac{1}{2}(1+u)$. The RSH is an idempotent (i.e. $\left.\left(\frac{1}{2}(1+u)\right)^{2}=\frac{1}{2}(1+u)\right)$ iff $u^{2}=1$ (i.e. $u^{-1}=u$).

Obviously, the trivial id-units belong here.

Example. Take $U=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ for which $U^{2}=I_{2}$. Over \mathbb{Z}, this is not an id-unit: obviously (directly) there is no integral E such that $2 E=I_{2}+U=$ $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

However, it is a nontrivial id-unit over \mathbb{Z}_{3} : indeed, $E=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ is an idempotent and $2 E-I_{2}=U=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, but $2 I_{2}$ is a unit in $\mathcal{M}_{2}\left(\mathbb{Z}_{3}\right)$.

As examples (and the study) below show, there are (nontrivial) id-units also when 2 is not a unit.

It is easy to show that the uniqueness of the idempotent, for a given id-unit, generally fails.

Example: in $\mathcal{M}\left(\mathbb{Z}_{2}\right)$ (where $2 I_{2}=0_{2}$ is not a unit), analyzing $x(x+1)+y z=$ 0 , we have 6 nontrivial idempotents:
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$. For all 6, the corresponding id-unit is I_{2}.

Of course $2 e-1=2 e^{\prime}-1$ iff $2 e=2 e^{\prime}$, so we have uniqueness if $2 \in U(R)$. That is

Lemma 2 If $2 \in U(R)$ the function $f: I d(R) \longrightarrow I U(R), f(x)=2 x-1$, $x \in \operatorname{Id}(R)$ is bijective and so $|I d(R)|=|I U(R)|$.

If $2 \notin U(R)$ then f is surjective and so $|I U(R)| \leq|I d(R)|$.

The converse fails, that is, there are id-units generated by only one idempotent also in rings for which 2 is not a unit.

Example. Clearly $\overline{2} \notin U\left(\mathbb{Z}_{12}\right)$. Then $\operatorname{Id}\left(\mathbb{Z}_{12}\right)=\{\overline{0}, \overline{1}, \overline{4}, \overline{9}\}, U\left(\mathbb{Z}_{12}\right)=$ $\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$. Indeed, $\overline{1}$ and $\overline{11}=-\overline{1}$ are the trivial id-units, and we have nontrivial id-units: $\overline{7}=2 \cdot \overline{4}-\overline{1}$ which is generated only by the idempotent $\overline{4}$. So is $\overline{5}=2 \cdot \overline{9}-\overline{1}$.

In the sequel we skip the superscript for classes modulo n, for any n.

3 Id-units in \mathbb{Z}_{n} and 2×2 matrix rings

We first recall some well-known characterizations.
It is well-known that u is a unit in \mathbb{Z}_{n} iff $\operatorname{gcd}(u, n)=1$. Therefore the number of units of \mathbb{Z}_{n} is given by Euler's totient function $\phi(n)=\left(p_{1}-1\right) p_{1}^{\alpha_{1}-1} \ldots\left(p_{k}-\right.$ 1) $p_{k}^{\alpha_{k}-1}=\left|U\left(\mathbb{Z}_{n}\right)\right|$.

As for idempotents, suppose $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$. The number of idempotents of \mathbb{Z}_{n} is $2^{k}=\left|\operatorname{Id}\left(\mathbb{Z}_{n}\right)\right|$ (including the two trivial idempotents).

Also notice that u is a unit in \mathbb{Z}_{n} iff $n-u$ is a unit in \mathbb{Z}_{n} (indeed, $u v \equiv$ $1(\operatorname{modn}) \Longleftrightarrow(\mathrm{n}-\mathrm{u})(\mathrm{n}-\mathrm{v}) \equiv 1(\bmod \mathrm{n}))$.

Remark. For any unit u in \mathbb{Z}_{n}, we can always consider $\frac{1+u}{2}$.
Indeed, $2 \notin U\left(\mathbb{Z}_{n}\right)$ iff n is even, case in which the units are odd, so $\frac{1+u}{2}$ exists. If $2 \in U\left(\mathbb{Z}_{n}\right)$ then clearly $\frac{1+u}{2}=2^{-1}(1+u)$.

Now we are ready to prove the following
Proposition 3 Assume $\operatorname{gcd}(u, n)=1$. Then u is an id-unit in \mathbb{Z}_{n} iff $u^{2} \equiv$ 1(modn).

Proof. Indeed, u is an id-unit iff $\left(\frac{1+u}{2}\right)^{2} \equiv \frac{1+u}{2}(\operatorname{modn})$. Equivalently, $(1+u)^{2} \equiv 2+2 u$ and also $u^{2} \equiv 1(\bmod n)$.

Examples. 1) For $n=12, \phi(12)=4$ and $U\left(\mathbb{Z}_{12}\right)=\{1,5,7,11\}$. Then 1 and $11=-1$ are the trivial id-units, and since $7=12-5$ it suffices to check 5 . Indeed, $5^{2}=25 \equiv 1(\bmod 12)$ so 5 is an id-unit. Hence, so is 7 .
2) For $n=60, \phi(60)=16$ and $2^{3}=8$, that is, at most 8 units are id-units and the other 8 units are not id-units.

We indeed have 8 id-units: the trivial id-units $\{1,59\}$ and $\{11=2 \cdot 36-$ $1,19=2 \cdot 40-1,29=2 \cdot 45-1,31=2 \cdot 16-1,41=2 \cdot 21-1,49=2 \cdot 25-1\}$. The other units, namely $\{7,13,17,23,37,43,47,53\}$ are not id-units.

In this special case, since the last digit of $n=60$ is 0 , for $u^{2} \equiv 1$ we need the last digit of u to be 1 or 9 . This way we can immediately isolate the id-units.

We proceed with matrix 2×2 rings.
As already mentioned, in order to determine the nontrivial id-units, we assume $2 \notin U(R)$.

Lemma 4 For an arbitrary unital ring $R, 2 I_{2}$ is a unit in $\mathcal{M}_{2}(R)$ iff $2 \in U(R)$.
Proof. One way: $2 I_{2} \cdot\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=2\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot 2 I_{2}=I_{2}$ implies $2 a=a \cdot 2=1$ so $2 \in U(R)$.

Conversely, if $2 \in U(R), 2^{-1} I_{2}$ is the inverse of $2 I_{2}$.
Therefore $2 I_{2}$ is not a unit in $\mathcal{M}_{2}(\mathbb{Z})$ and $2 I_{2}$ is a unit in $\mathcal{M}_{2}\left(\mathbb{Z}_{n}\right)$ iff n is odd.

Combining with Lemma 1 gives
Proposition 5 If 2 is a unit in a ring R then the id-units U of $M_{2}(R)$ are the matrices with $U^{2}=I_{2}$.

For commutative rings we can prove the following

Proposition 6 For a commutative ring R, a unit $U=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $\operatorname{det} U=$ $a d-b c=-1$ is a nontrivial id-unit in the matrix ring $\mathcal{M}_{2}(R)$ iff $d=-a$, $a \in 2 R+1$ and $b, c \in 2 R$.

Proof. Since Cayley-Hamilton theorem is valid for matrices over commutative rings, the nontrivial 2×2 idempotents are characterized by trace $=1$ and determinant $=0$, i.e. are of form $E=\left[\begin{array}{cc}x+1 & y \\ z & -x\end{array}\right]$ with $x(x+1)+y z=0$. The conditions follow from the equality $2 E=U+I_{2}$, i.e. $2\left[\begin{array}{cc}x+1 & y \\ z & -x\end{array}\right]=$ $\left[\begin{array}{cc}a+1 & b \\ c & d+1\end{array}\right]$.

The condition $\operatorname{det} U=a d-b c=-1$, follows from $\operatorname{det}\left(2 E-I_{2}\right)=-(2 x+$ $1)^{2}-4 y z=-1$ since $x(x+1)+y z=0$.

Corollary 7 A 2×2 matrix over a commutative ring R is a nontrivial id-unit iff it is of form $\left[\begin{array}{cc}a & b \\ \frac{1-a^{2}}{b} & -a\end{array}\right]$ for $a \in 2 R+1$ and b a divisor of $1-a^{2}$.

We just revisit the example in the introduction, $U=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ over \mathbb{Z}_{3}.
Since $2 \in U\left(\mathbb{Z}_{3}\right)$, we must have $U^{2}=I_{2}$ so Lemma 1 is verified. As for the previous corollary, notice that $a=0=2 \cdot 1+1 \in 2 \mathbb{Z}_{3}+1$ and $b=1$ divides $1=1-0^{2}$.

Corollary 8 The nontrivial id-units in $\mathcal{M}_{2}(\mathbb{Z})$ are the matrices $U=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$ with odd a, even b, c and $a^{2}+b c=1$ (i.e. $\operatorname{det} U=-1$ and $\left\{\left[\begin{array}{cc}a & b \\ \frac{1-a^{2}}{b} & -a\end{array}\right]\right.$: $\left.\left.a \in 2 \mathbb{Z}+1, b \in 2 \mathbb{Z}, b \mid a^{2}-1\right\}\right)$.

Examples. $\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]=2\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]-I_{2},\left[\begin{array}{cc}3 & 2 \\ -4 & -3\end{array}\right]=2\left[\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right]-$ I_{2} and so on.

