Units generated by idempotents

Grigore Călugăreanu

May 28, 2019

1 Introduction

In this note we consider only unital rings and for a ring R, Id(R) denotes the set of all the idempotents of R.

It is well-known (and easy to check) that if e is an idempotent in a unital ring R then 2e - 1 is a unit.

We can call a unit $u \in U(R)$ an *id-unit* if there exists an idempotent e such that u = 2e - 1. We denote by IU(R) the set of all id-units of a ring R.

In any unital ring R, $\{\pm 1\}$ are *id-units*, corresponding to the trivial idempotents $e \in \{1, 0\}$. We shall call these, *trivial* id-units.

Obviously, if a ring has only the trivial idempotents, it also has only the trivial id-units. Examples include the domains, or the local rings and in particular the division rings.

Therefore, a natural problem consists in *characterizing the nontrivial id*units in some given rings.

Clearly this can be done in any ring for which all idempotents are known, i.e. with the above notations, IU(R) = 2Id(R) - 1.

After some elementary remarks in section 2, in section 3 we characterize the id-units in \mathbb{Z}_n , integers modulo n, for some positive integer n, and the id-units in 2×2 matrix rings over commutative rings.

2 Elementary

Lemma 1 If $2 \in U(R)$ then $u \in U(R)$ is an id-unit iff $u^2 = 1$.

Proof. If $2 \in U(R)$ the definition is equivalent to $e = \frac{1}{2}(1+u)$. The RSH is an idempotent (i.e. $(\frac{1}{2}(1+u))^2 = \frac{1}{2}(1+u)$) iff $u^2 = 1$ (i.e. $u^{-1} = u$).

Obviously, the trivial id-units belong here.

Example. Take $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for which $U^2 = I_2$. Over \mathbb{Z} , this is not an id-unit: obviously (directly) there is no integral E such that $2E = I_2 + U =$ $\left[\begin{array}{rrr}1 & 1\\ 1 & 1\end{array}\right].$

However, it is a nontrivial id-unit over \mathbb{Z}_3 : indeed, $E = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is an idempotent and $2E - I_2 = U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, but $2I_2$ is a unit in $\mathcal{M}_2(\mathbb{Z}_3)$.

As examples (and the study) below show, there are (nontrivial) id-units also when 2 is not a unit.

It is easy to show that the *uniqueness* of the idempotent, for a given id-unit, generally fails.

Example: in $\mathcal{M}(\mathbb{Z}_2)$ (where $2I_2 = 0_2$ is not a unit), analyzing x(x+1)+yz =

0, we have 6 nontrivial idempotents: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}.$ For all 6, the corresponding id-unit is I_2 .

Of course 2e - 1 = 2e' - 1 iff 2e = 2e', so we have uniqueness if $2 \in U(R)$. That is

Lemma 2 If $2 \in U(R)$ the function $f : Id(R) \longrightarrow IU(R), f(x) = 2x - 1$, $x \in Id(R)$ is bijective and so |Id(R)| = |IU(R)|. If $2 \notin U(R)$ then f is surjective and so $|IU(R)| \leq |Id(R)|$.

The converse fails, that is, there are id-units generated by only one idempotent also in rings for which 2 is not a unit.

Example. Clearly $\overline{2} \notin U(\mathbb{Z}_{12})$. Then $Id(\mathbb{Z}_{12}) = \{\overline{0}, \overline{1}, \overline{4}, \overline{9}\}, U(\mathbb{Z}_{12}) =$ $\{\overline{1},\overline{5},\overline{7},\overline{11}\}$. Indeed, $\overline{1}$ and $\overline{11} = -\overline{1}$ are the trivial id-units, and we have non*trivial id-units*: $\overline{7} = 2 \cdot \overline{4} - \overline{1}$ which is generated only by the idempotent $\overline{4}$. So is $\overline{5} = 2 \cdot \overline{9} - \overline{1}$.

In the sequel we skip the superscript for classes modulo n, for any n.

Id-units in \mathbb{Z}_n and 2×2 matrix rings 3

We first recall some well-known characterizations.

It is well-known that u is a unit in \mathbb{Z}_n iff gcd(u, n) = 1. Therefore the number of units of \mathbb{Z}_n is given by Euler's totient function $\phi(n) = (p_1 - 1)p_1^{\alpha_1 - 1}...(p_k - 1)p_k^{\alpha_k - 1} = |U(\mathbb{Z}_n)|.$

As for idempotents, suppose $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. The number of idempotents of \mathbb{Z}_n is $2^k = |Id(\mathbb{Z}_n)|$ (including the two trivial idempotents).

Also notice that u is a unit in \mathbb{Z}_n iff n - u is a unit in \mathbb{Z}_n (indeed, $uv \equiv 1 \pmod{(n-u)(n-v)} \equiv 1 \pmod{)}$.

Remark. For any unit u in \mathbb{Z}_n , we can always consider $\frac{1+u}{2}$.

Indeed, $2 \notin U(\mathbb{Z}_n)$ iff *n* is even, case in which the units are odd, so $\frac{1+u}{2}$ exists. If $2 \in U(\mathbb{Z}_n)$ then clearly $\frac{1+u}{2} = 2^{-1}(1+u)$.

Now we are ready to prove the following

Proposition 3 Assume gcd(u, n) = 1. Then u is an id-unit in \mathbb{Z}_n iff $u^2 \equiv 1 \pmod{n}$.

Proof. Indeed, u is an id-unit iff $\left(\frac{1+u}{2}\right)^2 \equiv \frac{1+u}{2} \pmod{1}$. Equivalently, $(1+u)^2 \equiv 2+2u$ and also $u^2 \equiv 1 \pmod{1}$.

Examples. 1) For n = 12, $\phi(12) = 4$ and $U(\mathbb{Z}_{12}) = \{1, 5, 7, 11\}$. Then 1 and 11 = -1 are the trivial id-units, and since 7 = 12 - 5 it suffices to check 5. Indeed, $5^2 = 25 \equiv 1 \pmod{2}$ so 5 is an id-unit. Hence, so is 7.

2) For n = 60, $\phi(60) = 16$ and $2^3 = 8$, that is, at most 8 units are id-units and the other 8 units are not id-units.

We indeed have 8 id-units: the trivial id-units {1,59} and {11 = $2 \cdot 36 - 1, 19 = 2 \cdot 40 - 1, 29 = 2 \cdot 45 - 1, 31 = 2 \cdot 16 - 1, 41 = 2 \cdot 21 - 1, 49 = 2 \cdot 25 - 1$ }. The other units, namely {7,13,17,23,37,43,47,53} are not id-units.

In this special case, since the last digit of n = 60 is 0, for $u^2 \equiv 1$ we need the last digit of u to be 1 or 9. This way we can immediately isolate the id-units.

We proceed with matrix 2×2 rings.

As already mentioned, in order to determine the nontrivial id-units, we assume $2 \notin U(R)$.

Lemma 4 For an arbitrary unital ring R, $2I_2$ is a unit in $\mathcal{M}_2(R)$ iff $2 \in U(R)$.

Proof. One way: $2I_2 \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 2 \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot 2I_2 = I_2$ implies $2a = a \cdot 2 = 1$ so $2 \in U(R)$. Conversely, if $2 \in U(R)$, $2^{-1}I_2$ is the inverse of $2I_2$.

Therefore $2I_2$ is not a unit in $\mathcal{M}_2(\mathbb{Z})$ and $2I_2$ is a unit in $\mathcal{M}_2(\mathbb{Z}_n)$ iff n is odd.

Combining with Lemma 1 gives

Proposition 5 If 2 is a unit in a ring R then the id-units U of $M_2(R)$ are the matrices with $U^2 = I_2$.

For commutative rings we can prove the following

Proposition 6 For a commutative ring R, a unit $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with det U = ad - bc = -1 is a nontrivial id-unit in the matrix ring $\mathcal{M}_2(R)$ iff d = -a, $a \in 2R + 1$ and $b, c \in 2R$.

Proof. Since Cayley-Hamilton theorem is valid for matrices over commutative rings, the nontrivial 2×2 idempotents are characterized by trace = 1 and determinant = 0, i.e. are of form $E = \begin{bmatrix} x+1 & y \\ z & -x \end{bmatrix}$ with x(x+1) + yz = 0. The conditions follow from the equality $2E = U + I_2$, i.e. $2\begin{bmatrix} x+1 & y \\ z & -x \end{bmatrix} = \begin{bmatrix} a+1 & b \\ a & d+1 \end{bmatrix}$.

 $\begin{bmatrix} a+1 & b \\ c & d+1 \end{bmatrix}$. The condition det U = ad - bc = -1, follows from det $(2E - I_2) = -(2x + 1)^2 - 4yz = -1$ since x(x+1) + yz = 0.

Corollary 7 A 2×2 matrix over a commutative ring R is a nontrivial id-unit iff it is of form $\begin{bmatrix} a & b \\ \frac{1-a^2}{b} & -a \end{bmatrix}$ for $a \in 2R+1$ and b a divisor of $1-a^2$.

We just revisit the example in the introduction, $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ over \mathbb{Z}_3 .

Since $2 \in U(\mathbb{Z}_3)$, we must have $U^2 = I_2$ so Lemma 1 is verified. As for the previous corollary, notice that $a = 0 = 2 \cdot 1 + 1 \in 2\mathbb{Z}_3 + 1$ and b = 1 divides $1 = 1 - 0^2$.

Corollary 8 The nontrivial id-units in $\mathcal{M}_2(\mathbb{Z})$ are the matrices $U = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ with odd a, even b, c and $a^2 + bc = 1$ (i.e. det U = -1 and $\left\{ \begin{bmatrix} a & b \\ \frac{1-a^2}{b} & -a \end{bmatrix} : a \in 2\mathbb{Z} + 1, b \in 2\mathbb{Z}, b | a^2 - 1 \right\}$).

Examples. $\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} - I_2, \begin{bmatrix} 3 & 2 \\ -4 & -3 \end{bmatrix} = 2 \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} - I_2$ and so on.