Research Article

Grigore Călugăreanu*

Idempotent matrices with invertible transpose

https://doi.org/10.1515/gmj-2019-2034
Received November 14, 2017; revised September 21, 2018; accepted September 26, 2018

Abstract: We prove that if the transpose of any 2×2 matrix over a division ring D, different from the identity matrix, is not invertible, then D is commutative.

Keywords: Idempotent matrix, invertible transpose, commutators, division ring
MSC 2010: 15B99, 16K99, 15A03, 15A09

1 Introduction

It has been well-known for a long time (since 1953) that the transpose of an invertible matrix over a division ring may not be invertible (see [2, p. 24, Exercise 3]). Gupta proved in [1] that the transpose of an invertible matrix over a division ring may be even nilpotent.

In this short note we show that, over a division ring, the transpose of an invertible matrix, different from the identity matrix, may be idempotent. Clearly, the existence of an idempotent matrix ($\neq I_{2}$) with invertible transpose is equivalent to the existence of an invertible matrix whose transpose is idempotent.

If $E=E^{2}$, then $E^{t}=\left(E^{2}\right)^{t} \neq\left(E^{t}\right)^{2}$ may happen, that is, the transpose of an idempotent matrix is not necessarily idempotent. As mentioned in [1], actually $\left(A^{2}\right)^{t}=\left(A^{t}\right)^{2}$ for every 2×2 matrix over a ring R is equivalent to the commutativity of R.

In closing, similarly to the results obtained in [1], we show that the nonexistence of such examples (except the identity matrix) implies the commutativity of the division ring.

2 The idempotent case

We start with a useful lemma.
Lemma 2.1. A is a 2×2 idempotent matrix over a division ring D if and only if $A \in\left\{0_{2}, I_{2}\right\}$ or

$$
A=\left[\begin{array}{ll}
0 & 0 \\
c & 1
\end{array}\right] \quad \text { or } \quad A=\left[\begin{array}{cc}
1-y z & y \\
z-z y z & z y
\end{array}\right]
$$

for some $c, y, z \in D, y \neq 0$.
Proof. Indeed, $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is idempotent if and only if $a^{2}+b c=a, d^{2}+c b=d, a b+b d=b, c a+d c=c$.
If $b \neq 0$, the third relation above gives $a=1-b d b^{-1}$. Denoting $b=y$ and $z=d b^{-1}$, one gets $a=1-y z$, $d=z y$, and then $c=z-z y z$, so $A=\left[\begin{array}{cc}1-y z & y \\ z-z y z & z y\end{array}\right]$, with $y \neq 0$.

If $b=0$, then $a, d \in\{0,1\}$, and, by analyzing each combination, one gets the rest of the idempotent matrices.

Conversely, for all matrices in the statement, one verifies $A^{2}=A$.

[^0]Lemma 2.2. If $A=\left[\begin{array}{cc}1-y z & y \\ z(1-y z) & z y\end{array}\right]$, with $y \neq 0 \neq z, y, z \in D$, then A^{t} is not invertible if and only if z and $(1-y z) y^{-1}$ commute.

Proof. The transpose $A^{t}=\left[\begin{array}{c}1-y z \\ y \\ z y_{y}(1-y z)\end{array}\right]$ is not invertible if and only if its rows are (left) linearly dependent over D. This is equivalent to (left) linearly dependent $(1-y z, z(1-y z)),\left(1, y^{-1} z y\right)$ and so with $z(1-y z)=$ $(1-y z) y^{-1} z y$. By right multiplication with y^{-1}, this is equivalent to commuting z and $(1-y z) y^{-1}$.

Example 2.3. As in [1], our example uses a division ring of quaternions over any field F in which $a^{2}+b^{2}+$ $c^{2}+d^{2}=0$ implies $a=0, b=0, c=0, d=0$ (for instance over \mathbf{R} or \mathbf{Q}). It suffices to take (say) $y=i$ and $z=j$. Then, indeed, $z(1-y z) y^{-1}=-1+k \neq-1-k=(1-y z) y^{-1} z$, and so for

$$
A=\left[\begin{array}{cc}
1-y z & y \\
z(1-y z) & z y
\end{array}\right]=\left[\begin{array}{cc}
1-k & i \\
-i+j & -k
\end{array}\right],
$$

we have

$$
A^{2}=A \quad \text { and } \quad\left(A^{t}\right)^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & -i-j \\
-j & -1+k
\end{array}\right]
$$

In order to prove that the nonexistence of such examples (except I_{2}) implies the commutativity of the division ring, we first prove a result which is similar to the Straus' proof added in [1].

Proposition 2.4. If z, x are two noncommuting elements in a division ring D such that the commutator $[x, z] \neq 1$, then there exists at most one element y in the coset $x+C_{z}$ such that $(1-y z) y^{-1} \in C_{z}$, where $C_{z}=\{c \in D: z c=c z\}$ is the centralizer of z in D.

Proof. Since z and x do not commute, obviously $z \neq 0 \neq x$. Suppose there are distinct $y, y^{\prime} \in x+C_{z}$ such that both $(1-y z) y^{-1},\left(1-y^{\prime} z\right)\left(y^{\prime}\right)^{-1} \in C_{z}$, and denote $z_{1}=(1-y z) y^{-1}$ (this way $y z=1-z_{1} y$). Since y, y^{\prime} belong to the same coset, $y^{\prime}=y+c$, with $0 \neq c \in C_{z}$.

We compute

$$
y^{\prime} z=(c+y) z=z c+1-z_{1} y=1+\left(z+z_{1}\right) c-z_{1}(c+y)=1+\left(z+z_{1}\right) c-z_{1} y^{\prime}
$$

and so $1-y^{\prime} z=-\left(z+z_{1}\right) c+z_{1} y^{\prime}$. Hence, by hypothesis, $\left(1-y^{\prime} z\right)\left(y^{\prime}\right)^{-1}=-\left(z+z_{1}\right) c\left(y^{\prime}\right)^{-1}+z_{1} \in C_{z}$, and since $z, z_{1}, c \in C_{z}$ and $z+z_{1} \neq 0 \neq c$, we get $\left(y^{\prime}\right)^{-1} \in C_{z}$. But then $y^{\prime} \in C_{z}$, and so $x \in C_{z}$, a contradiction.

Note that $z+z_{1}=0$ amounts to $[y, z]=y z-z y=1$ and, since $y \in x+C_{z}$, to $[x, z]=1$.
It is readily seen that the hypothesis on the commutator $[x, z] \neq 1$ is superfluous.
Lemma 2.5 (Bergman). (i) If $[x, z]=1$, then $x z^{n}=z^{n} x+n z^{n-1}$.
(ii) If all nonzero commutators are $=1$ in a ring R, then R has characteristic 2 .
(iii) If all nonzero commutators are $=1$ in a ring R without zero divisors, then every noncentral element has square 1.
(iv) In a ring without zero divisors, there exist commutators which are neither 0 nor 1.

Proof. (i) If $x z=z x+1$, successive right multiplication by z and replacement of this relation give the stated equality.
(ii) Exchanging the roles of z and x, we get $-1=1$, so R has characteristic 2 .
(iii) Take a noncentral element z, and some x with $[x, z] \neq 0$. Then, for $n=3$ in (i) (using (ii)), we get $x z^{3}=z^{3} x+z^{2}$, i.e., $z^{2}=\left[x, z^{3}\right]$, so $z^{2}=1\left(z^{2}=0\right.$ is not possible, since $z \neq 0$ would be a zero divisor), i.e., every noncentral element has square 1.
(iv) Suppose that for any noncommuting elements z and x, we have $[x, z]=1$. Then all the above holds, and since $z x$ is not central (since $z \neq 0 \neq x$, it commutes with neither z or x), it should have square 1 . However, $(z x)^{2}=z x z x=z(z x+1) x=z^{2} x^{2}+z x=1+z x$ is a contradiction (R has no zero divisors).

Theorem 2.6. If D is a division ring such that the transpose of every idempotent matrix $\neq I_{2}$ over D is not invertible, then D is commutative.

Proof. Suppose D is not commutative.
Since the transposes of 0_{2} or $\left[\begin{array}{cc}0 & 0 \\ a & 1\end{array}\right]$ are not invertible, according to Lemma 2.1, it suffices to show that a matrix of the form $\left[\begin{array}{cc}1-y z & y \\ z(1-y z) & z y\end{array}\right]$ has an invertible transpose. Then, using Lemma 2.2, it suffices to find two nonzero elements $y, z \in D$ such that $z(1-y z) y^{-1} \neq(1-y z) y^{-1} z$. Since $\left|C_{z}\right| \geq 2$, take a commutator $[x, z]$ which is neither 0 nor 1 . Then (by Proposition 2.4) there exists at most one (nonzero) element $y \in x+C_{z}$ such that $z(1-y z) y^{-1}=(1-y z) y^{-1} z$. Since C_{z} contains 0 and 1 , and both x and $x+1$ (which lie in $x+C_{z}$) are nonzero (the second one is nonzero since x is not central), it is possible to find $y \in\{x, x+1\}$ such that $z(1-y z) y^{-1} \neq(1-y z) y^{-1} z$.

Corollary 2.7. If D is a division ring such that the transpose of every idempotent 2×2 matrix over D is idempotent, then D is commutative.
Corollary 2.8. If the transpose of every 2×2 invertible matrix $\neq I_{2}$ over D is not idempotent, then D is commutative.

As George Bergman noticed (private correspondence), Lemma 2.5 can be largely generalized.
Proposition 2.9. In any noncommutative ring without zero divisors, not all commutators are central.
Proof. The proof of Lemma 2.5 can be adapted. Denote by $Z(R)$ the center of R. The key ingredient is the following: if $0 \neq c \in Z(R), a \in R$ and R has no zero divisors, then $c a \in Z(R)$ implies $a \in Z(R)$.

Acknowledgment: Thanks are due to George Bergman for his kind and valuable assistance and to the referee whose corrections and suggestions (including a simpler proof of Lemma 2.1) improved the presentation.

References

[1] R. N. Gupta, Nilpotent matrices with invertible transpose, Proc. Amer. Math. Soc. 24 (1970), 572-575.
[2] N. Jacobson, Lectures in Abstract Algebra. Vol. II. Linear Algebra, D. Van Nostrand, Toronto, 1953.

[^0]: *Corresponding author: Grigore Călugăreanu, Faculty of Mathematics and Informatics, Babeş-Bolyai University, Cluj-Napoca, Romania, e-mail: calu@math.ubbcluj.ro

