TORSION IN **Γ-LATTICES**

GRIGORE CĂLUGĂREANU

Dedicated to Professor Ioan Purdea at his 60th anniversary

Abstract. After general properties of Γ -lattices, a new notion of torsion is given and some of its connections with purity are established.

1. Introduction

Let $(\Gamma, \cdot, 1)$ be a monoid. A lattice L is called Γ -latice ([3]) if it is provided with a multiplication $\varphi : \Gamma \times L \to L$ (we shall denote by $\gamma a = \varphi(\gamma, a)$) which satisfies the following axioms

 $\Gamma 1: \gamma a \leq a$

 $\Gamma 2: \gamma(a \vee b) = \gamma a \vee \gamma b$

 $\Gamma 3: (\gamma \gamma')a = \gamma(\gamma' a)$

 $\Gamma 4: 1.a = a$

The source of this notion is the lattice of all the submodules of a given module M over a commutative ring R with identity on which the monoid of the principal ideals of R operates in a natural way: $\varphi(rR,A) = rA$ $(r \in R, A \leq M)$.

Remark 1.1. This monoid naturally acts also on quotient R-modules.

Moreover, this monoid has a special element: the zero ideal. In order to get suitable definitions for purity, divisibility and torsion and to recover some of the standard results one must consider a zero element in the monoid Γ . This is called a Γ_0 -lattice if it satisfies the axiom

 $\Gamma 0$: for each $a \in L$, 0.a = 0 holds.

We say that Γ has no zero-divisors if $\gamma \neq 0, \delta \neq 0$ imply $\gamma \cdot \delta \neq 0$.

A subset $C \subseteq L$ is called a system of generators for L if each element of L is a union of elements from C. A system of generators is called closed if $\Gamma \cdot C \subseteq C$.

This research was completed in the Universita degli Studi of Padova under a Nato-CNR fellowship.

GRIGORE CĂLUGĂREANU

As in [2] we use the quotient sublattice notation $b/a = \{c \in L | a \le c \le b\}$. An element $c \in L$ is called **cycle** if c/0 is a noetherian and distributive sublattice. Clearly, using $\Gamma 1$, for any cycle c and any $\gamma \in \Gamma$, γc is a cycle too.

In a Γ_0 -lattice an element $d \in L$ is called **divisible** if $\forall 0 \neq \gamma \in \Gamma : \gamma d = d$. In a Γ -lattice L an element p is called **pure** (see [1]) if $\gamma p = p \land \gamma 1, \forall \gamma \in \Gamma$.

2. Elementary results

In what follows Γ will denote a (non-necessary commutative) monoid. For the proofs of the following simple results see [1].

Lemma 2.1. In any Γ -lattice, $\gamma.0 = 0, \forall \gamma \in \Gamma$.

Consequence 2.1. 0 is divisible in each Γ_0 -lattice.

- One can consider, for a fixed $\gamma \in \Gamma$, the upper semi-morphism (according to Γ 2) $\varphi_{\gamma}: L \to L, \varphi_{\gamma}(a) = \gamma a, \forall a \in L$. Hence

Lemma 2.2. φ_{γ} is an order-preserving morphism.

Hence

Lemma 2.3. (i) $a \le b \Rightarrow \gamma a \le \gamma b$. Moreover, (ii) $\gamma(a \land b) \le \gamma a \land \gamma b$.

A subset B of a Γ -lattice L is called a Γ -stable if $\forall \gamma \in \Gamma, \gamma B \subseteq B$.

Clearly (using Γ 1) the sublattices a/0 are Γ -stable and in general not every sublattice 1/a (or b/a) is Γ -stable.

Proposition 2.1. A sublattice b/a is Γ -stable iff a is divisible.

Lemma 2.4. Each divisible element is also pure.

Reconsidering 1.1 we consider on quotient sublattices b/a the following Γ -lattice structure:

 $\forall \gamma \in \Gamma, \forall c \in b/a : \gamma * c = (\gamma c) \lor a$

enlarging in this way the notion of Γ -sublattice (Γ -stable sublattices).

Obviously, if a is divisible this is the natural Γ -lattice structure on b/a obtained by restriction.

3. Torsion and purity in Γ_0 -lattices

In this section we give some properties of a new notion of torsion in a Γ_0 -lattice L connected with purity (continuing [1]). In this context special new conditions on Γ_0 -lattices seem to be necessary.

Observe that the inequality $\bigvee \{\gamma a | \gamma a \leq b\} \leq b \land \gamma 1$ holds for each $b \in L$ and each $\gamma \in \Gamma$.

Clearly, if $b = \gamma x$ for a suitable $x \in L$ this is an equality: indeed, both members are equal to b. Generally, if $b \notin \Gamma \cdot L$ this could be no equality.

In the sequel we shall call a Γ -lattice dense if for each $\gamma \in \Gamma$ and each $b \in L$ the equality $\bigvee \{\gamma a | \gamma a \leq b\} = b \wedge \gamma 1$ holds.

We use bounded elements in a Γ_0 -lattice, i.e. elements $b \in L$ such that there is an $0 \neq \gamma \in \Gamma$ with $\gamma b = 0$. We shall denote by B the set of all the bounded elements of L.

For a Γ_0 -lattice L the torsion part t(L) is defined as the union of all the bounded (compact) elements. Then L is called a torsion lattice if t(L)=1 resp. $t\in L$ is called a torsion element if t=t(t/0). The lattice L is called torsion-free if t(L)=0 resp. $u\in L$ is called a torsion-free element if t(u/0)=0.

A closed system of generators $C \subseteq L$ is called **good** if $C \cap (t(L)/0) \subseteq B$, i.e., the generators $c \in C$ such that $c \le t(L)$ are bounded (as concrete examples one could consider the compact elements in algebraic H-noetherian lattices or the cycles in cyclic generated lattices).

We first record in a Γ_0 -lattice L the following simple properties:

- (a) If $a \leq b$ and b is bounded then a is also bounded. In particular, by $\Gamma 1$, if b is bounded, γb is bounded too, for each $\gamma \in \Gamma$.
 - (b) Each atom is bounded or divisible.
- (c) If C is a system of generators for L then any bounded element b is an union of bounded generators $\{c_i\}_{i\in I}\subseteq C$. Moreover, if for $0\neq \gamma$ we have $\gamma b=0$ then $\forall i\in I: \gamma c_i=0$.

Consequently, if the Γ_0 -lattice L has no divisible atoms

- (d) The socle $s(L) \leq t(L)$.
- (e) If u is a torsion-free element then u/0 has no atoms.

If \Gamma has no zero-divisors

(f) For each $0 \neq \gamma \in \Gamma$, b is bounded iff γb is bounded.

Indeed, if γb is bounded there is $0 \neq \delta \in \Gamma$: $\delta(\gamma b) = (\delta \gamma) b = 0$. Γ having no zero-divisors, $\delta \gamma \neq 0$ and so b is bounded. The rest is (a).

Proposition 3.1. If Γ has no zero-divisors the "radical" property:

$$t(1/t(L)) = t(L),$$

holds in a Γ_0 -lattice L with a good system of generators C.

Proof. By definitions: 1/t(L) is a torsion-free sublattice \Leftrightarrow

$$\forall b \in 1/t(L), \exists 0 \neq \gamma \in \Gamma : \gamma * b = t(L) \Rightarrow b = t(L) \Leftrightarrow$$

 $\exists 0 \neq \gamma \in \Gamma : \gamma b \leq t(L) \leq b \Rightarrow b = t(L)$. The lattice L having a (good) system of generators C, the inequality $b \leq t(L)$ can be verified as follows: $\forall c \in C, c \leq b \Rightarrow c \leq t(L)$.

Indeed, if $c \le b$, by 2.3 $\gamma c \le \gamma b \le t(L)$. C being a good system of generators γc is also a generator and it is bounded. Hence by (f) c is bounded too and $c \le t(L)$.

Consequence 3.1. If Γ has no zero-divisors, L is cycle generated Γ_0 -lattice and the cycles in t(L)/0 are bounded then L has the "radical" property.

Consequence 3.2. If Γ has no zero-divisors and L is an algebraic and H-noetherian Γ_0 -lattice then L has the "radical" property. \square

Another condition we need in the propositions that follows is:

for each $0 \neq \gamma \in \Gamma$, $\gamma a \leq \gamma b \Rightarrow a \leq b$ for elements in torsion-free Γ_0 -lattices (*).

Proposition 3.2. If for an element p in a dense Γ_0 -lattice L the sublattice 1/p is torsion-free then p is pure. Conversely, if p is pure in a torsion-free Γ_0 -lattice L with (*) then 1/p is also torsion-free.

Proof. Indeed, 1/p is torsion-free iff $\exists 0 \neq \gamma \in \Gamma : \gamma u \leq p \leq u \Rightarrow u = p$. Using the density of L we prove the inequality $p \land \gamma 1 \leq \gamma p$ as follows: $\gamma a \leq p \land \gamma 1 \Rightarrow \gamma (a \lor p) = \gamma a \lor \gamma p \leq p \land \gamma 1 \leq p \Rightarrow a \lor p = p \Rightarrow a \leq p \Rightarrow \gamma a \leq \gamma p$.

Conversely, for $0 \neq \gamma \in \Gamma$: $\gamma u \leq p \leq u$ and $\gamma p = p \wedge \gamma 1$ we have to prove that u = p.

First, observe that $\gamma u \leq p, \gamma u \leq \gamma 1 \Rightarrow \gamma u \leq p \land \gamma 1 = \gamma p$ and $p \leq u \Rightarrow \gamma p \leq \gamma u$ so that $\gamma u = \gamma p$. One has finally to use (*).

Proposition 3.3. If Γ has no zero-divisors, in a dense Γ_0 -lattice L with a good system of generators, t(L) is pure.

TORSION IN T-LATTICES

Proof. This is an immediate consequence of 3.1 and 3.2. \square

Proposition 3.4. In a dense torsion-free Γ_0 -lattice L with (*), an intersection of pure elements is pure.

Proof. Let $\{p_i\}_{i\in I}$ be a family of pure elements of L and let $\overline{p}=\bigwedge_{i\in I}p_i$. The lattice being dense it suffices to verify that for each $0\neq\gamma\in\Gamma$: $\gamma a\leq\overline{p}\wedge\gamma 1$ implies $\gamma a\leq\gamma\overline{p}$.

Indeed, $\gamma a \leq \overline{p} \wedge \gamma 1 = (\bigwedge_{i \in I} p_i) \wedge \gamma 1 = \bigwedge_{i \in I} (p_i \wedge \gamma 1) = \bigwedge_{i \in I} (\gamma p_i)$ implies $\gamma a \leq \gamma p_i$ for each $i \in I$. Now the condition (*) implies $a \leq p_i$ for each $i \in I$ and so $a \leq \overline{p}$. Hence $\gamma a \leq \gamma \overline{p}$ by 2.3. \square

Final remark. Although with a promising start, Γ -lattices require too much special conditions in order to obtain important results.

References

[1] Călugăreanu G., Purity in Γ-lattices, Mathematica (to appear) 1998.

[2] Crawley P., Dilworth R.P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N.J. 1973.

[3] Salce L., Modular Lattices and polyserial Modules, General Algebra 1988, Proc. Internat. Conf., Krems, Austria, p.221-231.

"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania