PURITY IN Γ-LATTICES*

GRIGORE CĂLUGĂREANU

1. Introduction

Let $(\Gamma, \cdot, 1)$ be a monoid. A lattice L is called Γ -latice if it is provided with a multiplication $\varphi : \Gamma \times L \to L$ (we shall denote by $\gamma a = \varphi(\gamma, a)$) which satisfies the following axioms

 $\Gamma 1 : \gamma a \leq a$

 $\Gamma 2 : \gamma(a \lor b) = \gamma a \lor \gamma b$

 $\Gamma 3 : (\gamma \gamma') a = \gamma (\gamma' a)$

 $\Gamma 4: 1.a = a.$

The source of this enrichment of the notion of lattice is (see [3]) the lattice of all the submodules of a given module M over a commutative ring R with identity. Indeed, this is an algebraic modular lattice such that the commutative monoid of the principal ideals of R operates on the submodules in a natural way $\varphi(rR,A) = rA$ $(r \in R, A \leq M)$.

Remark 1.1. Actually, this monoid naturally acts also on the quotient modules.

As in [1] we use the quotient sublattice notation $b/a = \{c \in L | a \le c \le b\}$. All the lattices have 0 and 1.

2. Elementary results

In what follows Γ will denote a (non-necessary commutative) monoid.

LEMMA 2.1 In any Γ -lattice, γ .0 = 0, $\forall \gamma \in \Gamma$.

Indeed, from $\Gamma 1$ we derive $\gamma . 0 \le 0$, and hence $\gamma . 0 = 0$, $\forall \gamma \in \Gamma$. \Box

– One can consider, for a fixed $\gamma \in \Gamma$, the function $\varphi_{\gamma} : L \to L$, $\varphi_{\gamma}(a) = \gamma a$, $\forall a \in L$. The axiom $\Gamma 2$ implies that φ_{γ} is an upper semi-morphism. Hence

Lemma 2.2 φ_{γ} is an order-preserving morphism.

Indeed,
$$a \leq b \Rightarrow a \vee b = b \Rightarrow \varphi_{\gamma}(a \vee b) = \varphi_{\gamma}(b) \Rightarrow \varphi_{\gamma}(a) \vee \varphi_{\gamma}(b) = \varphi_{\gamma}(b) \Rightarrow \varphi_{\gamma}(a) \leq \varphi_{\gamma}(b)$$
. \square

^{*} This research was completed in the Universita degli Studi of Padova under a Nato-CNR fellowship.

Hence

LEMMA 2.3 (i) $a \le b \Rightarrow \gamma a \le \gamma b$. Moreover, (ii) $\gamma(a \land b) \le \gamma a \land \gamma b$.

Indeed, from (i) we get $a \land b \le a \Rightarrow \gamma(a \land b) \le \gamma a$ and similarly $\gamma(a \land b) \le \gamma b$; hence $\gamma(a \land b) \le \gamma a \land \gamma b$. \square

A subset B of a Γ -lattice L is called Γ -stable if $\forall \gamma \in \Gamma$, $\gamma B \subseteq B$.

It is clear (using Γ 1) that the sublattices a/0 are Γ -stable and that in general not every sublattice 1/a (or b/a) is Γ -stable.

In a Γ -lattice an element $d \in L$ is called c-divisible if $\forall \gamma \in \Gamma : \gamma d = d$.

Proposition 2.1 A sublattice b/a is a Γ -stable iff a is c-divisible.

Proof. If b/a is Γ -stable then $a \leq \gamma a$ and Γ 1 completes the equality. Conversely, from 2.3 we derive $a = \gamma a \leq \gamma c \leq c \leq b$ for each $c \in b/a$. \square

One should define the notion of Γ -sublattice as a Γ -stable sublattice because in this way each Γ -sublattice has (by restriction) a natural structure of Γ -lattice.

Reconsidering the remark we have made in the introduction (concerning the natural action of the monoid on quotient modules) we shall consider on quotient sublattices b/a the following Γ -lattice structure:

 $\forall \gamma \in \Gamma, \forall c \in b/a : \gamma * c = (\gamma c) \lor a$, enlarging in this way the notion of Γ -sublattice.

Remark 2.1 Surely, if a is c-divisible this is the natural Γ -lattice structure on b/a obtained by restriction.

3. c-Pure elements

In what follows we shall use the following definition: in a Γ -lattice L an element p is c-pure if $\gamma p = p \wedge \gamma 1, \forall \gamma \in \Gamma$.

Remark 3.1 $\gamma p \leq p \wedge \gamma 1, \forall \gamma \in \Gamma, \forall p \in L$ in every Γ -lattice L.

Indeed, $\Gamma 1 \Rightarrow \gamma p \leq p$ and from the previous lemma (i) $p \leq 1 \Rightarrow \gamma p \leq \gamma 1$. \square

PROPOSITION 3.1 If L is a modular Γ -lattice and $p \in L$ has a complement in L then p is c-pure.

Proof. Let a be a complement of p in L. Then $(\gamma 1) \wedge p = \gamma(p \vee a) \wedge p \stackrel{\Gamma 2}{=}$ $\stackrel{\Gamma 2}{=} ((\gamma p) \vee (\gamma a)) \wedge p \stackrel{\Gamma 1+m \ od}{=} (\gamma p) \vee ((\gamma a) \wedge p) = (\gamma p) \vee 0 = \gamma p$ holds because $\gamma a \wedge p \stackrel{\Gamma 1}{=} a \wedge p = 0$. \square

Proposition 3.2 In any Γ -lattice the c-purity is a transitive property.

Proof. If L is a Γ -lattice, and $b \in L$ then (by Γ 1 and (i)) the sublattice b/0 is a Γ -lattice too.

Now, if $a \le b$, a is c-pure in b/0 and b is c-pure in L we immediately derive $\gamma a = a \wedge \gamma b = a \wedge (b \wedge (\gamma 1)) = (a \wedge b) \wedge \gamma 1 = a \wedge \gamma 1$. \square

PROPOSITION 3.3 Let $a \le b \le c$ in a Γ -lattice L. If a is c-pure in c/0 then a is c-pure in b/0 too.

Proof. Again, together with L, b/0 and c/0 are Γ -lattices too. The following computation gives the proof: $\gamma a = a \wedge \gamma c = a \wedge \gamma (b \vee c) \stackrel{\Gamma^2}{=} a \wedge ((\gamma b) \vee (\gamma c)) = a \wedge \gamma b$ (one uses (i) for $\gamma b \leq \gamma c$). \square

LEMMA 3.1 Each c-divisible element is also c-pure.

Proof. Indeed, for each $\gamma \in \Gamma$ we have $a = \gamma a \le \gamma 1$ and hence $a \land \gamma 1 = a = \gamma a$. \square

The extension given in the previous section for the notion of Γ -sublattice permits us to define **relative** c-purity and to prove also other properties.

PROPOSITION 3.4 Let $a \le b$ be elements in a modular Γ -lattice L. If b is c-pure in L then b is also c-pure in 1/a.

Proof. First of all, b is c-pure in 1/a iff $\gamma * b = b \land (\gamma * 1), \forall \gamma \in \Gamma$. This is equivalent to $(\gamma b) \lor a = b \land ((\gamma 1) \lor a)$ and, by modularity, to $(\gamma b) \lor a = (b \land (\gamma 1)) \lor a$, true if b is c-pure in L. \Box

PROPOSITION 3.5 Let $a \le b$ be elements in a modular Γ -lattice L. If a is c-pure in L and b is c-pure in 1/a then b is c-pure in L.

Proof. First, as above, b is c-pure in 1/a iff $\gamma * b = b \wedge (\gamma * 1)$, $\forall \gamma \in \Gamma$ iff $(\gamma b) \vee a = (b \wedge (\gamma 1)) \vee a$.

Next, $(\gamma b) \wedge a = \gamma a = a \wedge (\gamma 1) = (b \wedge (\gamma 1)) \wedge a$ (the first equality: $\gamma a \leq \gamma b$, $\gamma a \leq a \Rightarrow \gamma a \leq (\gamma b) \wedge a$ and $(\gamma b) \wedge a \leq (\gamma 1) \wedge a = \gamma a$). So, again by modularity, $\gamma b = b \wedge \gamma 1$ follows from $\gamma b \leq b \wedge \gamma 1$ (see Remark 3.1). \square

Lemma 3.2 Let L be an algebraic Γ -lattice and $a \in L$. If for each compact element $c \le a$ there is a pure element $b \in L$ such that $c \le b \le a$ then a is pure.

Proof. The lattice L being algebraic (compactly generated), according to 3.1 it suffices to prove that for each compact element c of L, and for each $\gamma \in \Gamma$, $c \le a \land \gamma 1$ implies $c \le \gamma a$.

Indeed, from $c \le a \land \gamma 1 \le a$ we have a pure element b in L such that $c \le b \le a$. But $c \le \gamma 1$, $c \le b$ imply $c \le b \land \gamma 1 = \gamma b \le \gamma a$ (using also 2.3). \square

PROPOSITION 3.6 In an algebraic Γ -lattice L a union of c-pure elements is c-pure.

Proof. One uses the above lemma. See [2]. □

REFERENCES

- Crawley, P., Dilworth, R.P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N.J., 1973.
- 2. Head, T.J., Purity in compact generated modular lattices, Acta Math. Acad. Sci. Hung., 17, (1966), 55-59.
- Salce, L., Modular lattices and polyserial modules, General Algebra 1988, Proc. Internat. Conf., Krems, Austria, 221-231.

Received 25 July 1997

"Babeş-Bolyai" University of Cluj, Faculty of Mathematics and Computer Science Str. M. Kogălniceanu 1 RO-3400 Cluj-Napoca, Romania