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We start with the example of fine element which is not clean given in our
joint paper with T. Y. Lam (see [1]).

Theorem 5.7 Over a commutative domain S, a diagonal matrix A =
diag(a, 1) is clean in R = M2(S) iff a ∈ U(S) ∪ (1 + U(S)).

Since A =

[

a+ 1 1
−1 0

]

+

[

−1 −1
1 1

]

is always fine, for an example which

is not clean it suffices to take a ≥ 3 or a ≤ −2 in Z.

To the characterization above we can add the exchange property, that is

Theorem 1 Let A = diag(a, 1), a ∈ S, be a diagonal matrix over a commuta-
tive domain S. The following conditions are equivalent:

(i) A is clean;
(ii) A is exchange;
(iii) a ∈ U(S) ∪ (1 + U(S)).

Proof. Only (ii) =⇒ (iii) needs justification. Recall that A is exchange iff
∃M ∈ R such that A+M(A−A2) is idempotent.

If M =

[

x y

z t

]

, by computation,

C = A+M(A−A2) =

[

a+ x(a − a2) 0
z(a− a2) 1

]

.

Since C 6= 02, notice that C = I2 iff a ∈ U(S).
Further, C is nontrivial idempotent iff Tr(C) = 1, det(C) = 0.
For a = 0, the matrix is idempotent, so clean and exchange.
For a 6= 0, both equalities reduce to x(a− 1) = 1 (for arbitrary y, z, t) which

implies a− 1 ∈ U(S).
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