A fine element which is not exchange

Grigore Călugăreanu

March 15, 2019

We start with the example of fine element which is not clean given in our joint paper with T. Y. Lam (see [1]).

Theorem 5.7 Over a commutative domain S, a diagonal matrix A = diag(a, 1) is clean in $R = \mathcal{M}_2(S)$ iff $a \in U(S) \cup (1 + U(S))$.

Since $A = \begin{bmatrix} a+1 & 1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$ is always fine, for an example which is not clean it suffices to take $a \ge 3$ or $a \le -2$ in \mathbb{Z} .

To the characterization above we can add the exchange property, that is

Theorem 1 Let A = diag(a, 1), $a \in S$, be a diagonal matrix over a commutative domain S. The following conditions are equivalent:

(i) A is clean; (ii) A is exchange; (iii) $a \in U(S) \cup (1 + U(S)).$

Proof. Only (ii) \implies (iii) needs justification. Recall that A is exchange iff $\exists M \in R$ such that $A + M(A - A^2)$ is idempotent.

$$M = \begin{bmatrix} x & y \\ z & t \end{bmatrix}, \text{ by computation,}$$
$$C = A + M(A - A^2) = \begin{bmatrix} a + x(a - a^2) & 0 \\ z(a - a^2) & 1 \end{bmatrix}.$$

Since $C \neq 0_2$, notice that $C = I_2$ iff $a \in U(S)$.

Further, C is nontrivial idempotent iff Tr(C) = 1, det(C) = 0.

For a = 0, the matrix is idempotent, so clean and exchange.

For $a \neq 0$, both equalities reduce to x(a-1) = 1 (for arbitrary y, z, t) which implies $a - 1 \in U(S)$.

References

If

 G. Călugăreanu, T. Y. Lam Fine rings: A new class of simple rings. J. of Algebra and its Appl., 15, (9) (2016), 18 pages.