Example revisited

Grigore Călugăreanu

July 3, 2017

In [2], the matrix $C=\left[\begin{array}{cc}3 & 9 \\ -7 & -2\end{array}\right] \in \mathcal{M}_{2}(\mathbf{Z})$ was given as an example of nil-clean matrix which is not clean, using a long, fairly difficult process, involving solving Diofantine equations. Meanwhile, the second author "discovered" that Diofantine equations may be (instantly) solved using computer aid, that is using [1] (which was there from 2001 !).

In the sequel we revisit this example using [1]. A (nil-)clean element is called trivial (nil-)clean if its decomposition uses a trivial idempotent (i.e. 0 or 1).

It is easy to prove the following two results (see also [3], [4], [5]).
Theorem 1 A 2×2 integral matrix A is nontrivial nil-clean iff A has the form $\left[\begin{array}{cc}a+1 & b \\ c & -a\end{array}\right]$ for some integers a, b, c such that $\operatorname{det}(A) \neq 0$ and the system

$$
\left\{\begin{array}{c}
x^{2}+x+y z=0 \tag{2}\\
(2 a+1) x+c y+b z=a^{2}+b c
\end{array}\right.
$$

with unknowns x, y, z, has at least one solution over \mathbf{Z}. We can suppose $b \neq 0$ and if (2) holds, (1) is equivalent to

$$
\begin{equation*}
b x^{2}-(2 a+1) x y-c y^{2}+b x+\left(a^{2}+b c\right) y=0 \tag{3}
\end{equation*}
$$

Theorem $2 A 2 \times 2$ integral matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is nontrivial clean iff the system

$$
\left\{\begin{array}{c}
x^{2}+x+y z=0 \\
(a-d) x+c y+b z+\operatorname{det}(A)-d= \pm 1
\end{array}\right.
$$

with unknowns x, y, z, has at least one solution over \mathbf{Z}. If $b \neq 0$ and (2) holds, then (1) is equivalent to

$$
b x^{2}-(a-d) x y-c y^{2}+b x+(d-\operatorname{det}(A) \pm 1) y=0 \quad(\pm 3)
$$

Since C is not nilpotent nor unipotent ($1+t$ with nilpotent t), it is not trivial nil-clean.

Using the first theorem, for $a=2, b=9, c=-7$ we have $9 x^{2}-5 x y+$ $7 y^{2}+9 x-59 y=0(3)$, with solutions $(0,0),(-1,0)$ and $(2,9)$. Since in $5 x-7 y+9 z=-59(2)$ there is an integer solution for z only for $(x, y)=$ $(-1,0)$, the matrix is (even) uniquely nil-clean with decomposition

$$
\left[\begin{array}{cc}
3 & 9 \\
-7 & -2
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
-6 & 1
\end{array}\right]+\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right] .
$$

Next, since C and $C-I_{2}$ are not units, it follows that C is not trivial clean.
Using the second theorem, for $a=3, b=9 c=-7$ and $d=-2$ we have $9 x^{2}-5 x y+7 y^{2}+9 x+(-59 \pm 1) y=0(\pm 3)$, with solutions $(0,0),(-1,0)$ respectively $(0,0),(-1,0),(3,9)$ and $(1,9)$. Now (± 2) are $5 x-7 y+9 z+59=$ $\pm 1 \quad(\pm 2)$ and one can check that the solutions of $(+3)$ do not verify $(+2)$, and the solutions of (-3) do not verify (-2). Hence C is (indeed) not clean.

References

[1] D. Alpern Quadratic equation solver. www.alpertron.com.ar/QUAD.HTM.
[2] D. Andrica, G. Călugăreanu A nil-clean 2×2 matrix over integers which is not clean. J. of Algebra and its Appl., vol. 13, 6 (2014), 9 pages.
[3] D. Andrica, G. Călugăreanu Uniquely clean 2×2 invertible integral matrices. to appear in Studia Universitatis Babes-Bolyai (2017)
[4] G. Călugăreanu Nil-clean integral 2×2 matrices; The elliptic case. to appear
[5] G. Călugăreanu Clean integral 2×2 matrices. to appear

