Equivalent idempotents are conjugate in any ring

G. Song, X. Guo

October 14, 2019

Definitions. If R is a ring with identity, $a, b \in R$, we say that a is equivalent to b, denoted by $a \approx b$, if there exist units $u, v \in R$ such that uav $=b ; a$ is called conjugate to b, denoted by $a \sim b$, if there exists a unit $u \in R$ such that $u a u^{-1}=b$.

Obviously, both (binary) relations are equivalences on R.
In [1] we can find the following elementary but useful results.
Lemma 1 Let R be a ring, $a, b \in R$ with $a^{2}=a$ and $a b a=a$. Then $a \sim a b \sim$ $b a$.

Proof. Since $(a-a b)^{2}=a-a b-a b a+a b a b=0$, let $t=1-a+a b$. Then t is invertible and $t^{-1}=1+a-a b$. So $t a b t^{-1}=(1-a+a b) a b(1+a-a b)=a$, hence $a \sim a b$. Similarly, it can be proved that $a \sim b a$.
Theorem 2 Let R be a ring, $a, b \in R$ with $a^{2}=a$ and $b^{2}=b$, then $a \sim b$ if and only if $a \approx b$.

Proof. It is only needed to prove that $a \approx b \Rightarrow a \sim b$. Suppose that there exist invertible elements p and q in R such that $p a q=b$. Let $s=q^{-1} p^{-1}$. Then $p a p^{-1}=p a q q^{-1} p^{-1}=b s$, so $a \sim b s$ and $b s b=b$. By Lemma $1, b s \sim b$, so $a \sim b s \sim b$.

Proposition 3 Let R be a ring and a, b be idempotents of R. If $(a-b)^{2}=0$, then $a \sim a b \sim b a \sim b$.
Proof. Since $(a-b)^{2}=a^{2}-a b-b a+b^{2}$, we have $a+b=a b+b a$ and so $a(a+b)=a^{2} b+a b a$, i.e., $a+a b=a b+a b a$ which implies $a=a b a$. Similarly, we have $b=b a b$. So by Lemma $1, a \sim a b \sim b a \sim b$.

Corollary 4 Let A be an $n \times n$ idempotent matrix over a ring R. If A is equivalent to a diagonal matrix, then A is (also) similar to a diagonal matrix.

References

[1] G. Song, X. Guo Diagonability of idempotent matrices over non commutative rings. Linear Algebra and its Applications 297 (1999), 1-7.

