Equivalent nilpotents may not be conjugate.

Grigore Călugăreanu

May 23, 2020

Definitions. If R is a ring with identity, $a, b \in R$, we say that a is equivalent to b, denoted by $a \approx b$, if there exist units $u, v \in R$ such that uav $=b$, and, a is called conjugate to b, denoted by $a \sim b$, if there exists a unit $u \in R$ such that $u^{-1} a u=b$.

Obviously, both (binary) relations are equivalences on R and \sim implies \approx.
In [1], it was proved that equivalent idempotents are conjugate (see another 2019 note, here).

We may ask whether equivalent units or nilpotents are conjugate, respectively.

The answer is obviously no for units.
Take any unit $u \in U(R)$ such that $u \neq 1$. Then (the unit) $u=u \cdot 1 \cdot 1$ is equivalent to 1 but not conjugate to 1 . Indeed, only 1 is conjugate to itself.

As for nilpotents, 0 is clearly conjugated (and so equivalent) only with itself. Therefore in the sequel we consider only nonzero nilpotents.

Before giving an example of equivalent (nonzero) nilpotents which are not conjugate, we mention rings in which equivalent nilpotents are conjugate.

A commutative domain is called $G C D$ if every two nonzero elements have a gcd.

Lemma 1 In a $G C D$ commutative domain, $\operatorname{gcd}(a ; b)=1$ implies $\operatorname{gcd}\left(a^{2} ; b\right)=$ 1.

Proof. First recall that every nonzero element of a GCD commutative domain is primal ($x \mid y z$ implies $x=x_{1} x_{2}$ with $x_{1}\left|y, x_{2}\right| z$). Then suppose $1 \neq d=$ $\operatorname{gcd}\left(a^{2} ; b\right)$. Since $d \mid a^{2}, d=d_{1}^{2}$ with $d_{1} \mid a$. Hence $1 \neq d_{1}$ divides both a and b and so $\operatorname{gcd}(a ; b) \neq 1$.

Proposition 2 Every nonzero nilpotent 2×2 matrix over a commutative $G C D$ domain R is similar to $r E_{12}$, for some $r \in R$.

Proof. We are looking for an invertible matrix $U=\left(u_{i j}\right)$ such that $T U=$ $U\left(r E_{12}\right)$ with $T=\left[\begin{array}{cc}x & y \\ z & -x\end{array}\right]$ and $x^{2}+y z=0$.

Let $d=\operatorname{gcd}(x ; y)$ and denote $x=d x_{1}, y=d y_{1}$ with $\operatorname{gcd}\left(x_{1} ; y_{1}\right)=1$. Then $d^{2} x_{1}^{2}=-d y_{1} z$ and since $\operatorname{gcd}\left(x_{1} ; y_{1}\right)=1$ implies $\operatorname{gcd}\left(x_{1}^{2} ; y_{1}\right)=1$, it follows y_{1} divides d. Set $d=y_{1} y_{2}$ and so $T=\left[\begin{array}{cc}x_{1} y_{1} y_{2} & y_{1}^{2} y_{2} \\ -x_{1}^{2} y_{2} & -x_{1} y_{1} y_{2}\end{array}\right]=$ $y_{2}\left[\begin{array}{cc}x_{1} y_{1} & y_{1}^{2} \\ -x_{1}^{2} & -x_{1} y_{1}\end{array}\right]=y_{2} T^{\prime}$.

Since $\operatorname{gcd}\left(x_{1} ; y_{1}\right)=1$ there exist $s, t \in R$ such that $s x_{1}+t y_{1}=1$. Take $U=\left[\begin{array}{cc}y_{1} & s \\ -x_{1} & t\end{array}\right]$ which is invertible (indeed, $U^{-1}=\left[\begin{array}{cc}t & -s \\ x_{1} & y_{1}\end{array}\right]$). One can check $T^{\prime} U=\left[\begin{array}{cc}0 & y_{1} \\ 0 & -x_{1}\end{array}\right]=U E_{12}$, so $r=y_{2}$.

Remark. 1) In any ring $R,\left[\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right]$ is similar to $\left[\begin{array}{cc}0 & -r \\ 0 & 0\end{array}\right]$: indeed, $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}0 & -r \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}0 & -r \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}0 & r \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
2) In any ring $R,\left[\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right]$ is similar to $\left[\begin{array}{ll}0 & 0 \\ r & 0\end{array}\right]$: indeed,
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ r & 0\end{array}\right]=\left[\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Hence, for $R=\mathbb{Z}$, to have the non-similar representatives of classes of nilpotents, it suffices to take $r \in \mathbb{N}$.

Theorem 3 In $\mathbb{M}_{2}(\mathbb{Z})$ equivalent nilpotents are conjugate.
Proof. According to the above, nilpotents of $\mathbb{M}_{2}(\mathbb{Z})$ belong to disjoint (conjugation) classes, whose representatives are $n E_{12}$ for all nonnegative integers. By the way of contradiction, we first show that if m, n are different positive integers, $m E_{12}$ is not equivalent to $n E_{12}$.

Suppose there are units $U, V \in G L_{2}(\mathbb{Z})$, such that $U\left(n E_{12}\right)=\left(m E_{12}\right) V$.
Denote $U=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], V=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]$ and assume $a d-b c= \pm 1=x t-y z$.
The equality $U\left(n E_{12}\right)=\left(m E_{12}\right) V$ amounts to $\left[\begin{array}{cc}0 & n a \\ 0 & n c\end{array}\right]=\left[\begin{array}{cc}m z & m t \\ 0 & 0\end{array}\right]$ and so $c=z=0$ and $n a=m t, a d= \pm 1=x t$. Therefore, $a, d, x, t \in\{ \pm 1\}$.

Let $\delta=\operatorname{gcd}(m ; n)$ and let $m=\delta m^{\prime}, n=\delta n^{\prime}$. Then $n^{\prime} a=m^{\prime} t$ and since m^{\prime}, n^{\prime} are coprime, m^{\prime} divides a. Hence $a=m^{\prime} a^{\prime}$ and so $t=n^{\prime} a^{\prime}$.

Finally, $x t=x n^{\prime} a^{\prime}=1$, and so all $x, n^{\prime}, a^{\prime} \in\{ \pm 1\}$. If $n^{\prime}=1$ then $\delta=n$ and so $m=n m^{\prime}$. Moreover, $m^{\prime} \neq 1$; otherwise $m=n$. Finally, since $a=m^{\prime} a^{\prime}$, $a \neq 1$, a contradiction.

Now let $T^{2}=S^{2}=0_{2}$ be not conjugated (nonzero) nilpotents. Then T and S belong to two different, and so disjoint, conjugacy classes, represented by (say), $m E_{12}$ and $n E_{12}$, with different positive integers m, n. Each conjugacy class is included in an equivalence class and two such classes are (also) disjoint or coincide. The conjugacy classes which include T and S respectively cannot be included in the same equivalence class because $m E_{12} \not \approx n E_{12}$. Hence these are included into disjoint equivalence classes and so $T \not \approx S$, indeed.

As for equivalent nilpotents which are not conjugate, here is an
Example. Consider $T=3\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \in \mathbb{M}_{2}\left(\mathbb{Z}_{12}\right)$. Then $T^{2}=6\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $T^{3}=0_{2}$ so T is an index 3 nilpotent.
$S=\left[\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right]$ is an index 2 nilpotent, and since conjugation preserves the index of nilpotency, S and T are not conjugate.

However, these are equivalent since $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right] T\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]=S$.
Added in proof. Professor T. Y. Lam commutative example: let R be any not reduced commutative ring such that $2 a=0$ implies $a=0$. For any nonzero nilpotent element a, a is equivalent to $-a$, but clearly not similar to $-a$.

References

[1] G. Song, X. Guo Diagonability of idempotent matrices over non commutative rings. Linear Algebra and its Applications297(1999), 1-7.

