Equivalent nilpotents may not be conjugate.

Grigore Călugăreanu

May 23, 2020

Definitions. If R is a ring with identity, $a, b \in R$, we say that a is equivalent to b, denoted by $a \approx b$, if there exist units $u, v \in R$ such that uav = b, and, a is called *conjugate* to b, denoted by $a \sim b$, if there exists a unit $u \in R$ such that $u^{-1}au = b$.

Obviously, both (binary) relations are equivalences on R and ~ implies \approx .

In [1], it was proved that *equivalent idempotents are conjugate* (see another 2019 note, here).

We may ask whether equivalent *units* or *nilpotents* are conjugate, respectively.

The answer is obviously no for units.

Take any unit $u \in U(R)$ such that $u \neq 1$. Then (the unit) $u = u \cdot 1 \cdot 1$ is equivalent to 1 but not conjugate to 1. Indeed, only 1 is conjugate to itself.

As for nilpotents, 0 is clearly conjugated (and so equivalent) only with itself. Therefore in the sequel we consider only nonzero nilpotents.

Before giving an *example of equivalent (nonzero) nilpotents which are not conjugate*, we mention rings in which equivalent nilpotents are conjugate.

A commutative domain is called GCD if every two nonzero elements have a gcd.

Lemma 1 In a GCD commutative domain, gcd(a;b) = 1 implies $gcd(a^2;b) = 1$.

Proof. First recall that every nonzero element of a GCD commutative domain is primal $(x|yz \text{ implies } x = x_1x_2 \text{ with } x_1|y, x_2|z)$. Then suppose $1 \neq d = \gcd(a^2; b)$. Since $d|a^2$, $d = d_1^2$ with $d_1|a$. Hence $1 \neq d_1$ divides both a and b and so $\gcd(a; b) \neq 1$.

Proposition 2 Every nonzero nilpotent 2×2 matrix over a commutative GCD domain R is similar to rE_{12} , for some $r \in R$.

Proof. We are looking for an invertible matrix $U = (u_{ij})$ such that $TU = U(rE_{12})$ with $T = \begin{bmatrix} x & y \\ z & -x \end{bmatrix}$ and $x^2 + yz = 0$.

Let $d = \gcd(x; y)$ and denote $x = dx_1$, $y = dy_1$ with $\gcd(x_1; y_1) = 1$. Then $d^2x_1^2 = -dy_1z$ and since $\gcd(x_1; y_1) = 1$ implies $\gcd(x_1^2; y_1) = 1$, it follows y_1 divides d. Set $d = y_1y_2$ and so $T = \begin{bmatrix} x_1y_1y_2 & y_1^2y_2 \\ -x_1^2y_2 & -x_1y_1y_2 \end{bmatrix} = y_2T'$.

$$y_2 \begin{bmatrix} x_1y_1 & y_1 \\ -x_1^2 & -x_1y_1 \end{bmatrix} = y_2T'$$

Since $\operatorname{gcd}(x_1, y_1) = 1$ th

Since $gcd(x_1; y_1) = 1$ there exist $s, t \in R$ such that $sx_1 + ty_1 = 1$. Take $U = \begin{bmatrix} y_1 & s \\ -x_1 & t \end{bmatrix}$ which is invertible (indeed, $U^{-1} = \begin{bmatrix} t & -s \\ x_1 & y_1 \end{bmatrix}$). One can check $T'U = \begin{bmatrix} 0 & y_1 \\ 0 & -x_1 \end{bmatrix} = UE_{12}$, so $r = y_2$.

Remark. 1) In any ring R, $\begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & -r \\ 0 & 0 \end{bmatrix}$: indeed, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -r \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -r \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. 2) In any ring R, $\begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 0 \\ r & 0 \end{bmatrix}$: indeed, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ r & 0 \end{bmatrix} = \begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & r \\ 0 & 0 \end{bmatrix}$. Hence, for $R = \mathbb{Z}$, to have the non-similar representatives of classes of nilpo-

tents, it suffices to take $r \in \mathbb{N}$.

Theorem 3 In $\mathbb{M}_2(\mathbb{Z})$ equivalent nilpotents are conjugate.

Proof. According to the above, nilpotents of $\mathbb{M}_2(\mathbb{Z})$ belong to disjoint (conjugation) classes, whose representatives are nE_{12} for all nonnegative integers. By the way of contradiction, we first show that if m, n are different positive integers, mE_{12} is not equivalent to nE_{12} .

Suppose there are units $U, V \in GL_2(\mathbb{Z})$, such that $U(nE_{12}) = (mE_{12})V$. Denote $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, V = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ and assume $ad - bc = \pm 1 = xt - yz$.

The equality $U(nE_{12}) = (mE_{12})V$ amounts to $\begin{bmatrix} 0 & na \\ 0 & nc \end{bmatrix} = \begin{bmatrix} mz & mt \\ 0 & 0 \end{bmatrix}$ and so c = z = 0 and na = mt, $ad = \pm 1 = xt$. Therefore, $a, d, x, t \in \{\pm 1\}$.

Let $\delta = \gcd(m; n)$ and let $m = \delta m'$, $n = \delta n'$. Then n'a = m't and since m', n' are coprime, m' divides a. Hence a = m'a' and so t = n'a'.

Finally, xt = xn'a' = 1, and so all $x, n', a' \in \{\pm 1\}$. If n' = 1 then $\delta = n$ and so m = nm'. Moreover, $m' \neq 1$; otherwise m = n. Finally, since a = m'a', $a \neq 1$, a contradiction.

Now let $T^2 = S^2 = 0_2$ be not conjugated (nonzero) nilpotents. Then T and S belong to two different, and so disjoint, conjugacy classes, represented by (say), mE_{12} and nE_{12} , with different positive integers m, n. Each conjugacy class is included in an equivalence class and two such classes are (also) disjoint or coincide. The conjugacy classes which include T and S respectively cannot be included in the same equivalence class because $mE_{12} \approx nE_{12}$. Hence these are included into disjoint equivalence classes and so $T \not\approx S$, indeed.

As for equivalent nilpotents which are not conjugate, here is an **Example**. Consider $T = 3 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in M_2(\mathbb{Z}_{12})$. Then $T^2 = 6 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $T^3 = 0_2$ so T is an index 3 nilpotent. $S = \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$ is an index 2 nilpotent, and since conjugation preserves the index of nilpotency, S and T are not conjugate.

However, these are equivalent since $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} T \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = S.$

Added in proof. Professor T. Y. Lam *commutative* example: let R be any not reduced commutative ring such that 2a = 0 implies a = 0. For any nonzero nilpotent element a, a is equivalent to -a, but clearly not similar to -a.

References

[1] G. Song, X. Guo Diagonability of idempotent matrices over non commutative rings. Linear Algebra and its Applications297(1999), 1-7.