Units and nilpotent elements in corners

Grigore Călugăreanu

May 7, 2015

Lemma 1 Let A, B be subsets of a ring R with A a subgroup of $(R,+)$. If $a \in A$ then $a+(A \cap B)=A \cap(a+B)$.

Proof. Since $a \in A$, both $a+(A \cap B) \subseteq A$ and $a+(A \cap B) \subseteq a+B$ are obvious. Conversely, if $a^{\prime} \in A \cap(a+B)$ there is a $b \in B$ with $a^{\prime}=a+b$ and so $b=a^{\prime}-a \in A$. Hence $a^{\prime} \in a+(A \cap B)$.

Lemma 2 (i) Both $1+N(R) \subseteq U(R)$ and $N(R) \subseteq 1+U(R)$ hold for any ring R.
(ii) $U(R) \subseteq 1+N(R)$ and $1+U(R) \subseteq N(R)$ are equivalent conditions.

Proof. Obvious.
Remark. Both conditions in (ii) define the UU rings.
Lemma 3 Let $0 \neq e=e^{2}$ in a ring R. Then
(a) $N(e R e)=(e R e) \cap N(R)$.
(b) $U(e R e)=(e R e) \cap(\bar{e}+U(R))$.

Proof. (a) Obvious.
(b) " \subseteq " If $u \in U(e R e)$ there is $v \in e R e$ with $u v=v u=e$. Since products of u or v with \bar{e} are zero, $(u-\bar{e})(v-\bar{e})=e+\bar{e}=1=(v-\bar{e})(u-\bar{e})$ and so $u-\bar{e} \in U(R)$ or $u \in \bar{e}+U(R)$.
$" \supseteq "$ If $a=\bar{e}+u \in e R e$ with $u \in U(R)$, there exists $b \in R$ such that $(a-\bar{e}) b=b(a-\bar{e})=1$. Left and right multiplication with e (respectively), give $a b=b a=e$ and so ebe is the inverse of a in $e R e$.

Theorem 4 UU passes to corners.
Proof. According to Lemma 2, we now just check: $e+U(e R e)=e+(e R e) \cap$ $(\bar{e}+U(R)) \stackrel{\text { Lemma1 }}{=}(e R e) \cap(e+\bar{e}+U(R))=(e R e) \cap(1+U(R)) \stackrel{\text { hypothesis }}{=}$ $(e R e) \cap \mathbf{N}(R)=\mathbf{N}(e R e)$.

