CONJUGATION RELATIONS IN y-CATEGORIES

GR. CALUGAREANU

Introduction. Considering the theory of abelian categories as ’’the”
natural generalization of the category of abelian groups, one can ask
himself which is ’a” corresponding generalization of the category of
non-necessary abelian groups.

More- precisely, such a generalization is required to have some “cano-
nic” properties: to be a conormal but not a normal category (in this
way we have to distinguish exact and coexact sequences), to be complete, .
cocomplete, etc.

In such a generalization one would expect to prove and usé N o e-
ther, Schreier, Jordan-Hoélder theorems and ’5”, >’9”, and
Zassenhaus lemmas.

There are plenty of such generalizations in the literature, two of these
being the “hofmanian” and the ’’y-categories”, the last ones beingintro-
duced by Burgin and Calenko.

In such categories, having about all the working” theorems, one
cun expect to give some kind of theory of formations in the Gaschitz
sense. A difficulty which appears at once is the fact that conjugation
cannot be defined globally (without elements) ; the author uses an abstract
conjugation relation proposed by S¢hunck which permits an easy app-
roach to the subject.

Let 4 be an arbitrary y-category in Burgin-Calenko’s sense
[1, 2] (for a more didactical exposition of these categories see [4])..

First, let us recall that a y-category is a locally small, conormal cate-

gory with zero and epi-mono factorizations, satisfying the following three
conditions : , '

vl. 4 has pullbacks of two morphlsms provided that at least one
of them, f; is mono and if f, is epi then so is g,. :

YZ.. If fisa normal mono and g' is epi then z'm(gf)> is a normal mono.

v3. In the following commutative diagram if f, g are epis and # is
mono then # 1is iso.
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:One shows that a y-category has kernels, cokernels for normal monos,
images, coimages, inverse images, finite intersections, that any morphism
f factors through coker (ker(f)) ans im(f) and that a y-category is balanced.

Essentially for what follows is that a y- category has unions of two
subobjects provided that at least one of them is normal and that in a
y-category the 5-lemma, the 9-lemma and the Noether isomorphism
theorems hold, the two last ones in the following form :

NI. If u: M - 4 and v: N -+ A are normal monos and. v < # then
AIN|MIN ~ A|M.

' N2. If u:A; > 4 and v.: A, - A are monos, the second being nor-
mal, then 4,/4, N 4, ~ A, U 4,/A,.

- We shall simplify the exp051t1on using, from now om, equalities in-
stead of isomorphisms, Wh1ch means in fact that we shall work in a ske-
letal category 4.

Finally, let us recall also from [4] (for instance) the followmg ‘two
lemmas :

L1..-If vu = ker(w) and v is mono then u = ker(wv). :
L2. In the conditions of N2, the pullback of cokgr( ) and im(coker(v).u)
over 4[4, is the unjon 4, U 4,. ‘

t A] . (l}fU)Ck

P~ |

2l

' — > AJA;
Ag‘—V—>A v R /c

Using the diagram describing this last lemma, where I = im(coker(v).u),
one easily shows that (as objects!) ¢m(v® - w) = (v° - w)! = v* = I where
the obvious notations are taken also from [4]. Consequently, we have
im(dy U Ay > A - AJdy) =im(d; - A, A, — 4 — A]4,).

“Following H. Schunck [6] we shall use the following definitions :

DeriNITIoN 1. A binary relation on obj &, % is called .a conjugation
relation 1if



L

(4118

CONJUGATION RELATIONS IN v-CATEGORIES 7

.(0) A.hA implies 4, < 4 ..
1) A;pA and AhA implies 4, = A
2) A, g4, A and A h4 1mp11es AhA, '
3) 4 hA 1mp11es (fl44) f/A) for every morphism f of domam A
In this case A4, is called k—subobject of A

DeriNiTION 2. A full subcategory %’ of @ is called homomorph if

% is closed under (epnnorphlc) images of morphisms of & with domain
in %.

,—\A,-\

Derinrrion 3. A subobject m,: A, - A is called a %-covering sub-
object if .

(i) 4, = obj %.

{(ii) For each subob]ect my: Ay -+ A such that m, < m, and each
normal subobject A" — 4,, if A2/A’ € ¥ then 4’ U 4, = 4,.

First of all, it is trivia] that S

THEOREM 1. If A, is a %-covering. . subobject of @ and A, = A, < A4,
then A, is %-covering for A,.

THEOREM 2. If h is a conjugation relation in a, then there is a homo-
morph X in & such that each h-subobject of A is %-covering for A.

Proof. Let ® be the full subcategory of @, consisting of all objects
4 such that AhA. Letting 4, = A in (3), it is teadily seen that % is a
homomorph.

Now let A, be a h-subobject of A. Letting 4, = A1 in (2) we have
A, € ®. Next, in order to verify (ii) for 4,, suppose 4, < 4, < 4,
A’ normal subobject of 4, and 4,/A’ = %.- The following diagram descri-
bes our situation where #’ = ker((»')°) and (#')° = coker(u’).

o
Y

AjJUA

17 (u ’)13

Using L1 we have v" = ker((u')° - u) = im((w')° - uy) = (u')°/4;, where
the middle equality uses 1.2.
.., Since from (2) we already have 4,hd,, letting A = 4, and f = (u')*°
in '(3), we obtain ((u')°/A)A((n’) (4,)) so that (4’ U A4 )h( of/A’). Bit

by assumption 4 of A" & %, hence (A,[A")h(A,[A’). A {final application

of (1) gives us A" U 4 /A = A4/A" and then using for 1ns‘cance the 5-
lemma we obtain A’ | 4, = 4,.

For the proof of the.the ‘ch1rd and 1ast theorem we need the follow-
ing two lemmas:
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Lremma 3. If the following diagram has exact rows then theve 1s a- sub-
object my: Ay — Ag with my < my such that X = A,[A ; of course A being
noymal subobject of A;, so will be A in A, too.

0—= A—> A —>A/A—>0

L

0—>=A——>A3—5>A3/A—>D

P

Proof. A, is the pullback of p and x so that m, < m, is then imme-
diat. It is also easy to show that 4 — 4; - 4, = ker(4, — X) and hence,
A, -+ X being epi, it follows by vyl that X = 4,/4.

Levma 4. If X — BJA’ is a normal subobject then theve is a normal
subobject B’ — B such that X = B'[A’.

Proof. If C = coker(X — B|A’'), we have the following diagram with
exact rows and columns '

i 0

S

A X
0—»&’—»5—[,—%1:—»0
T

—>0—>(——>C—
S
0 0 0 -

Hence, if B’ is the punllback of p and #, it is easy to show that
B' = B = ker(B — C). Using the 9-lemma. it follows that X = B’[4’.

TuroreM 5. If A, is F-covering for A and A’ — A is a normal sub-
object, then A’ \J A,JA’ is F-covering for A[A’.

Proof. Using U2 we have A’ ) 4,/4" = 4,/4’ N 4, = %, because
% is homomorph and A4,/4"N 4, is an eplmorphlc image of 4, = %,
and so (i) is verified.
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Using the two previous lemmas, in order to verify the condition (ii),
we suppose Ay|\JA'JA" < BJ[A’ =A[A’ and B’[A’ normal subobject of
BJA’ such that BJA'|B'|[A’ € %, and we have to show that (B’[4’), U
U4,y 4'/4") = BJ4". _

_In these conditions we have 4, < B < A and B’ normal subobject -
of B. Using N1, B/B’ = BJA’'|B'|A" € ¥ and hence B’ |J A, = B, be-
cause A, is %-covering for 4. Further, we have B’ |J (4, U 4') = B,
because A’ is a normal subobject of B'. '

Now let f: BJA" - X be a morphism and x: X - Y be a mono in &
such that squares 1,2 in the following diagrams are commutative.

B,——"- 87A —Y ‘A] UA' —_— A] UAyA' —Y

PR N

B—»B/A’—p»x B > B/A——X

_ Using the commutativity of the outer rectangles (filled up in a cano-
nic way) and equality B = B’ |J (4, 4) we get a morphism §: B - Y
which makes the following diagram commutative.

B 8

~Y

|

B——-—-—>[B/A"——a.>- X

P f

If finally k: A’ — B is the kernel of p, then p is the cokernel of '
k and from fpk = xBk =0 or Bk =0, we get a morphism 3: B/[4' - Y
such that B = 3p. Hence, p being epi, the following diagram is commuta-
tive which proves that BJ4A’ = (B'A’) | (4, U 4'[4"), q.e.d.

¢

g — 9 sy

X

( Received December 15, 1973)
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RELATII DE CONJUGARE IN y-CATEGORII-
(Rezumat)

Insplrmdu-se din teoria formatiilor (in sensul lui Gaschiitz) a grupurilor resolubile
finite §i utilizind ideea mai generalad (datoritd Iui H. Schunck) de a considera relafii de
con]ugare in locul relatiilor de #¥:maximalitate sau Ex-prolector, autorul da un punct de plecare
posibil in teoria formatiilor intr-o y-cdtegorie.. - ¢

Se scoate in acelagi timp.in evidentd aseminarea dintre- Y-categom 5i.G7, categona grupu-
rilor (non-necesar abeliene).

COOTHOIIEHHS COHPH}KEHI/IH B v-KATETOPUAX
: (Peswwme) ’

Hcexopst H3 TeopHH cbopmauuu (8 cmsxc.ne Taunona) Koneunnix paspemaeMrx Ppynm ® Hc-
nosb3yst Gojee OOIIYI0 HAEI0 (anHa}men{amyxo Tepmanny, IIIyHKy) paccMaTpHBaTh COOTHO-
- IeHMsl CONPSIKEHH BMECTO COOTHOLUEHHH %-MaKCHMAJBHOCTH. MM $-NPOEKTOPa, aBTOP naeT.
BO3MOJKHYI0O HCXOJHYIO TOYKY B TeOpHH (opMaluii B ~y-raTeropHH. -

BrisBasieTcs: OJXHOBPEMEHHO CXOACTBO MEXKAY y-KaTeropsmu n Gr; KaTeropnen rpynn
(e He06xommo a6e.neBbe) N



