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Introduction. Considering the theory of abelian categories as ’’the" 
natural generalization of the category of abelian groups, one can ask 
himself which is ”a" corresponding generalization of the category of 
non-necessary abelian groups.

More-precisely, such a generalization is required to have some ’’cano­
nic" properties : to be a conormal but not a normal category (in this 
way we have to distinguish exact and coexact sequences), to be complete, 
cocomplete, etc.

In such a generalization one would expect to prove and usé N o e ­
t h e r ,  S c h r e i e r ,  J o r d a n - H o l d e r  theorems and ”5", ”9", and 
Z a s s e n h a u s  lemmas.

There are plenty of. such generalizations in the literature, two of these 
being the ’’hofmanian" and the ’’у-categories", the last ones being intro­
duced by B ü r g i n  and C a 1 e n к o.

In such categories, having about all the ’’working" theorems, one 
can expect to give some kind of theory of formations in the G a s c h i i t z  
sense. A difficulty which appears at once is the fact that conjugation 
cannot be defined globally (without elements) ; the author uses an abstract 
conjugation relation proposed by S c h u n с к which permits an easy app­
roach to the subject.

Let £1 be an arbitrary y-category in B u r g i n - C a l e n k o ’s sense 
[1, 2] (for a more didactical exposition of these categories see [4]).

. First, let us recall that a y-category is a locally small, conormal cate­
gory with zero and epi-mono factorizations, satisfying the following three 
conditions : '

yl. & has pullbacks of two morphisms, provided that at least one 
of them, / j is mono and if f 2 is epi then so is

9z f t
11.

y2. If /  is a normal mono and g is epi then im(gf) is a normal mono. 
y3. In the following commutative diagram if /, g are epis and и is 

mono then и is iso.
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■.One shows that a y-category has kernels, cokernels for normal monos, 
images, coimages, inverse images, finite intersections, that any morphism 
/  factors through coker (ker(f)) ans im(f) and that a y-category is balanced.

Essentially for what follows is that a y-category has unions of two 
subobjects provided that at least one of them is .normal and that in a 
y-category the 5-lemma, the 9-lemma and the N o e t h e r  isomorphism 
theorems hold, the two last ones in the following form :

N1. If и : M  -> A and v. N  -> A are normal monos and v < и then 
AIN  IMIN ~ A/M .
' N2. If и : A x -r A and v:. A 2 -> A are monos, the second being nor­
mal, then A X)AX p| A 2 A 2 U A x/A2.

~ We shall simplify the exposition using, from now on, equalities in­
stead of isomorphisms, which means in fact that we shall work in a ske­
letal category ét.

Finally, let us recall also from [4] (for instance) the following two 
lemmas :

• LI. If vu =  ker{w) and v is mono then и = ker{wv).
■ L2., In the conditions of N2, the pullback of coker(v) and im{coker{v).u) 

over A /A 2 is the union A x (J A 2.

Using the diagram describing this last lemma, where I  =  im(coker{v).u), 
one easily shows that (as objects !) im(vc ■ w) = [vc ■ w)1 =  vch =  I  where 
the obvious notations are taken also from [4]. Consequently, we have 
im{Ax U A 2 A ->■ А /А 2) =  im(Ax ~r A x (J A 2 ->• A -» A jA 2).

Following H. S c h u n с к [6] we shall use the following definitions : 
De fin it io n  1. A binary relation on obj ét, h is called a conjugation 

relation if
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. (0) A-JiA implies A x £  A
(1) A-JiA and AhA' implies A x — A ' •
(2) A x ç' i j  ç  i  and A xhA impli'es ' A xhA2
(3) A xhA implies (f lA x)h(flA) for every morphism /  of domain A. 

In this case A x is called h-subobject of A .
De fin it io n  2. A full subcategory ^  of ă  is called homomorph if 

‘Ш is closed under (epimorphic) images of morphisms of ă  with domain 
in %.

De fin it io n  3. A súbobjeet mx: A x ->■ A is called a covering sub­
object if

(i) A x e  obj 1.
(ii) For each subobject m2 : A 2 -> A such that mx < m2 and each 

normal subobject A ' -> A 2, if A J A ' e  «£ then A ' (J A x =  A 2.
First of all, if is trivial that
T heorem  1. I f  A x is a ^-covering. subobject of &  and A x c  A 2 я  A, 

then A x is %-covering for A 2.
T heorem  2. I f  h is a conjugation relation in ă, then there is a homo- 

morph ‘Ж in £L such that each h-subobject of A is ^-covering for A.
Proof. Let % be the full subcategory of <3, consisting of all objects 

A such that AhA. Letting A x =  A in (3), it is readily seen that % is à 
homomorph.

Now let A x be a A-subobject of A. Letting A 2 =  A x in (2) we have 
A x e  <%. Next, in order to verify (ii) for A x, suppose A x s  A 2 s  A, 
A ' normal subobject of A 2 and A J A ' e  %.■ The following diagram descri­
bes our situation where u' =  ker((ujc) and (u jc = coker{u').

Using LI we have v' =  ker((u')c ■ u) = im((u')c ■ uj) =  (u'YjAx, where 
the middle equality uses L2.
. Since from (2) we already have A xhA2, letting A =  A 2 and /  — (u')c 
in (3), we obtain ((u')c/Ax)h((uj - (A2)) so that (A' {JAJA jh(A JA ')-. Blit 
by assumption A JA ' e  hence (AJA')h(AJA'). A final application 
of (1) gives us A ' (J A JA ' =  A J A ' and then using fór instance the 5 r 
lemma we obtain A' (J A x =  A 2. •

For the proof of the the third and last theorem;we need the followr- 
ing two lemmas : ,

A (u’)c *~Аг/Аи
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Uemma 3. I f  the following diagram has exact rows then there is a sub­
object m2 : A 2 - у A 3 with mx < m2 such that X  =  A JA  ; of course A being 
normal subobject of A 3, so will be A in A z too.

0----- A-— Ai--------*~A\fA-----

X

0----- A -------- *-Аз p~*~Аз/А  — 0

Proof. A 2 is the pullback of p  and x  so that mx sg m2 is then immé­
diat. I t  is also easy to show that A -y A x -r A 2 =  ker(A2 ~y X) and hence, 
A 2 -y X  being epi, it follows by yl that X  = A 2jA.

L emma 4. I f  X  —y BfA ' is a normal subobject then there is a normal 
subobject В' -у В such that X  =  B fA '.

Proof. If C — coker[X —y BjA'), we have the following diagram with 
exact rows and columns

0 0

0

0

I

^ 0

■*-B

' '
*~c

p

X

Íu
- B/A' 

*~C-

0

о -,

Hence, if B' is the pullback of p  and u, it is easy to show that 
В ' -г В  =  ker(B —> C). Using the 9-lemma, it follows that X  =  B fA '.

T heorem  5. I f  A x is %-covering for A and A ' -> A is a normal sub­
object, then A ' (J A J A ' is “35-covering for A j A'.

Proof. Using U2 we have A ' [J A J A ' =  A fA ' (~) A x e  %, because 
SE is homomorph and A J A ' A x is an epimorphic image of A x e  6i > 
and so (i) is verified.

/
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Using the two previous lemmas, in order to verify the condition (ii), 
we suppose A{ IJ A 'jA ' £  BIA' я А /А ' and B 'jA ' normal subobject of 
BfA' such that BIA'IB '/A ' e  and we have to show that (B 'jA1), (J
u  (A  U A'lA') = BIA'.

In these conditions we have A x £ В £  A and B' normal subobject ■ 
of B. Using N1, BjB ' =  B/A 'IB 'IA ' e  % and hence B' (J A x = B, be­
cause A x is ^’-covering for A. Further, we have B ' (J (Ax (J A') = B, 
because A ’ is a normal subobject of B ’.

Now let / :  В I A ' -> X  be a morphism and x  : X  -*■ Y  be a mono in 0, 
such that squares 1,2 in the following diagrams are commutative.

B’

B-

B/A-

B/A'

7

P

Using the commutativity of the outer rectangles (filled up in a cano­
nic way) and equality B =  B' U (A1 [J A') we get a morphism ß : В -*■ Y  
which makes the following diagram commutative.

If finally k : A ' -*■ В  is the kernel of p, then p is the cokernel of 
k and from fpk  =  %$k =  0 or ß& =  0, we get à morphism 8 : В I A ' —>■ Y  
such that ß =  Ьр. Hence, p  being epi, the following diagram is commuta­
tive which proves that BjA’ =  (B 'A ') IJ (Ax (J A'jA'), q.e.d.

B/Ä Ó

X

u

b/ a —----- X

(Received December 15, 1973)
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RELAŢII DE CONJUGARE ÎN  y-CATEGORII
- (R e z u  m a t)- -

Inspirîndu-se din teoria formaţfflor (în sensul lui G a s c h ü t z )  a grupurilor resolubile 
finite şi utilizînd ideea mai generală (datorită lui H. S c h u n c k )  de a considera.relaţii de 
conjugare îh locul relaţiilor de ®Lmaximalitate sau ^-proiector, autorul dă un punct de plecare 
posibil în teoria formaţiilor într-o y-categorie.. - i

Se scoate în acelaşi timp.în evidenţă asemănarea dintre -y-catëgorii şi.Gr, categoria grupu­
rilor (non-necesar abeliene).

СООТНОШЕНИЯ СОПРЯЖЕНИЯ В у-КАТЕГОРИЯХ 
(Резюме)

Исходя из теории формаций (в смысле .Гаплоца) конечных разрешаемых групп и ис­
пользуя более общую идею (принадлежащую Германну] Шунку.) рассматривать соотно­
шения сопряжения вместо соотношений ^-максимальности. или ^-проектора, автор дает 
возможную исходную точку в теории формаций в у-гатегории.

Выявляется одновременно сходство между y-категориями и Gr, категорией групп 
(не необходимо абелевых)!
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