Some matrix completions over integral domains

Grigore Călugăreanu

Department of Mathematics and Computer Science, Babeş-Bolyai University, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania

A R T I C L E I N F O

Article history:

Received 27 February 2016
Accepted 20 June 2016
Available online 23 June 2016
Submitted by P. Semrl

MSC:

16 U 60
16U99

Keywords:
Matrix completion
Idempotent
Nilpotent
Nil-clean
Corner

A B S T R A C T

We characterize 3×3 nilpotent matrices which are completions of 2×2 arbitrary matrices and 3×3 idempotent matrices which are completions of 2×2 arbitrary matrices over integral domains. As an application we show that a nil-clean element of a ring which belongs to a corner of the ring, may not be nil-clean in this corner.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the last decades, numerous results have been published in the area of the so-called Matrix Completion Problems (see [1] for a recent survey).

In this paper we discuss two such completions over arbitrary (commutative) integral domains. While nilpotents and idempotents can be easily characterized in $\mathcal{M}_{2}(R)$ for any commutative ring R, it is much harder to do this in $\mathcal{M}_{3}(R)$. In this short note we characterize nilpotent 3×3 matrices obtained by completing an arbitrary 2×2 matrix

[^0]and idempotent 3×3 matrices obtained by completing an arbitrary 2×2 matrix. As an application we give a negative example related to a long lasting question on nil-clean rings, stated by Diesl already in his Ph.D. thesis (2006), and restated in [2]: are corners of nil-clean rings also nil-clean?

More precisely, since so far, this question turns out to be much harder to answer, one may begin by asking more generally (for a ring R and an idempotent $e \in R$) how the nil-clean elements of $e R e$ (denoted in the sequel $N C(e R e)$) are related to those of R (denoted $N C(R)$). If it were true that $e R e \cap N C(R) \subseteq N C(e R e)$ (for any full idempotent $e \in R$), then certainly the question above would have a "yes" answer. However, this inclusion relation does not hold in general, as our example shows.

In this section we present a method of constructing 3×3 completions of 2×2 matrices which are nilpotent respectively idempotent. We describe this construction for matrices over any (commutative) integral domain.

First recall the following formula (folklore): let A and B be square matrices of the same size. Then the trace

$$
\operatorname{Tr}(A B)=\sum A * B^{T}
$$

where the RHS is obtained by adding the elements of the elementwise product $\left({ }^{*}\right)$ of the matrices (B^{T} denotes the transpose).

Next note that for an arbitrary 2×2 matrix $M, \operatorname{Tr}\left(M^{2}\right)=\operatorname{Tr}(M)^{2}-2 \operatorname{det}(M)$.
Finally, the characteristic polynomial of a 3×3 matrix is $p_{A}(X)=\operatorname{det}\left(X . I_{3}-A\right)=$ $X^{3}-\operatorname{Tr}(A) X^{2}+\frac{1}{2}\left(\operatorname{Tr}(A)^{2}-\operatorname{Tr}\left(A^{2}\right)\right) X-\operatorname{det}(A)$. Hence a 3×3 matrix A is nilpotent iff $p_{A}(X)=X^{3}$ iff $\operatorname{det}(A)=\operatorname{Tr}(A)=\operatorname{Tr}\left(A^{2}\right)=0$ in any (commutative) integral domain.

In the sequel, for any given matrix $U, u_{i j}$ denotes the (i, j) entry of U.

Proposition 1. Let R be a (commutative) integral domain and let U be an arbitrary matrix in $\mathcal{M}_{2}(R)$. There is a nilpotent matrix $N \in \mathcal{M}_{3}(R)$ which has U as the northwest 2×2 corner, whenever there exist elements $a, b, x, y \in R$ such that $a x+b y=\operatorname{det}(U)-\operatorname{Tr}(U)^{2}$ and $b x u_{12}+a y u_{21}-a x u_{22}-b y u_{11}=\operatorname{Tr}(U) \operatorname{det}(U)$. Such a matrix exists if (e.g.) u u_{12} or u_{21} is a unit.

Conversely, if N is a 3×3 nilpotent matrix which has U as the northwest 2×2 corner, the previous relations hold for $a=n_{13}, b=n_{23}, x=n_{31}$ and $y=n_{32}$.

Proof. To simplify the writing we use block multiplication. We search for $N=\left[\begin{array}{cc}U & \alpha \\ \beta & -t\end{array}\right]$ where $U=\left[\begin{array}{ll}u_{11} & u_{12} \\ u_{21} & u_{22}\end{array}\right], \alpha=\left[\begin{array}{l}a \\ b\end{array}\right]$ is a column, $\beta=\left[\begin{array}{ll}x & y\end{array}\right]$ is a row and $t=\operatorname{Tr}(U)=$ $u_{11}+u_{22}$. Notice that already $\operatorname{Tr}(N)=0$.

Then $N^{2}=\left[\begin{array}{cc}U^{2}+\alpha \beta & U \alpha-t \alpha \\ \beta U-t \beta & \beta \alpha+t^{2}\end{array}\right]$ where $\beta \alpha=a x+b y$. Here $\operatorname{Tr}(\alpha \beta)=\operatorname{Tr}(\beta \alpha)=\beta \alpha$ and $\operatorname{Tr}\left(U^{2}\right)=\operatorname{Tr}(U)^{2}-2 \operatorname{det}(U)$. Hence $0=\operatorname{Tr}\left(N^{2}\right)=2 \operatorname{Tr}(U)^{2}-2 \operatorname{det}(U)+2 \beta \alpha$ implies

$$
\begin{equation*}
\beta \alpha=\operatorname{det}(U)-\operatorname{Tr}(U)^{2} \tag{1}
\end{equation*}
$$

Further, we need $\operatorname{det}(N)=0=b x u_{12}+a y u_{21}-a x u_{22}-b y u_{11}-t \operatorname{det}(U)$ that is

$$
\begin{equation*}
b x u_{12}+a y u_{21}-a x u_{22}-b y u_{11}=\operatorname{Tr}(U) \operatorname{det}(U) \tag{2}
\end{equation*}
$$

This way conditions (1)-(2) form the linear system of two equations with coefficients in R and with four integer unknowns, namely a, b, x and y, which is stated above. The example is obvious: denoting $m=\operatorname{det}(U)-\operatorname{Tr}(U)^{2}$ and $l=\operatorname{Tr}(U) \operatorname{det}(U)$, if $u_{12} \in U(R)$, take $a=0, y=m, b=1$ and $x=\left(l+m u_{22}\right) u_{12}^{-1}$, respectively $x=0, b=m, y=1$ and $a=\left(l+m u_{22}\right) u_{21}^{-1}$ if $u_{21} \in U(R)$.

The converse follows since $\operatorname{det}(N)=\operatorname{Tr}(N)=\operatorname{Tr}\left(N^{2}\right)=0$ were exactly the conditions equivalent with (1) and (2), together with $n_{33}=-\operatorname{Tr}(U)$.

Remarks. 1) The system has the trivial solution (i.e. $a=b=x=y=0)$ iff $\operatorname{det}(U)=$ $\operatorname{Tr}(U)=0$, that is iff U is nilpotent.
2) Condition (2) can be equivalently written as $\operatorname{det}(U)-\operatorname{det}(\alpha \beta+U)=t \operatorname{det}(U)$.

As for idempotent 3×3 matrices we prove the following
Proposition 2. $A 3 \times 3$ matrix $E=\left[\begin{array}{cc}F & -\alpha \\ -\beta & t\end{array}\right]$ where F is a 2×2 matrix, $\alpha=\left[\begin{array}{l}a \\ b\end{array}\right]$ is a column, $\beta=\left[\begin{array}{ll}x & y\end{array}\right]$ is a row and $t \in R$, is idempotent iff (3) $F^{2}+\alpha \beta=F$; (4) $\left(F+(t-1) I_{2}\right) \alpha=0$; (5) $\beta\left(F+(t-1) I_{2}\right)=0$ and $\beta \alpha=t-t^{2}$.

Further suppose U is a 2×2 matrix which satisfies (1) such that $t=\operatorname{Tr}(U)$. Then (6) $\operatorname{det}(U)=\operatorname{Tr}(U)$.

Proof. Since by block multiplication $E^{2}=\left[\begin{array}{cc}F^{2}+\alpha \beta & -F \alpha-t \alpha \\ -\beta F-t \beta & \beta \alpha+t^{2}\end{array}\right]$, the conditions result just by equalizing the entries of E^{2} and E. As for (6), since (1) is $\beta \alpha=\operatorname{det}(U)-$ $\operatorname{Tr}(U)^{2}=\operatorname{det}(U)-t^{2}$, (6) follows using $\beta \alpha=t-t^{2}$.

2. An example

In his 2006 Ph.D. thesis, Diesl stated the following question: If R is a nil-clean ring and $e \in R$ is a full idempotent (that is, an idempotent such that $R e R=R$), is the corner ring eRe necessarily a nil-clean ring?

Denote by $I d(R)$ the idempotents, by $N(R)$ the nilpotent elements and by $N C(R)=$ $I d(R)+N(R)$, the set of all nil-clean elements in a ring R. If $e \in I d(R)$ then $I d(e R e)=$ $(e R e) \cap I d(R)$ and $N(e R e)=(e R e) \cap N(R)$.

While these equalities do provide a relation between the two sets $N C(e R e)$ and $N C(R)$, these are far from sufficient for answering the above question.

In what follows we show that for a general element $a \in e R e, a \in N C(R)$ may not imply that $a \in N C(e R e)$, that is, $(e R e) \cap N C(R) \subseteq N C(e R e)$ does not hold in general (even) for full idempotents $e \in R$.

The example is found in $\mathcal{M}_{3}(\mathbf{Z})$, that is 3×3 integral matrices, using the full idempotent $e=\operatorname{diag}(1 ; 1 ; 0) \in \mathcal{M}_{3}(\mathbf{Z})$. This way we identify $e R e$ with $\mathcal{M}_{2}(\mathbf{Z})$ (which corresponds to the 2×2 north-west "corner" of $\mathcal{M}_{3}(\mathbf{Z})$). Thus, we are looking for a 2×2 integral matrix A, which is not nil-clean in $e R e$. As an element of $e R e, A$ is identified with the 3×3 matrix $\operatorname{diag}(A ; 0) \in \mathcal{M}_{3}(\mathbf{Z})$, matrix which should be nil-clean in $\mathcal{M}_{3}(\mathbf{Z})$.

The example. Let $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 0\end{array}\right]$. It is easy to see that nil-clean integral matrices have trace 0,1 or 2 , depending on the idempotent which appears in their decomposition (nilpotent matrices have zero trace). The trace is $=1$ if the idempotent is not trivial, it is $=0$ if the idempotent is 0_{2} and it is $=2$ only if the idempotent is I_{2}. Now, since $\operatorname{Tr}(A)=2$, this matrix would be nil-clean only if $A-I_{2}=\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]$ is nilpotent, which fails since $\operatorname{det}\left(A-I_{2}\right)=-2$. Hence A is not nil-clean.

However

$$
\operatorname{diag}(A ; 0)=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=E+N=\left[\begin{array}{ccc}
1 & -2 & -1 \\
0 & -1 & -1 \\
0 & 2 & 2
\end{array}\right]+\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & -2 & -2
\end{array}\right]
$$

is a nil-clean decomposition with $E^{2}=E$ and $N^{3}=0_{3}$.

3. How this example was found

As mentioned in the previous section, we are looking for a 2×2 (integral) matrix A, which is not nil-clean such that $\operatorname{diag}(A ; 0)$ is nil-clean.

According to the completion results obtained in Section 2, for a 2×2 (integral) matrix $A, \operatorname{diag}(A ; 0)$ is nil-clean iff $A=F+U$ with two matrices $U, F \in \mathcal{M}_{2}(\mathbf{Z})$, a 2×1 column α and a 1×2 row β such that
(1) $\beta \alpha=a x+b y=t-t^{2}$,
(2) $b x u_{12}+a y u_{21}-a x u_{22}-b y u_{11}=t^{2}$,
(3) $F^{2}+\alpha \beta=F$,
(4) $\left(F+(t-1) I_{2}\right) \alpha=0$,
(5) $\beta\left(F+(t-1) I_{2}\right)=0$,
(6) $t=\operatorname{det}(U)=\operatorname{Tr}(U)$.

Since both $\left(F+(t-1) I_{2}\right) \alpha=0$ and $\beta\left(F+(t-1) I_{2}\right)=0$, are homogeneous linear systems in (a, b) respectively (x, y), if $\operatorname{det}\left(F+(t-1) I_{2}\right)=\operatorname{det}(F)+(t-1) \operatorname{Tr}(F)+(t-1)^{2} \neq$ 0 then α and β are zero column respectively row. In this case, by Remark $1, U$ is nilpotent and (by (3)) F idempotent and so the sum $A=F+U$ is nil-clean.

Thus, in the sequel we assume
(7) $\operatorname{det}(F)+(t-1) \operatorname{Tr}(F)+(t-1)^{2}=0$.

We start by inspecting the equation (3). Since $\alpha \beta=\left[\begin{array}{ll}a x & a y \\ b x & b y\end{array}\right]$, necessary conditions for equation (3) $F^{2}+\alpha \beta=F$ are: (i) $F^{2}-F$ has equal products of entries on diagonals, and (ii) $\operatorname{Tr}\left(F^{2}-F\right)=-\operatorname{Tr}(\alpha \beta)=-\beta \alpha=t^{2}-t$.

By computation, we find
(i) $\operatorname{det}(F)[\operatorname{det}(F)-\operatorname{Tr}(F)+1]=0$, i.e., $\operatorname{det}(F)=0$ or $\operatorname{det}(F)=\operatorname{Tr}(F)-1$, and
(ii) $\operatorname{Tr}(F)^{2}-2 \operatorname{det}(F)-\operatorname{Tr}(F)=t^{2}-t$.

We distinguish two cases: $\operatorname{det}(F)=0$ or $\operatorname{det}(F) \neq 0$.
In the first case we show that either (integral) matrices F, U cannot be constructed, or else $A=F+U$ is nil-clean.

The construction of the example given in the previous section will follow from subcase (b) of Case 2 .

Case 1. If $\operatorname{det}(F)=0$, then (from (ii)) $\operatorname{Tr}(F) \in\{t, 1-t\}$. By (7) we obtain $(t-1)[\operatorname{Tr}(F)+$ $t-1]=0$ and so $t=1$ or $\operatorname{Tr}(F)=1-t$.

If $t=1$, then by (ii), $\operatorname{Tr}(F) \in\{0,1\}$.

First we discard the case $\operatorname{det}(F)=0$ and $\operatorname{Tr}(F)=1$.
Cayley-Hamilton theorem shows that F is idempotent. It is not hard to show that (4) and (5) combined with (6), contradict (2).

Next, if $\operatorname{det}(F)=\operatorname{Tr}(F)=0$ and $\operatorname{det}(U)=\operatorname{Tr}(U)=1$ then $\operatorname{Tr}(F)=1-\operatorname{Tr}(U)$ and this case may be included in the next case.

Finally if $\operatorname{det}(F)=0$ and $\operatorname{Tr}(F)=1-t$, notice that $\operatorname{Tr}(A)=\operatorname{Tr}(F+U)=1-t+t=1$ so that Cayley-Hamilton theorem gives $A^{2}-A+\operatorname{det}(A) \cdot I_{2}=0_{2}$. Since the case $t=0$ was already covered in Remark 1, for $t \neq 0$ we show that $\operatorname{det}(A)=0$ and so A is idempotent (and so nil-clean).

Cayley-Hamilton theorem for F gives $F^{2}=(1-t) F$ and then (3) gives $\alpha \beta=t F$. (Notice that this implies (1): $\beta \alpha=\operatorname{Tr}(\beta \alpha)=\operatorname{Tr}(\alpha \beta)=t \operatorname{Tr}(F)=t(1-t)=t-t^{2}$). Finally

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}(F+U)=\operatorname{det}(F)+\operatorname{det}(U)+f_{11} u_{22}+f_{22} u_{11}-f_{12} u_{21}-f_{21} u_{12} \\
& =0+t-t=0
\end{aligned}
$$

Indeed, since $\alpha \beta=\left[\begin{array}{ll}a x & a y \\ b x & b y\end{array}\right]=t F$, we have $a x=t f_{11}, a y=t f_{12}, b x=t f_{21}$ and $b y=t f_{22}$. Replacement in (2) gives $t\left(f_{11} u_{22}+f_{22} u_{11}-f_{12} u_{21}-f_{21} u_{12}\right)=t^{2}$ and so (here $t \neq 0$) $f_{11} u_{22}+f_{22} u_{11}-f_{12} u_{21}-f_{21} u_{12}=t$, as claimed.

Case 2. If $\operatorname{det} F \neq 0$ then (by (i)), $\operatorname{det}(F)=\operatorname{Tr}(F)-1$, and replacing in (ii), $\operatorname{Tr}(F)^{2}-$ $3 \operatorname{Tr}(F)+2=t^{2}-t$, a degree two equation in $\operatorname{Tr}(F)$. Here $\Delta=(2 t-1)^{2}$, so $\operatorname{Tr}(F) \in$ $\{t+1,2-t\}$ and accordingly $\operatorname{det}(F)=\{t, 1-t\}$.
(a) $\operatorname{Tr}(F)=t+1, \operatorname{det}(F)=t$. Replacing in (7), we get $2 t^{2}-t=0$ with only $t=0$ integer solution, that is $\operatorname{Tr}(F)=1$ and $\operatorname{det}(F)=0$. From Cayley-Hamilton theorem $F^{2}-F=0_{2}$ and so F is idempotent. Since by $(6), \operatorname{det}(U)=\operatorname{Tr}(U)=0$, by Remark 1 , U is nilpotent and so $A=F+U$ is nil-clean.
(b) $\operatorname{Tr}(F)=2-t, \operatorname{det}(F)=1-t$ (with $t \neq 1$). Now (7) holds for every $t \in \mathbf{Z}$.

Cayley-Hamilton theorem for F gives $F^{2}-(2-t) F+(1-t) I_{2}=0_{2}$, or $F^{2}-F=(1-$ $t)\left(F-I_{2}\right)=-\alpha \beta$. By $(1), \beta \alpha=t(1-t)$, and we get $(1-t)^{2}\left(F-I_{2}\right)^{2}=\alpha \beta \alpha \beta=t(1-t) \alpha \beta$.

Summarizing, an example of a 2×2 (integral) matrix A, which is not nil-clean such that $\operatorname{diag}(A ; 0)$ is nil-clean, must necessarily satisfy the conditions in this last subcase. Since $t \in \mathbf{Z}$, it is reasonable to check some small (positive) values for t.

To keep this exposition short, one can check that the matrices A obtained for $t=0$ are also nil-clean and so (since $t \neq 1$) the next case to investigate is $t=2$. The matrix U was chosen not to be nilpotent nor a unit (otherwise we obtain again nil-clean A), and for $U=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right],(1)$ and (2) give a linear system to be solved in α and β (only integer solutions are suitable). Finally, from the relations above $F^{2}-F=-\left(F-I_{2}\right)=-\alpha \beta$, we obtain $F=I_{2}+\alpha \beta$, and this gives our desired example.

References

[1] G. Carvo, Matrix completion problems, Linear Algebra Appl. 430 (2009) 2511-2540.
[2] A.J. Diesl, Nil clean rings, J. Algebra 383 (2013) 197-211.

[^0]: E-mail address: calu@math.ubbcluj.ro.
 http://dx.doi.org/10.1016/j.laa.2016.06.034
 0024-3795/® 2016 Elsevier Inc. All rights reserved.

