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Abstract

A lattice L is called cocompact if its dual L0 is compact. If M is a R-
module the lattice SR(M) of all the submodules of M is cocompact iff M is
finitely cogenerated. Most of the properties of these modules are proved in
the latticial general setting.

1 Introduction

A complete lattice L is called cocompact if each discover of 0 has a finite subdis-
cover, i.e. for every subset X of L such that

∧

X = 0 there is a finite subset F of
X such that

∧

F = 0. Obviously, L is cocompact iff the dual L0 is compact. An
element a ∈ L is called cocompact if the sublattice a/0 is cocompact.

The following characterization is well-known: a complete lattice L is artinian iff
for each subset A of L there is a finite subset F of A such that

∧

F =
∧

A. Hence

Remark 1.1 Every artinian lattice is cocompact.

Remark 1.2 If L is a cocompact lattice, for each 0 6= a ∈ L the sublattice a/0 is
also cocompact.

Our main result is the theorem 2.2: let L be an algebraic lattice. L is cocompact

iff the socle s(L) is compact and essential in L.
In the sequel we will use only complete lattices L and the following definitions: a

non-zero element e is called essential if for every element a ∈ L , a∧ e = 0 implies
a = 0 and superfluous dually; the socle s(L) of a lattice is defined as the join
of all the atoms of L and, dually, the radical r(L) as the meet of all the maximal
elements (dual atoms) of L; a lattice L is called atomic if for every 0 6= a ∈ L the
sublattice a/0 contains atoms, inductive if for each a ∈ L and every chain {bi}i∈I ,
∀i ∈ I, a ∧ bi = 0 ⇒ a ∧ (

∨

i∈I bi) = 0 and every sublattice (interval) of L has this
property, (R3) if for every a 6= 1, a essential in L, 1/a contains atoms, reducible

1



if the socle s(L) = 1, and torsion if for each a 6= 1, 1/a contains atoms (see [1],
[2] and [3]). As in [1] we use the following definitions: we say that a set {ai}i∈I of

elements of a lattice is independent if ai ∧
(

∨

j 6=i aj

)

= 0 for all i ∈ I; in this case

we denote the join
∨

i∈I ai by
⊕

i∈I ai and call it the direct sum (join). For all the
notions (such as: compact element, pseudocomplement in a lattice and algebraic,
artinian, pseudocomplemented or upper continuous lattice) and notation we refer
to [4],[5] and [6].

2 Results

Lemma 2.1 Let a be an essential element of a lattice L. If a/0 is cocompact then
L is also cocompact.

Proof. Let {ai}i∈I be a family of non-zero elements of L such that
∧

i∈I ai = 0.
The element a being essential in L, we have a ∧ ai 6= 0 and 0 = a ∧ (

∧

i∈I ai) =
∧

i∈I (a ∧ ai) . Hence {a ∧ ai}i∈I is a discover of 0 in a/0, and a/0 being cocompact
there is a finite subset F ⊆ I such that 0 =

∧

i∈F (a ∧ ai) = a∧ (
∧

i∈F ai) . Finally, a
being essential ,

∧

i∈F ai = 0 and L is cocompact.2

Lemma 2.2 In an algebraic, modular, reducible lattice the radical r(L) = 0.

Proof. We verify that for each atom s, s ∧ r(L) = 0 (this suffices in a reducible
lattice, which is also atomic). Reducible, inductive lattices being complemented
(each algebraic lattice is upper continuous, each upper continuous lattice is induc-
tive), let m be a complement of s. Using modularity, one easily proves that m is
maximal in L. Hence s ∧ m = 0 implies s ∧ r(L) = 0.2

Lemma 2.3 In an algebraic cocompact lattice L the socle s(L) is essential in L
(more can be proved; see the last theorem).

Proof. Let a ∈ L be such that s(L) ∧ a = 0 or, equivalently, s(a/0) = 0. The
sublattice a/0 being algebraic, the socle is also the join of all the essential elements
(of a/0) and so, being cocompact 0 =

∧

i∈F ei for a finite family of essential elements
{ei}i∈F of a/0. Hence 0 is essential in a/0 and so a = 0.2

Remark 2.1 In every atomic lattice the socle is essential. If the lattice L is induc-
tive then the converse is also true.

Indeed, if a 6= 0 then 0 6= s(L) ∧ a ∈ s(L)/0 an inductive and reducible lattice.
Using Theorem 9.2 from [1], each element of L is a direct sum of atoms. Hence a/0
contains atoms.

So, cocompact algebraic lattices are atomic. Moreover, one can prove that alge-

braic cocompact (R3) lattices are torsion lattices (cf.[2]).
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Proposition 2.1 A lattice L is artinian iff for every a 6= 1 the sublattice 1/a is
cocompact.

Proof. Each sublattice of an artinian lattice is clearly artinian and so, by the
Remark 1.1, is cocompact. Conversely, let ... ≤ an ≤ ... ≤ a2 ≤ a1 be an ascending
chain of elements in L. If a =

∧

n∈N an then {an}n∈N
is surely a discover of a in

1/a. The sublattice 1/a being cocompact there is a finite subset F ⊂ N such that
a =

∧

n∈F an. Hence a = am where m = min(F ) and am+l = am for each l ∈ N, so
the chain is finite and L is artinian.2

Proposition 2.2 If for an element a of an modular inductive lattice L the sublat-
tices a/0 and 1/a are cocompact then the lattice L is cocompact.

Proof. If a = 0 nothing remains to be proved. If a 6= 0 let 0 =
∧

i∈I bi a discover
of 0 in L. Then

∧

i∈I(a ∧ bi) = a ∧ (
∧

i∈I bi) = a ∧ 0 = 0, is a discover of 0 in
a/0. By cocompacity, there is a finite subset F of I such that 0 =

∧

i∈F (a ∧ bi) =
a ∧ (

∧

i∈F bi). If
∧

i∈F bi = 0 (e.g. if a is essential in L) the proof is complete. If
∧

i∈F bi 6= 0 then let c be a pseudocomplement of a which contains
∧

i∈F bi. We have
∧

i∈F bi ∈ c/0 = c/(a∧c) ∼= (a∨c)/a ⊆ 1/a (the isomorphism is given by modularity).
The sublattice 1/a being cocompact , (a ∨ c)/a and hence c/0 are also cocompact.
0 =

∧

i∈I(c ∧ bi) being a discover of 0 in c/0 there is a finite subset G of I such that
0 =

∧

i∈G(c∧ bi) = c∧ (
∧

i∈G bi). Now, for b =
∧

i∈F∪G bi we have b ≤
∧

i∈F bi ≤ c and
c ∧ b ≤ c ∧ (

∧

i∈G bi) = 0 so that b = 0, and we have the required finite discover of
0.2

This is a purely laticial proof which avoids the injective hull , a non-latticial
notion (see [7]).

Consequence 2.1 A direct sum of cocompact elements in an inductive modular
lattice is cocompact.

Proof. If a/0,b/0 are cocompact and a ⊕ b = 1 (b is a complement of a) then by
modularity b/0 = b/(a∧b) ∼= (a∨b)/a = 1/a and we use the previous Proposition.2

Proposition 2.3 Let L be an algebraic cocompact lattice with the radical r(L) = 0.
Then L is reducible and compact.

Proof. From the third lemma we already know that L is atomic. The lattice L
being algebraic the radical is also the union of all the superfluous elements. Hence
the condition r(L) = 0 implies that the only superfluous element of L is 0. Equiva-
lently, for each 0 6= a ∈ L there is an x 6= 1 such that a ∨ x = 1. In particular, each
atom has a complement (maximal if L is also modular). Indeed, if s is an atom, as
mentioned, there is an m 6= 1 such that s∨m = 1. But s∧m ∈ {0, s} and s∧m = s
implies s ≤ m or m = 1. Hence s ∧ m = 0 and s has a complement.

Now if the socle s(L) 6= 1 then let x 6= 1 be such that s(L) ∨ x = 1 (L 6= 0
atomic implies s(L) 6= 0). One gets an atom which would not be contained in s(L),
contradiction. Hence L is reducible.
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Finally, L being cocompact, the radical r(L), which is the intersection of the
maximal elements, and so is a discover of 0, must give a finite subdiscover of 0 by ,
say n maximal elements. The compacity of L follows now by induction on n. One
verifies that each cover of 1 has a finite subcover . The dual analogon of this proof
is detailed in the proof of the next theorem.2

Theorem 2.1 Let L be an algebraic, reducible and modular lattice. Then the fol-
lowing conditions are equivalent: (a) L is compact; (b) L is cocompact; (c) 1 is a
finite direct sum of atoms.

Proof. (a) ⇒ (c) L being reducible and inductive we have 1 =
⊕

i∈I si, with si

atoms (see [1]). But {si}i∈I is a cover for 1 , compact element , so a finite subset
F ⊆ I exists such that 1 =

⊕

i∈F si.

(c) ⇒ (b) If
n

⊕

i=1 si = 1 we prove that every discover of 0 =
∧

i∈I ai has a finite
subdiscover by induction on n. If n = 1 the assertion is obvious. We assume that
the assertion is true for each lattice such that 1 is a direct sum of at most n − 1
atoms.

First, observe that there is a k ∈ I such that ak ∧ sn = 0. Indeed, otherwise
ai ∧ sn = sn for every i ∈ I or sn ≤

∧

i∈I ai, contradiction. The element ak is also
a direct sum of at most n − 1 atoms (the modularity is needed for the use of the
Jordan-Hölder theorem). By the induction hypothesis a finite subset of the family
{ai ∧ ak}i∈I has the intersection 0. Hence L is cocompact.

(b) ⇒ (a) follows from the second lemma (which assures r(L) = 0) and the
previous Proposition.2

Remark 2.2 The implication (c) ⇒ (a) follows easily:

in an upper continuous lattice every atom is compact and finite unions of compact
elements are compact.

Theorem 2.2 Let L be an algebraic lattice. Then L is cocompact iff the socle s(L)
is compact and essential in L.

Proof. If L is cocompact and a 6= 0 then clearly a/0 is also cocompact. Hence
the sublattice s(L)/0 is cocompact and reducible. By the above theorem a/0 is also
compact, i.e. s(L) is compact in L. The essentialness follows from the third lemma.

Conversely, if s(L) is compact then s(L)/0 is reducible and compact and hence
cocompact, again by the above theorem. The socle s(L) being also essential in L,
L is cocompact by the first lemma.2
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